
Segmentation method of U-net sheet metal
engineering drawing based on CBAM attention
mechanism

ZhiWei Song1 , Hui Yao2 , Dan Tian2 , Gaohui Zhan2 and Yajing Gu1

1Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China and 2School of Mechatronic Engineering, Xi’an
Technological University, 710032, China

Abstract

In this paper, an improved U-net welding engineering drawing segmentation model is proposed
for the automatic segmentation and extraction of sheet metal engineering drawings in the
process of mechanical manufacturing, to improve the cutting efficiency of sheet metal parts. To
construct a high-precision segmentation model for sheet metal engineering drawings, this paper
proposes a U-net jump structure with an attention mechanism based on the Convolutional
Attention Module (CBAM) attention mechanism. At the same time, this paper also designs an
encoder jump structure with vertical double pooling convolution, which fuses the features after
maximum pooling+convolution of the high-dimensional encoder with the features after average
pooling+convolution of the low-dimensional encoder. The method in this paper not only
improves the global semantic feature extraction ability of the model but also reduces the
dimensionality difference between the low-dimensional encoder and the high-dimensional
decoder. Using Vgg16 as the backbone network, experiments verify that the IoU, mAP, and
Accu indices of this paper’s method in the welding engineering drawing dataset segmentation
task are 84.72%, 86.84%, and 99.42%, respectively, which are 22.10, 19.09 and 0.05 percentage
points higher compared to the traditional U-net model, and it has a relatively excellent value in
engineering applications.

Introduction

Heavy industry equipment generally adopts customized manufacturing. In such projects, large
sheet metal parts need to be cut out according to the content of customized engineering drawings
and finally manufactured by welding and stamping operations. Efficiency and precision are
critical to the manufacture of customized heavy industrial equipment. The specific process of the
traditional way to obtain sheet metal parts in the manufacturing process of heavy industry
equipment is manual recognition of engineering drawings (Ablameyko and Uchida, 2007; De
et al., 2016) manual redrawing of specific graphics (Tovey, 1989; Madsen and Madsen, 2016)-
sheet metal cutting and stamping based on CAD/CAM integrated system (Pan and Rao, 2009; Lu
et al., 2021; Favi et al., 2022). The process of obtaining specific sheet metal parts in traditional
ways is cumbersome and inefficient.

In recent years, with the development of artificial intelligence, the industrial field is also more
inclined to use deep learning methods to solve engineering problems. Some studies have shown
that thismethod has an excellent performance in solving engineering problems. For example, Lau
et al. (2020) utilized deep learning image segmentation to replace the traditional manual road
crack detection and achieved extremely high detection accuracy in road defect detection using the
ResNet-34 pre-trained model. Tabernik et al. (2020) and Hou et al. (2017) utilized deep learning
image segmentation techniques to achieve the automatic detection of defects on metal surfaces
and the automatic detection of defects in the welding process, respectively. Zhang et al. (2024)
improved the ability of computers to recognize the contents of 2D engineering drawings using
deep learning data enhancement techniques. Li et al. (2023) used a self-learning semi-supervised
deep learning approach to achieve high-precision semantic segmentation of remote sensing
images. Lu et al. (2023) achieved high-precision automated screening of hybridoma cells using
the U-net segmentation model with a residual network attention mechanism. The commonly
used deep learning method for plate part recognition is the graphical neural topology method,
which is mainly applied to 3D part recognition and classification and is not yet able to satisfy the
segmentation and extraction of the content contour of 2D engineering drawings (Ma and Yang,
2024).

As we all know, many excellent segmentation networks already exist in deep learning image
segmentation. The fully convolutional segmentation model (FCNs) of deep learning was first
proposed by Long et al. (2015). FCNs abandon the traditional fully connected layer, and the
overall network structure uses a fully convolutional method to achieve end-to-end pixel-level
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dense prediction of image features, which is suitable for more
complex global semantic feature segmentation tasks. The fully
convolutional segmentation model uses transposed convolution
operations to obtain semantically segmented images of the original
size through upsampling. The input of FCNs is an RGB image of
any size and the output is the same size as the input. At the same
time, it proposes a classic skip connection for fusing features from
deep layers (including classification information) and intermediate
layers (including location information) to improve feature accuracy
output. U-net (Ronneberger and Fischer, 2015) can be considered a
variation of FCNs, which still uses the encoder-decoder and skip
structure. Compared with the former, the unique skip connection
architecture of the U-net enables the decoder to obtainmore spatial
information lost during the pooling operation and restore a com-
plete spatial resolution. The semantic difference between the
encoder and decoder is reduced to achieve better segmentation
performance. U-net mainly has two cores: (1) dimensional differ-
ence problem between the low-dimensional encoder and high-
dimensional decoder in the process of semantic information fusion.
How to effectively reduce the dimension difference in the image
fusion process of the encoder and decoder? (2) The problem of
image spatial position information, how can the encoder and
decoder realize the learning of image spatial position information?
Researchers have introduced many methods to solve the above
problems to reduce the incompatible feature differences between
these two groups.

