THE CONVERGENCE OF RAYLEIGH-RITZ
APPROXIMATIONS IN HYDRODYNAMICS

P. E. LUSH

1. Introduction

It is known that various cases of the steady isentropic irrotational
motion of a compressible fluid are expressible as variational principles [1],
{5]. In particular, the aerofoil problem i.e. the case of plane flow in which a
uniform stream is locally deflected, without circulation, by a bounded
obstacle, can be expressed in such a form. Thus we make stationary

141 = lim | [ = pu+ puVior V(6 — dun)ldndy
R=x R

where the region R is that bounded internally by the obstacle (C,) and exter-
nally by a circle (Cg) of radius R. In this expression ¢, is the velocity po-
tential for a uniform stream, and ¢, is the velocity potential for the corre-
sponding incompressible flow. It is assumed that # is a function of the den-
sity p only, and we are to express p in terms of ¢ by use of Bernoulli's
equation. The class of admissible functions is restricted to functions for
which (i) d¢/on = 0 on Cy, and (ii) ¢ = %% + v,y + x Where for » large
izl £ K'r 1, |Vyg| < K'r2, the constant K’ being independent of the polar
angle 0, and independent of the function considered.

The integral J;[¢] may be used to obtain approximations to the velocity
potential in the Rayleigh-Ritz manner [1]. I propose to show that in the
case of a convex obstacle, if the flow is everywhere subsonic and if the
approximations so obtained converge at any point @ of the fluid, they con-
verge uniformly in any bounded subregion of the fluid containing Q.

2. An associated variational principle for the aerofoil problem

In his proof of the existence of subsonic flows past a prescribed obstacle,
Shiffman [2] used the integral

Talv] = lim f f (b — b + Pl — s + pr(v — v,0)Jdwdy.
R-ooo R

To any y of class C,, p is defined by Bernoulli’s equation with p = p(p),
and thence ¢, », v by
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If the class of admissible functions is restricted to those (single-valued)
functions for which (i) y is constant on C,, and (ii) 9 = po, (#eo ¥ — Voo ) + ¥’
where for » large |¥’'| < K'r, |V¥'| < K"”r?, the constant K’ being
independent of the angle 0 and independent of the function considered.
Any admissible p which makes J,[y] stationary specifies an irrotational
flow.

If we put y = py, + ¥ where y, is the stream function for the corre-
sponding incompressible flow, the last two terms of J, give

;| 0
lim f f {pw T2~ ) — pon o (0 V) —W(uﬂ—v,,)} dzdy

R-00

¢* = u®+ v?, pu=

+ lim Yt- (@ — q)ds.

R-c0J Cg, Cx

As ¥ = O0(r), g — q = O(r2) the integral over Cy vanishes in the limit
and, as ¥is constant on C,, the integral over C, vanishes for non-circulatory
flow. For an extremal #, — v, = 0 and as y, is conjugate to ¢,

Jaltert) = lim f f b — Poo + P Vo - (4 — Go)}ddy
= ]1[¢ext]~

For the subsonic case the extremal minimizes [, whereas it maximizes J,
(Serrin [5] pp. 204—5), and it then follows that for any admissible ¢ and »

(2.1) Nil$] = Nildext] = Jalv]

3. Rayleigh-Ritz approximations

For a given case of the aerofoil problem we obtain Rayleigh-Ritz approxi-
mations to the velocity potential by setting

(3.1) ¢ (2, ¥) = ¢, y) + g 4:fi(x, )
where, for a suitably chosen set of functions f,(z, ¥), f.(z, ¥), - -, we are

to determine the constants 4, so as to make J;[¢,] stationary. The functions
f; are to be chosen so that (i ) for all », ¢, is an admissible function in the
sense of § 1; and (ii) by proper choice of the 4,, any function of the type x
defined in § 1, together with its first derivatives, may be approximated to
as closely as we please by XA, f,.

