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1. Introduction

It is known that various cases of the steady isentropic irrotational
motion of a compressible fluid are expressible as variational principles [1],
[5]. In particular, the aerofoil problem i.e. the case of plane flow in which a
uniform stream is locally deflected, without circulation, by a bounded
obstacle, can be expressed in such a form. Thus we make stationary

== lim [\
R-*co J JR

where the region R is that bounded internally by the obstacle (Co) and exter-
nally by a circle (CR) of radius R. In this expression ^ is the velocity po-
tential for a uniform stream, and <f>0 is the velocity potential for the corre-
sponding incompressible flow. It is assumed that -p is a function of the den-
sity p only, and we are to express p in terms of <f> by use of Bernoulli's
equation. The class of admissible functions is restricted to functions for
which (i) 8<f>/dn = 0 on Co, and (ii) <f> = u^x -\- v^y + % where for r large
\x\ jS K'r-1, \Vx\ ^K'r~2, the constant K' being independent of the polar
angle 0, and independent of the function considered.

The integral Ji[<f>] may be used to obtain approximations to the velocity
potential in the Rayleigh-Ritz manner [1]. I propose to show that in the
case of a convex obstacle, if the flow is everywhere subsonic and if the
approximations so obtained converge at any point Q of the fluid, they con-
verge uniformly in any bounded subregion of the fluid containing Q.

2. An associated variational principle for the aerofoil problem

In his proof of the existence of subsonic flows past a prescribed obstacle,
Shiffman [2] used the integral

= Hm {p —
R->ooJjR

To any y> of class C2, p is defined by Bernoulli's equation with p = p(p),
and thence q, u, v by
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2 2 2 ^ ^
q — u v , pu— ^ , pv — ^ •

If the class of admissible functions is restricted to those (single-valued)
functions for which (i) y> is constant on Co, and (ii) y> = p^ («m y — v^ x) + W
where for r large l^'l ^K"r~l, |V¥"| ̂ K"r~2, the constant K" being
independent of the angle 6 and independent of the function considered.
Any admissible ip which makes J2[y>] stationary specifies an irrotational
flow.

If we put y) = ^ V o + ^ where ip0 is the stream function for the corre-
sponding incompressible flow, the last two terms of J2 give

lim | jpoo —- (U — Mro) — /V-7T5 iv — ôo) — ̂ (M« — v*)| ^ ^

+ lim f W • (qr - qjds.
ii-ooJCo.Cj,

As 1P= 0(r-x), qr — qr = O(r~2) the integral over CR vanishes in the h'mit
and, as W is constant on Co, the integral over Co vanishes for non-circulatory
flow. For an extremal uv — vx = 0 and as y>0 is conjugate to <f>0

For the subsonic case the extremal minimizes J2 whereas it maximizes Jx

(Serrin [5] pp. 204—5), and it then follows that for any admissible <f> and \p

(2-1)

3. Rayleigh-Ritz approximations

For a given case of the aerofoil problem we obtain Rayleigh-Ritz approxi-
mations to the velocity potential by setting

(3.i) M*. y) = 6»(*. y) + JM */«(*. y)
i

where, for a suitably chosen set of functions fx{x, y), f2(x, y), • • •, we are
to determine the constants At so as to make Jt[(f>v] stationary. The functions
/,- are to be chosen so that (i) for all v, <f>v is an admissible function in the
sense of § 1; and (ii) by proper choice of the Ait any function of the type %
defined in § 1, together with its first derivatives, may be approximated to
as closely as we please by ZAifi.

The (algebraic) equations for the determination of the At are
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° (* = i. 2, • • •. v)*

where p = p{j>). We evaluate <f>v for the values of A{ given by these equations,
and we write the equations in the equivalent form

(3.2) jjR (PcaV<f>0 - p,V4,p) • Vt,dxdy = 0

where fv = 2i-^</< with 2?,- arbitrary.
For any two approximations </>m, <f>m+n the difference (<£,„ — </>m+n) is a

function of type £ — call it Cm+n — ^ d by Taylor's theorem we have

JlWrn] = /lLPrn+J + (Poo"<Po ~ Pm+n^9m+n) ' ^Cm+ndxdy
(3.3) JJR —

[1]. The bar in the last term indicates that the "velocities" determining
p, c2 are intermediate between V<£m, V^m+B. We use Q for the quadratic
expression

QIC] = {c2 - u*)Zl -
which, for y2 = «2 + v2 ^ ^*2 < c2, is positive definite in its arguments;
and so for some constants k, K

(3-4) k(V^^^Q[C]^K(VC)2.
c

The second term on the right hand side of (3.3) vanishes, and if we require
that the <f>m, for all m, give rise to subsonic "velocities", the quadratic form
Q is positive definite and the /![<£„] form a monotonically increasing se-
quence.

Since the admissible functions give rise to subsonic "velocities", we may
write

^ SL
where ôo = Pra^oaV — voax) [2]- Now Poô o is an admissible y>, and from
(2.1) it follows that

^ Kx

and thus the sequence /i[<£m] has a limit. Putting

\Ji[<f>m] ~ Ji[<f>m+n]\ < e

* We now use R for the infinite region exterior to Co.
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there follows from (3.3), (3.4)

(3-5)

for m > M(e).
We use (3.5) together with a theorem due to Morrey [4] to establish the

convergence of the <f>m. Consider any two points P, Q such that a semicircle
upon diameter PQ lies wholly within the fluid. Introduce Cartesian coordi-
nates such that P, Q axe given by ( ± a, 0), and let T be the point (0, a).
Since V<£m is uniformly bounded

jjC
for any circle Cr of radius r, and Shiffman's summary [2] of Morrey's theorem
then shows that

where Cm+n = <f>m — <f>m+n and L± is a constant depending on L.
If the semicircle PTQ does not lie wholly within the fluid we may, if the

surface of the obstacle is sufficiently regular, connect P to Q by a chain of
non-overlapping semicircles lying within the fluid. For definiteness consider
the case where Co is convex and, as it is bounded, enclose it within a square
S. We can select a set of at most four points P1 ( • • •, P 4 such that, if we
write Q = Po, P = P 6 , we can construct a set of required semicircles, one
on each of the segments P,_iP<, i — 1, • • • 5. It then follows that

- Cm+n(Q)\ ^ Lx [ \ \ R

Let P and Q be any two points of a bounded subregion D of the fluid, and
let D be enclosed within a circle of radius d/2, where d is sufficiently large
for the circle to enclose the square 5, then

(3-6) |Cm+n(P) - Cm

From (3.5) we have finally

for m > M(s).
If the approximations <f>m converge at Q

\Cm+n(Q)\ < si

for m > M' (e), and as the contants Lz, k are independent of P, there follows
from (3.7) the uniform convergence of the Rayleigh-Ritz approximations.
For the case of the circular obstacle, all the <f>m are zero at r = 1, 0 = \n,
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and thus the <j>m converge in any bounded subregion of the fluid containing
the point r = 1,0 = \n.

Let <f> be the velocity potential of the flow and set £m = 4>m — $ then,
since <f>m and <f> are determined to an additive constant, we can adjust the
constant so that the fm are zero at some chosen point Q. We have from (3.6)

and using (3.4), (3.3) successively there follows

This makes definite the "criterion of mean error" of Lush and Cherry [1],
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