Deeplab-v1, Deeplab-v2, Deeplab-v3, and PSPNet (Chen
et al., 2014, Chen et al., 2017a, 2017b; Zhao et al., 2017) use null
convolution and pooling with different step sizes to improve the
resolution and accuracy of image segmentation, respectively,
with more computational parameters in their processes. SegNet
(Badrinarayanan et al., 2017) removes the fully connected layer
and proposes the up-sampling model structure of the conv layer
instead of the Deconv layer, which improves the resolution and
greatly reduces its model’s operation parameters. HRNet (Sun
et al., 2019) adopts the design of a multi-resolution parallel tributary
architecture, which better realizes the fusion of different depth
semantic features. The segmentation networks focus on acquiring
global image semantic features and spatial location information.
Therefore, the model mainly integrates the global upper and lower
semantic features in image segmentation and learns spatial location
feature information. Currently, many improved models have
emerged based on U-net, such as R2UNet, R2U++Net, CAggNet,
MultiResUNet, NonlocalUNets, andUCTransNet (Alom et al., 2018;

Ibtehaz and Rahman, 2020; Wang et al., 2020, 2022; Cao and Lin,
2021;Mubashar et al., 2022). Such networks are improvements to the
U-net hopping structure, to allow better integration of global con-
textual feature information in the encoder and decoder and thus
improve segmentation performance. The unique hopping structure
of the U-net model can better realize the fusion of global semantic
information, which is characterized by high accuracy, low complex-
ity, and high resolution in image segmentation tasks. As mentioned
in UNet++ (Zhou et al., 2018), the dimensionality of the encoder
semantic features at the front end of the jump structure is lower than
that of the decoder semantic features at the back end, and thus, the
large difference in feature dimensions in the jump structure makes
the segmentation performance not good enough.

On the other hand, Fei Wang (Wang et al., 2017) proposed a
residual attention network using an encoder-decoder approach.
Based on this, Sanghyun Woo (2018) proposed the CBAM
(Convolutional Block Attention Module) module to realize the
entire convolution channel semantic and spatial information
calculation. UCTransNet is a recently proposed attention module
inspired by the Self Attention Mechanism andMulti-Head Atten-
tion mechanisms in Transformer (Vaswani et al., 2017), and its
purpose is to enable the encoder-decoder to obtain more global
information fusion. In this paper, an improved model based on
U-net is proposed for the segmentation of specific units in sheet
metal engineering drawings for heavy equipment manufacturing.
The three models (a) (b) (c) in Figure 1 are all examples of model
structures that improve the segmentation accuracy of different
tasks by improving the U-net jump structure. (d) Figure 1 is a
sheet metal engineering drawing outline extraction method based
on the CBAM attentionmechanism proposed in this paper, which
is used for sheet metal segmentation in industrial equipment
manufacturing.

By using traditional U-net to conduct feasibility experiments
on the sheet metal welding pattern segmentation task, and using
the attention mechanism to further study and analyze the struc-
ture and principle of U-net (Wang et al., 2017; Woo et al., 2018;
Mohan and Bhattacharya, 2022). This paper proposes a dual-
pooling convolutional fusion attention mechanism model based
on CBAM, which considers the information fusion of channel
and spatial dimensions as well as the dimensional difference
between encoder and decoder features. Besides, this article pro-
poses global information linkage between U-net encoders, which
includes feature cluster integration between vertical encoders and
vertical and horizontal double-pooling convolutions. The output
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Res Path

Res Path
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(a) U-net (b) MultiResUnet (c) R2U-net (d) Ours

Figure 1. Comparison of our method (a) Skip connection structure of the original U-net model; (b) U-net model with residual network used as the skip connection; (c) U-net model
with recurrent structures added to both the encoder and decoder; (d) with skip structure schemes of other models. Dashed lines denote skip connections.
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features are fused with the original features through the attention
module, and the whole jumps to the high-dimensional feature
layer of the decoder to achieve secondary fusion. The improved
U-net model can not only better extract global semantic features
but also reduce the semantic differences in the process of
encoder-decoder feature fusion. Compared with traditional
models, this research method can better realize the global feature
information fusion of encoder and decoder features, effectively
reduce the dimensional difference between the low-dimensional
encoder and high-dimensional decoder in the feature fusion
process, and can better realize the segmentation of specific units
in sheet metal engineering drawings. Through experimental veri-
fication, the method in this paper has better performance in the
sheet metal graphics segmentation task. The main contributions
of this study are as follows:

• Propose the automatic cutting technology of sheet metal parts
based on U-net for heavy industry equipment manufacturing.

• The segmentation method combining CBAM and U-net is pro-
posed to be suitable for (non-human-assisted) high-precision
segmentation of sheet metal graphics.

• A double pooling + convolutional skip structure is proposed to
reduce the dimensional difference between encoding and decod-
ing features.

• A skip structure of vertical coding features is proposed to
improve the fusion of global semantic information.

• The improved model has been verified for its high-performance
segmentation capability of sheet metal graphics.