The (algebraic) equations for the determination of the 4, are
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A

o4, =”R (P Vo — P, V,) - Vidzdy =0 (i=1,2,--+, »)*

where p = p(¢). We evaluate ¢, for the values of 4, given by these equations,
and we write the equations in the equivalent form

(3.2) [z (o Vo — £, V4,) - VE,dwdy = 0

where ¢, = X1 B,f; with B, arbitrary.
For any two approximations ¢,,, ¢,,,, the difference (¢,, — dpin) is a
function of type { — call it {,,,, — and by Taylor’s theorem we have

Julén] = Jilbmen] + f f (Peo Vo — Prnsn Vbmen) - Vimendzdy
(3.3) B

P
— 4[] Lottuanty
RC
[1]. The bar in the last term indicates that the “velocities”” determining

p, ¢* are intermediate between V¢, ,, Vé, ... We use Q for the quadratic
expression

QL] = (¢ — w5 — 2wl L, + (¢ — o35
which, for ¢ = #2® + 9% < ¢*2 < ¢?, is positive definite in its arguments;
and so for some constants %2, K

(3.4) k(VO? < 301 s KV

The second term on the right hand side of (3.3) vanishes, and if we require
that the ¢,,, for all m, give rise to subsonic “velocities””, the quadratic form
Q is positive definite and the J,[¢,,] form a monotonically increasing se-
quence.

Since the admissible functions give rise to subsonic ‘“‘velocities””, we may
write

by [ [ V(0 — o) Pody < Jolv] S K, [ [ V(0 — po)P2dedy

where 9o, = poo (Moo ¥ — Vo) [2]. Now p 4, is an admissible p, and from
(2.1) it follows that

Tilbn] < K [[ AV (peto — vo0) Py,

and thus the sequence J;[¢,,] has a limit. Putting
|Jl[¢m] - Jl[¢m+n:” <e

* We now use R for the infinite region exterior to C,.
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there follows from (3.3), (3.4)

(35) B[ [V (bn — bmsa)2dmdy <o

for m > M (e).

We use (3.5) together with a theorem due to Morrey [4] to establish the
convergence of the ¢,,. Consider any two points P, Q such that a semicircle
upon diameter PQ lies wholly within the fluid. Introduce Cartesian coordi-
nates such that P, Q are given by (4 a, 0), and let T be the point (0, a).
Since V¢, is uniformly bounded

J.fc' {V(dm — bmin)Pdzdy < Lr*

for any circle C, of radius 7, and Shiffman’s summary [2] of Morrey’s theorem
then shows that

men(P) = Coen(@)] = Ly POH{[ [ (VEn)2dmay)t

where £, = é» — $msn and L, is a constant depending on L.

If the semicircle PTQ does not lie wholly within the fluid we may, if the
surface of the obstacle is sufficiently regular, connect P to @ by a chain of
non-overlapping semicircles lying within the fluid. For definiteness consider
the case where C, is convex and, as it is bounded, enclose it within a square
S. We can select a set of at most four points P, - - -, P, such that, if we
write Q = P,, P = P, we can construct a set of required semicircles, one
on each of the segments P, ; P,, ¢ =1,---5. It then follows that

min(P) = Cmsnl@) S Ly { [ [ (VEmn)2dzay)* (QPY + -+ +-P.PA).

Let P and @ be any two points of a bounded subregion D of the fluid, and
let D be enclosed within a circle of radius d/2, where 4 is sufficiently large
for the circle to enclose the square S, then

(3.6) min(P) = Lmin(@)] S 5Lyt [ [[ (Ve p,)2dmay)t.
From (3.5) we have finally

(3.7) emin(P) = Cmsn(@)] < Laktet

for m > M (e).

If the approximations ¢,, converge at Q

[Cmen(Q)] < et

form > M’ (¢), and as the contants L,, k are independent of P, there follows
from (3.7) the uniform convergence of the Rayleigh-Ritz approximations.
For the case of the circular obstacle, all the ,, are zero at » = 1, 6 = 4=,
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and thus the ¢,, converge in any bounded subregion of the fluid containing
the point r = 1,0 = }x.

Let ¢ be the velocity potential of the flow and set {,, = ¢,, — ¢ then,
since ¢,, and ¢ are determined to an additive constant, we can adjust the
constant so that the ¢, are zero at some chosen point Q. We have from (3.6)

m(P)] < Ly { [[,, (VEn)2dzay)?
and using (3.4), (3.3) successively there follows

bm — ¢ < Lk H{1[4] — Jaldal}t.

This makes definite the ‘““criterion of mean error’’ of Lush and Cherry [1].
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