Related Work

CBAM-U-net model

The Convolutional Block Attention Module (CBAM) (Woo et al.,
2018) can improve the ability of the convolutional network to
express the image of the feature layer, in the process of extracting
image features, pay more attention to the feature factors that have a
greater impact on the target, and suppress the expression of non-
important features that have no obvious impact. Input the original
sheet metal engineering drawing F, which is transformed into a
featured image X through pooling + two convolution operations.
The shallow feature map X∈ℝC × H × W is input to the CBAM
module, which infers the channel attention map Tc(X) and the

planar spatial attention map Ts(X’), as shown in Figure 2. The
overall attention process of the module is roughly as follows:

X0 =Tc Xð Þ⊗X (1.1)

X00 =Ts X0ð Þ⊗X0 (1.2)

where ⊗ means element-wise multiplication. In the operation
process, the CBAM module can continuously obtain the 1D chan-
nel attention feature map Tc(X)∈ℝC × 1 × 1 and the 2D spatial
attention feature map Ts(X’)∈ℝ1 × H × W according to the input
feature map X∈ℝC × H × W. In image feature extraction, the CBAM
module assigns corresponding attention weights to the image fea-
tures that have a greater influence on the target task (the attention
weights in the spatial direction are propagated in the channel
direction, and vice versa). The feature map X” marked with
channel-spatial attention weights calculated and output by the
CBAMmodule is finer than the image features output by traditional
U-net. At the same time, X” is upsampled by 2x2 and fused with the
low-dimensional feature cluster of the horizontal encoder, and the
final feature F0 is output. Image features F0 are combined with
decoder upsampled graph feature clusters to reduce global context-
ual semantic differences. The overall improved U-net network
structure is shown in Figure 3.

U-net attention module

The residual attention network (Wang et al., 2017) adopts pre-
activated residual units ResNeXt (Xie et al., 2017) and Inception
(Szegedy et al., 2017) as a two-branch parallel network structure
stacked with residual attention modules. Zhou et al. (2016) and
Hu et al. (2018) used average pooling to aggregate and count
spatial information, respectively. The convolutional attention
module uses inter-channel feature relationships to compress the
spatial dimension of the input feature map to compute channel
attention. Moreover, it is verified that the average pooling and
max pooling simultaneously can improve the feature network’s
representation ability. What is mentioned here is that the trad-
itional CBAM directly performs the maximum pooling and aver-
age pooling operations on the image input. CBAM uses average
pooling and maximum pooling to fuse the spatial information of
semantic features to generate two different global semantic space
information expression features Fcave and F

c
max. In improving the
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Figure 2. CBAM architecture. This module comprises a channel module and a spatial attention module consecutively. The encoder feeds the double-pooled and convolutional
features into this module, and the CBAM generates global features with channel and spatial location information. (n) and (n + 1) respectively represent the encoders of different
vertical layers of U-net.
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U-net model structure, we made a small change to this. Instead of
directly inputting the sheet metal image F to the CBAMmodule, we
input the features extracted and fused by the vertical encoder. Feed
the fused features X into a shared multi-layer perceptron (MLP).
Therefore, at this time, CBAM uses average pooling and maximum
pooling operations to generate two different global semantic space
informationexpressionfeatures:Xc

ave∈ℝC×1× 1andXc
max∈ℝC×1× 1.

At the same time, the shared multi-layer perceptron performs inte-
gration + ReLU operation on the input feature clusters to generate
channel attention feature maps Tc(X)∈ℝC × 1 × 1. Tc(X) contains the
attention feature relations between the various channel axes of the
input feature X. Then, Tc(X) is fused with the input feature X (Note:
X is the image feature after the original image F has been pooled and
convolved by the upper and lower encoders) to generate a feature
map X’. According to the semantic difference between the Upper-
encoder and Lower-encoder features, the convolution and linear
rectification unit (ReLU) are used to continue to calculate the spatial
information relationship of the feature X’, and generate the attention
space featuremap Ts(X’). The channel attention feature X’ is merged
with the spatial position attention feature Ts(X’) to generate a
globally informative feature X” with channel-spatial dual attention.
The detailed calculation process of the attentionmodule is as follows.

Tc Xð Þ= S M Maxpool Xð Þð Þ+M Avepool Xð Þð Þð Þ
= S W2 W1 Xc

ave

� �� �
+W2 W1 Xc

max

� �� �� � (1.3)

where Tc(X) is a 1-dimensional channel attention image feature, S
is a sigmoid activation function, and M represents a multi-layer
perceptron (MLP) shared layer. Maxpool(X) and Avepool(X) are
the secondary pooling operations of horizontal low-dimensional
encoder features and vertical high-dimensional encoder features,
respectively (X is the result of vertical maximum pooling and
horizontal average pooling). W1 and W2 represent the shared
weights of the input multi-layer perceptron (MLP). The output of
the ReLU activation layer is W1. The extraction process of spatial
feature information in the CBAM structure is similar to that of
channel feature extraction. The difference is that the sheet metal
graphic feature F is input into the CBAM module as X after the
convolution operation. The CBAM module still uses maximum
pooling and minimum pooling to fuse image feature semantic
information to generate two 2D images: Xs

ave∈ℝ1 × H × W and
Xs

max∈ℝ1 × H × W. And perform a convolution operation on it to
generate an image Ts(X’) containing spatial feature information.
(It is worth noting that we use three 3x3 convolutions instead of 7x7
convolutions in CBAM to reduce calculation parameters). The
image spatial feature information is calculated as follows:

Ts X0ð Þ= S f 3x3x3 Tc Avepool Xð Þ½ð ;Maxpool Xð Þ�Þð Þ� �

= S f 3x3x3 Xs
ave;X

s
max

� �� �� � (1.4)

Ts(X’) is a 2-dimensional spatial position information feature,
and f3x3x3 represents three 3x3 convolution operations. Among
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them, the spatial attention feature layer performs average pool-
ing and maximum pooling operations on the channel attention
feature layer Tc(X) during the calculation process, instead of
inputting the welding graph F. The detailed structure of the
attention module is shown in Figure 4. Experiments were con-
ducted only on sheet metal engineering drawings of heavy
equipment provided by MCC (a partner company). Vgg16 and
ResNet50 are used as the backbone networks to validate the
modeling performance of this paper’s method, respectively.
From the computational analysis results in Table 1, it can be
concluded that the method proposed in this paper, in terms of
average accuracy, is significantly better than both Vgg16 and
ResNet50 as the baseline. In addition to that, the Vgg16 model
using this paper’s method is better than ResNet50 in terms of
global segmentation effect.

This study improves the U-net segmentation network, the main
purpose of which is to use artificial intelligence to apply it to the
manufacturing process of heavy industry equipment welding
engineering, so that it can automatically cut the entire sheet metal,
thereby liberating labor and improving enterprise efficiency.
Encapsulate the improved model after training in an integrated
cutting and processing center with visual functions to realize the
automatic cutting of sheet metal parts in the process of intelligent
manufacturing. The specific process is shown in Figure 5. At

present, this research has been initially applied to the cutting
processing center of China Metallurgical Equipment Corporation
to realize a simple sheet metal cutting test.

Experiments

Dataset

The training data set is a non-public engineering atlas of complex
welding structures used in the manufacture of heavy industry
equipment provided by the cooperative heavy-pressure riveting
and welding company, as well as some public welding engineering
atlases in the United States and Japan. Its quantity is shown in
Table 2. It is well known that the size of the dataset directly affects
the training results, and the network may overfit when there are
few training samples. To avoid the problem of biased training
results due to the small number of data sets, data set enhancement
processing is performed on the provided data sets. First of all, this
study uses manual annotation to select 600 welding engineering
graphics provided by China Metallurgical Group, the United
States, and Japan from the welding equipment engineering atlas
collection. The dataset was augmented by cropping, mirroring,
deflecting, adding noise, etc., resulting in a dataset of 4094 anno-
tated engineering drawings.

Channel Attention

Tc X

Channnn el AtAA tentnn ion

Tc X

Xʹ

MLP

Conv 3x3x3

Maxpool

Avepool

Maxpool

Avepool

Xʹ

Conv 3x3x3

Maxpool

AAAAAvepoollll

Ts Xʹ
X"

X

Spatial Attention

Figure 4. Principle of attention mechanism. X is used as input to the multi-layer perceptron (MLP), and the feature X’ with channel attention information is generated
through feature cluster multiplication and Softmax operation. X’ output features X” with channel spatial information through a similar operation of the spatial attention
module.

Table 1. Training cost analysis and model mean accuracy comparison between Vgg16 and ResNet50 with different model structures

Model Loss mAP@0.5 mAP@0.70 Time(s)

Vgg16 (Simonyan and Zisserman, 2014) 0.0183 0.7652 0.6200 43.00 ± 0.761

Vgg16 + Ave-v1 0.0601 0.8113 0.7156 45.00 ± 0.238

Vgg16 + CBAM-v2 0.0211 0.9623 0.8130 146.00 ± 0.099

Vgg16 + Ave + CBAM-v3 (Ours) 0.0730 0.9992 0.9004 150.00 ± 0.021

ResNet50 (He et al., 2016) 0.0189 0.9591 0.4090 17.00 ± 0.102

ResNet50 + Ave-v1 0.1084 0.9604 0.5875 17.00 ± 0.368

ResNet50 + CBAM-v2 0.1248 0.9667 0.6433 40.00 ± 0.994

ResNet50 + Ave + CBAM-v3 (Ours) 0.0929 0.9999 0.6981 41.00 ± 0.006

Note: Same benchmark, bold font means excellent.
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Evaluation metrics

IoU=
Area Pp∩Pgtð Þ
Area Pp∪Pgtð Þ (1.5)

Pp is the prediction frame, Pgt is the ground truth frame, and
IoU is the intersection area of the Pp Pgt regions divided by the
union area.

Accuracy =
TP+TNð Þ

TP+ FP+ FN+TNð Þ (1.6)

TP This means that the sample is positive and the predicted
value is positive.

FP This means that the sample is negative and the predicted
value is positive.

FN This means that the sample is positive and the predicted
value is negative.

TN This means that the sample is negative and the predicted
value is negative.

Accuracy is used to judge the accuracy of the prediction results,
the total number of correct predictions the total number of samples.
There are two cases when the prediction is accurate: the sample is
positive, the prediction is positive, and the sample is negative.

AP =

P
Precision
N

(1.7)

Precision is the sample precision, and N is the total number of
samples.

mAP=

P
AP

Nclass
(1.8)

AP is the average precision and Nclass the number of classes. AP
The average precision rate is the sum of the precision rates for each
sample (of a particular category) divided by the total number of
samples. mAPIs the mean, and the average precision is the sum of
the AP values of all categories divided by the number of categories
(note: mAP in the table is the mAP of the validation set).

Implementation details

This experiment is carried out on the environment framework
environment of Anaconda3, using the GPU accelerated training
method of CUDA parallel computing architecture. Vgg16
(Simonyan and Zisserman, 2014) serves as the backbone network
for the whole structure, the input graph size is 512 x 512, and the
optimizer is trained using the Adam optimizer with internal
momentum= 0.9. Consideringmemory issues, a pre-trainedmodel
with a total number of Epochs of 100 is used during the experiments
and frozen experiments are performed. The initial learning rate is
set to 0.0001 and the minimum learning rate is 0.000001 in cos
descent. Since this segmentation experiment has 9 classes, Dice loss
is not used during the experiment.Model hyperparameters used for
all experiments are shown in Table 3.

In addition, by combining the actual requirements and compar-
ing the use of the Focal loss with better results, the main purpose is
to reduce the weight of easily distinguishable samples and focus on
samples that are difficult to distinguish. The experimental com-
parison results are shown in Table 4. When the network is trained
to the 50th epoch, the network starts to load and evaluate the
validation set. The K-fold cross-validation method (K = 5) was
used to validate the model as shown in Figure 6.

Sheet metal cutting techniques in the manufacture of heavy
equipment must comply with international standards. The method
in this paper is used to segment and extract specific unit contours
from sheet metal engineering drawings, and the segmentation
accuracy of the graphic boundaries meets the weld width and
fineness required by MCC-Shaanxi Pressure Company. The tech-
nical requirements of the sheet metal welding drawing are shown in
Table 5.

The performance of the improved welded graph U-net seg-
mentation model was evaluated by using the Intersection Over
Union (IoU), Accuracy (Accu), and Mean Prediction Precision
(mAP) metrics. Its training loss curve is shown in Figure 7.

Image F

(512x512)

3x3 Conv

2x2Avepool

3x3 Conv3x3 Conv

2x2Avepool

3x3 Conv

2x2Maxpool 3x3 Conv2x2Maxpool 3x3 Conv

Upper

Lower

Encoder

(n+1)

Encoder

(n)

CBAM

Skip

Upsample

2x2

Decoder

Output

512x512

Skip

1x1 Conv

Figure 5. Improve the U-net model by cutting sheet metal specific contour mechanism. Segmentation extracts the specific unit of welding engineering graphics, and the cutting
device automatically cuts the corresponding parts on the whole sheet metal relying on vision.

Table 2. Sources of welding engineering datasets and the number of datasets
after data enhancement processing

Dataset MCC America Japan Total

Training set 1637 844 794 3275

Validation set 205 106 99 410

Test set 205 105 99 409

Total number 2047 1055 992 4094
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During the experimental training process, the Loss plot verifies
that the model structure of this paper is stable and there is no
model collapse. To directly demonstrate the segmentation effect
of our proposed U-net improved model on welding engineering
drawings, the results are compared with the traditional U-net
segmentation effect through ablation experiments. Its visualiza-
tion effect is shown in Figure 8. By comparing the traditional
U-net segmentation performance with the horizontal encoder
average pooling + double convolution vertical encoder jump

structure fusion method proposed in this paper, a comparative
experiment is carried out. After that, we continue to compare the
traditional U-net segmentation performance with the crossbar
encoder jump structure of the attention mechanism CBAM pro-
posed in this paper. The results of the comparative experiments
are shown in Table 6.

To avoid problems such as the increased variance of the
estimated value and mean shift when the network model extracts
features. In the U-net improved model, this paper proposes to
use horizontal low-dimensional encoder average pooling and
vertical high-dimensional encoder maximum pooling to better
capture global feature information. After the encoder performs
a double pooling operation, its horizontal encoder continues to
perform two convolution operations to extract higher-
dimensional spatial information of the image. The input image
resolution is 512x512, and the encoder uses a repeated convolu-
tion operation of 3x3 (same padding), followed by a linear
rectification unit (ReLU). The vertical high-dimensional encoder
uses max-pooling with stride 2 of size 2x2, and the horizontal
encoder uses equal-sized average pooling. Perform two 3x3
(same padding) convolution operations on the average pooled
semantic features. The semantic feature clusters of the vertical
high-dimensional encoder after max-pooling convolution are
fused with the semantic feature clusters of the horizontal low-
dimensional encoder after average pooling convolution. The
fused feature clusters are input into the jump structure module
of the CBAM attention mechanism to realize global context
information fusion. The feature information output by the
improved model added to the attention mechanism module is
fused with the feature information of the low-dimensional
encoder (this low-dimensional feature information does not
perform any pooling operation). Finally, the dimensionality
reduction of the fused semantic features is performed through
1x1 convolution through the jump structure, and the features
with a resolution of 512x512 channels and 64 channels after
upsampling by the decoder are fused again. Perform 3x3 convo-
lution and 1x1 convolution on the integrated feature map to
realize the mapping of each component feature vector class
and achieve its segmentation effect.

To further verify the scientificity and effectiveness of the
method proposed in this paper, we use CNN to continue to use
this method to segment and extract the specific outline of the
welding engineering drawing. Abandoning the jumping structure
of the traditional U-net, the method proposed in this paper is
applied to the traditional convolutional neural network to per-
form segmentation and extraction experiments on welding
graphics. The model uses consecutive 3x3 convolution oper-
ations, and the last layer uses the principle of mapping to achieve
the segmentation effect. By using double-pooling convolution
operations and adding attention mechanism operations in the
CNN network model, different CNN models are compared for
segmentation performance experiments. Figure 9 shows the Loss
diagram of the CNN model with dual pooling convolutional
fusion and attention mechanism added simultaneously, from
which it can be seen that the model has no collapse phenomenon
and the structure is stable for training. The visualization result of
the specific contour segmentation of the welding engineering
drawing is shown in Figure 10.

Using the traditional multi-layer convolutional neural network
as the baseline, the CNN network structure model is constructed
using the method in this paper, and different CNN models are
experimentally compared on the task of segmenting specific

Table 3. Hyperparameter values are used for all training

Hyperparameter Value

activation function Relu

Learning_rate 0.0001

num_classes 9.0

backbone Vgg16

input_shape 512

Freeze_Epoch 100

Freeze_batch_size 1.0

UnFreeze_Epoch 50.0

Unfreeze_batch_size 1.0

optimizer_type adam

momentum 0.9

decay_type cos

num_workers 1.0

freeze_layers 17.0

nbs 16.0

Table 4. The performance comparison results of various loss functions used by
CBAM-U-net to deal with imbalanced datasets

Network Loss function Epoch IoU Accu

CBAM-U-net CE Loss 100 0.8252 0.9810

BCE Loss 100 0.8312 0.9793

Poly Loss 100 0.8400 0.9902

Focal Loss 100 0.8472 0.9942

Note: Same benchmark, bold font means excellent.

Val Train Train Train Train

Train Val Train Train Train

Train Train Val Train Train

Train Train Train Val Train

Train Train Train Train Val

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

R 1

R 2

R 3

R 4

R 5

∑Ri

i

Figure 6. The welding engineering atlas adopts a K-fold cross-training verification
process, the training set and verification sets are 4:1, and the stratification factor is
K = 5.
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contours in heavy equipment welding engineering drawings. The
experimental details are shown in Table 7. It can be concluded from
Table 7 that themethod proposed in this paper has high accuracy in
segmenting and extracting specific contours in heavy equipment
engineering drawings.

At the same time, ablation comparison experiments are carried
out with this paper’s method and different excellent segmentation
techniques on the task of segmenting sheet metal engineering
drawings in intelligent manufacturing. The experiments show that
the method of this paper has excellent segmentation accuracy for

the segmentation of the contents of sheet metal engineering draw-
ings for engineering manufacturing, and also fully verifies the
scientificity of the method of this paper. The details of the SOTA
experiments are shown in Table 8.

To further verify the scientific validity and rigor of the proposed
method in this study, the CBAM-U-net, CBAM-CNN, U-net, and
CNN models of Focal loss were used to classify multiple types of
lines in welding engineering drawings, respectively. The confusion
matrix is used to realize the visualization of multi-type line classi-
fication in welding engineering graphics, and the result is shown in

Table 5. Technical requirements detail sheet

Welding parts technical requirements

Num A0 A1 A2 A3 A4

Size L x B 841x1189 594x841 420x594 297x420 210x297

General technical requirements JB/T5000.3

Weld quality level not noted. CS or CK

Accuracy class B.F

Welding seam height K = 3 mm

Annealing stress relief Not involved

Surface quality treatment Sa2 ½

Channel steel weld contact | 0+0.1 |

Material Q215 or Q235

Line classification Shape Width (mm)

A0 A1 A2 A3 A4 GB/T 14689;

Thi 0.5 0.5 0.35 0.35 0.35 GB/T 14690;

Dash 0.18 0.18 0.13 0.13 0.13 GB/T 13362.4;

Thin 0.18 0.18 0.13 0.13 0.13 GB/T 13362.5;

Arrow - - - - - GB/T 17450;

Numer 1,2,3,4,5,6��� - - - - - GB/T 16675.2;

Welding Annotation GB/T 324–2008; GB/T4458.4–2003

V-shaped weld C ≈ δ + 3, Weld seam width requirements for different welding methods. C = width;
δ = thickness(mm); K = height;

U-shaped weld C ≈ 0.35δ + 12.5

I-shaped weld C = δ + 2

Triangular weld K = δ + 2

Spot weld -

Groove weld -

Note: Thick solid lines, thin solid lines, dashed lines, arrow lines, and number lines are denoted by ‘Thi’, ‘Thin’, ‘Dash’, “Arrow “and “Numer” are indicated.
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Figure 11. Column elements in the confusion matrix represent true
label values for different types of lines, and rows represent true
predicted values for different types of lines. Use “Thi,” “Thin,”
“Dash,” “Arrow” and “Numer” to represent the thick solid line,
thin solid line, dashed line, arrow line, and numbered line in the

content of the welding engineering drawing, respectively. From the
classification visualization results, it can be concluded that the
improved model CBAM-U-net, CBAM-CNN proposed in this
paper improves the prediction performance of different types of
lines relative to the traditional U-net, CNN networkmodel, and the

U-net U-net+Ave U-net+CBAM

(Ours)

U-net+Ave+CBAMOriginal Image Ground Truth

Figure 8. Visual comparison of segmentation effects between different methods. The original input is a welded structure drawing, and the second column is the ground truthmask.
Where ‘Ave’ is denoted as the average pooling and convolution operations as green squares in Figure 3, CBAM is the attention module, as shown in the orange court in Figure 3.

Figure 7. The loss curve graph during training and the 50th epoch model reaches a state of convergence. When training to 50 epochs, the network starts to unfreeze the evaluation
model. The model will be reloaded from its original form, and fluctuations will have no effect.
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results are mainly reflected in the prediction effect of thick solid,
thin solid, dashed and arrow lines.

Results and discussion

The results are shown in Table 6. The original U-net model is
applied to the segmentation and extraction of specific units of
welding structure engineering drawings, and the average accuracy
of the intersection-over-union ratio (IoU) can reach 62.62%, and
the category means (mAP) and accuracy (Accu) are 0.6775 and
99.37%, respectively. The third column in Figure 8 is the segmen-
tation visualization result of the traditional U-net. It can be seen
from the figure that the segmentation accuracy of the traditional
U-net in the welding engineering-specific unit has some short-
comings. To solve this problem, this paper proposes to add
average pooling + two convolution operations in the horizontal
encoder jump structure, and at the same time proposes a vertical
jump fusion of high-dimensional vertical encoder feature clusters
and low-dimensional horizontal encoder feature clusters-model-
one.

Model one adopts the double-pooling convolution jump
structure of the horizontal encoder and the vertical encoder,
which reduces the dimensional difference between the encoder
and the decoder based on improving the fusion of global semantic
features, and realizes the improvement of its segmentation per-
formance. The intersection-over-union ratio (IoU) accuracy of

model one segmentation to extract specific units of welding
engineering graphics is 63.24%, and the category means (mAP)
and accuracy (Accu) are 0.6947 and 96.05%, respectively. How-
ever, as can be seen from Figure 8, model one still performs
poorly. Immediately, an improved model of adding an attention
mechanism to the traditional U-net jump structure was pro-
posed- model two. Model two pays more attention to the channel
and spatial information of global semantic features, and reduces
the difference of global feature information to achieve better
segmentation. The intersection-over-union ratio (IoU) accuracy
of model two segmentation to extract specific units of welding
engineering graphics is 72.99%, and the category means (mAP)
and accuracy (Accu) are 0.7549 and 97.45%, respectively. To
make the model better extract the global feature information,
the improved model of average pooling, vertical jumping, and
attention module is added to the traditional U-net horizontal
jumping structure at the same time –Model three. The improved
model three can not only reduce the global information ambigu-
ity but also reduce the information dimension difference between
the encoder and the decoder and greatly improve its segmenta-
tion performance as a whole. The intersection-over-union ratio
(IoU) of the specific unit of welding engineering graphics
extracted by model three segmentation is 84.72%, and the cat-
egory means (mAP) and accuracy (Accu) are 0.8684 and 99.42%,
respectively. All in all, the performance of the three improved
models proposed in this paper for segmenting specific units of
welding engineering graphics has been significantly improved
compared with the traditional U-net. Among them, the IoU,
mAP, and Accu of model three are improved by 22.10%,
19.09%, and 0.05%, respectively, compared with the traditional
U-net in the segmentation task of the specific unit of the welding
pattern. To prove the scientificity and rigor of the method pro-
posed in this study, a series of multiple 3x3 convolutional net-
works was used to continue further verification. From the
experimental results in Figure 10 and Table 7, it can be concluded
that the method in this paper can effectively improve the specific
unit segmentation performance of its model for welded structure
engineering graphics.

This paper discusses the application of the U-net-based
improved model to the segmentation and extraction task of

Figure 9. A graph of the loss curve of a continuous convolutional CNN. When the training has gone through 45 epochs, the model reaches the state of convergence.

Table 6. Comparison of welding engineering map segmentation by different
methods, ‘Ave’ is denoted as average pooling and convolution operations, and
CBAM is denoted as attention module

Method IoU mAP Accu

Base (U-net) (Ronneberger and
Fischer, 2015)

0.6262 0.6775 0.9937

Base +Ave 0.6324 0.6947 0.9605

Base+CBAM 0.7299 0.7549 0.9745

Base+Ave + CBAM 0.8472 0.8684 0.9942

Note: Same benchmark, bold font means excellent.
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specific units in welding engineering graphics. It mainly realizes
the automatic cutting of sheet metal parts through artificial
intelligence machine vision and improves the manufacturing
efficiency of heavy industry equipment. However, there are still
many deficiencies in the positioning of the cutting device, the
calculation of the utilization of the sheet metal, and the cutting
seam. For example, in the process of cutting sheet metal parts by
machine vision, the cutting device cannot calculate the utilization
rate of the whole sheet metal, and the positioning redundancy is
large, which leads to material waste. In addition, the method in
this paper is only applicable to the cutting of sheet metal for heavy
equipment, because the welding process of heavy equipment has
a large weld seam and low welding accuracy, so the cutting
accuracy requirements are not high, and the current cutting

method can fully meet the precision of heavy equipment manu-
facturing. For high-precision segmentation tasks in the manu-
facturing industry, the ability of the segmentation model to
extract semantic features and fuse semantic features needs to be
further increased, while at the same time, the dimensional dif-
ference between low-dimensional and high-dimensional features
needs to be further eliminated. The attention model with cyclic
semantic extraction and fusion will likely be better applied to
industrial high-precision segmentation tasks.

Conclusion

Deep learning image segmentation technology has achieved
excellent performance in many engineering fields. In this study,
it is proposed to use the U-net network to realize the segmenta-
tion and extraction of specific units of welding structural engin-
eering graphics in heavy industrial equipment manufacturing, so
that the cutting device can automatically cut sheet metal parts by
machine vision, thereby improving manufacturing efficiency.
Based on the research and analysis of the existing U-net
improved model, we propose to add the CBAM module and
design the double pooling jump model structure of the upper
and lower encoders to realize the global semantic fusion of image
features. Not only that, this paper performs two convolution
operations on the semantic feature clusters after double pooling
to reduce the dimensional difference between the encoder and
decoder. The proposed method is trained and validated on a
dataset of engineering graphics of complex welded structures.

Table 7. In the comparison of different methods for the segmentation results
of specific welding engineering units, ‘Ave’ is expressed as the average pooling
and convolution operation, and CBAM is the attention mechanism

Method IoU mAP Accu

CNN(Base) 0.4143 0.5755 0.8867

Base+Ave 0.4633 0.6217 0.9130

Base+CBAM 0.5698 0.7101 0.9377

Base+Ave + CBAM 0.6509 0.7294 0.9518

Note: Same benchmark, bold indicates excellent.

CNN+Ave CNN+CBAM

(Ours)

CNN+Ave+CBAMOriginal Image Ground Truth CNN

Figure 10. Visualization of segmentation results for successive convolution operations. ‘Ave’ is represented as the average pooling and convolution operation of the green square in
Figure 3, and CBAM is the attention module, as shown in the orange area in Figure 3.
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Table 8. Experimental comparisons and analyses have been carried out using the method of this paper and the current state-of-the-art segmentation technique
(SOTA), and the experimental results have been analyzed for different sets of sheet metal welding project drawings

Method Param (M)

MCC America & Japan

IoU mAP Accu IoU mAP Accu

U-net (Ronneberger and Fischer, 2015) 7.2 0.6210 0.6900 0.9959 0.6289 0.7021 0.9900

UCTransNet (Wang et al., 2022) 33.0 0.7996 0.8011 0.9991 0.8101 0.7967 0.9990

U-net++ (Zhou et al., 2018) 37.4 0.6573 0.7103 0.9910 0.6577 0.7100 0.9737

TransUNet (Chen et al., 2021) 52.0 0.7756 0.7840 0.9896 0.6570 0.7840 0.9894

Swin-Unet (Cao et al., 2022) 41.5 0.7814 0.7911 0.9900 0.7814 0.8010 0.9917

DCSAU-Net (Xu et al., 2023) 2.1 0.7207 0.7500 0.9601 0.5122 0.7778 0.9763

ICUnet++ (Li et al., 2023) 42.9 0.6855 0.7332 0.9713 0.4131 0.7479 0.9901

U-net + Ave-v1 10.4 0.6616 0.6881 0.9663 0.5912 0.6994 0.9609

U-net + CBAM-v2 36.1 0.7408 0.7600 0.9906 0.7111 0.7900 0.9855

U-net + Ave + CBAM-v3(Ours) 37.0 0.8519 0.8733 0.9953 0.8224 0.8605 0.9940

Note: Same benchmark, bold indicates excellent.

Figure 11. Comparison of confusion matrix results between U-net and CBAM-U-net models ((a) U-net, (b) CBAM-U-net(Ours), (c) CNN, (d) CBAM-CNN).
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Experimental results show that our proposed improved model
outperforms currently existing state-of-the-art segmentation
techniques(SOTA) in segmenting specific cells of welded struc-
tural engineering drawings.
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