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The problem of the electron dynamics on a closed magnetic field line passing through a
high-Z plasmoid is considered. The electron kinetic equation is integrated over bounce
motion and pitch angle, reducing the independent variables to a single adiabatic invariant
plus time. Integration of the full Landau self-collision operator is carried out exactly,
resulting in a nonlinear integro-differential operator in the new invariant. Conservation
laws and the H theorem of the integrated self-collision operator are proven. Numerical
solutions of the integrated kinetic equation are obtained with a self-consistent quasineutral
electric potential, given the initial condition of a cold plasmoid immersed in a hot ambient
plasma. The fact that cold electrons are deeply trapped in a potential with a parabolic
peak leads to exactly 3/4 the usual rate of collisional heating by the ambient plasma,
independent of any other parameters.
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1. Introduction

Plasmoids are a common feature in plasma: they are a localised excess plasma density
usually associated with large spacial gradients which drive nonlinear dynamics. The excess
density induces an electric potential well which serves to trap electrons. The electric
field drives ions outwards along magnetic field lines, causing the plasmoid and well to
expand, the expansion speed being set partly by the ion mass: heavier ions result in slower
expansion. Expansion transverse to field lines also occurs, but on a much longer timescale
unless extreme transverse gradients are involved.

A difficulty in understanding plasmoid dynamics is as follows: the electric potential
arises due to the presence of the plasmoid, and must therefore be described in a
self-consistent fashion. At the same time, the electric field and plasmoid density tend to
dominate over those of the ambient plasma, precluding a linear description.

Another confounding feature is that the bounce period for an electron trapped in the well
may be of the same order as, or shorter than, the electron collision timescale. Thus, a short
mean-free-path description (such as the Braginskii equations) is inappropriate; electron
kinetics must be considered.
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FIGURE 1. Schematic of the potential well induced by excess plasma density and
trapped/passing electron orbits. Here z is the coordinate along the magnetic field line. The
maximum electric potential is written φm. The electron density far from the plasmoid is denoted
by na.

The nature of the problem being kinetic, nonlinear and time-dependent, other
simplifications of the system are required to gain insight. Chiefly, in strongly magnetised
plasmas, a ‘1D’ description is sufficient: transverse spacial gradients are neglected. This
kind of model treats the plasma independently ‘on each field line’. This 1D description is
ubiquitously employed in the description of plasmoids, particularly those in the context of
fuel pellet injection in magnetic confinement fusion (MCF) devices (Gurevich, Pariiskaya
& Pitaevskii 1966; Mora 2003; Aleynikov et al. 2019; Arnold, Aleynikov & Helander
2021; Runov et al. 2021).

Plasmoids with high-Z ions expand more slowly along field lines, owing to the larger
ion mass, but also introduce strong pitch-angle scattering of electrons. Thus, a simplified
description of a high-Z plasmoid neglects the expansion timescale and asserts that electron
pitch-angle scattering occurs on a very short timescale relative to collisions that alter
electron energy. This ordering is used in the following investigation with the aim of
providing an understanding of the interaction of electron kinetics and the self-consistent
potential well without the additional complication of ion dynamics.

We consider ion density profiles that are symmetric and exhibit only a single peak.
Figure 1 shows a schematic of the plasma density and potential.

In the kinetic problem, electron bounce motion and pitch-angle scattering, the two
shortest timescales, will be integrated out. We consider a closed magnetic field line,
so both trapped and passing electrons are described by the integrated kinetic equation.
The conservation properties of the integrated kinetic equation will be investigated and the
H-theorem will be proven for the integrated collision operator. Numerical studies of the
system will be carried out with a self-consistent electric potential, the initial condition
being a cold plasmoid immersed in a hot ambient plasma. The evolution of the system
will be compared with that of two superposed Maxwellians in the absence of an electric
potential.

The energy exchange between trapped and passing electrons is of particular interest,
because we expect that passing electrons, which are accelerated through the potential
well and spend little time in the plasmoid, exchange energy inefficiently with the trapped
electrons. Conversely, we expect trapped electrons to exchange energy very efficiently with
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other trapped electrons. The integrated kinetic equation allows for a rigorous description
of these effects.

Previous work on plasmoid dynamics in one dimension assumed the electrons to be in
either global Boltzmann equilibrium (Gurevich et al. 1966; Mora 2003; Aleynikov et al.
2019; Arnold et al. 2021) or in local equilibrium with spatially dependent temperature
(Runov et al. 2021). The difference in the temperatures of plasmoid electrons and ambient
electrons was accounted for by introducing a collisional heating term to the equation
governing plasmoid electron temperature. The heating term assumed a homogeneous
ambient plasma with fixed temperature.

However, if the plasmoid is initially colder than the ambient plasma, the distribution
as a whole cannot be Maxwellian. Therefore, this investigation contrasts with previous
work by not assuming a Maxwellian plasmoid electron distribution function; we solve the
integrated electron kinetic equation for the whole distribution function. The quenching of
the ambient plasma temperature due to the presence of the cold plasmoid can be observed
in such a kinetic picture, rather than the ambient temperature simply being assumed
constant.

Unlike previous investigations, our kinetic description covers the effect of the potential
well depth on the evolution of the plasmoid electron temperature. Further, we describe
rigorously the ‘interface’ between plasmoid and ambient electrons: the region of
phase-space near the passing-trapped separatrix.

2. Theory
2.1. Electron kinetic equation

Given the electron distribution function f , the kinetic equation in the absence of transverse
motion of the guiding centre is given by

∂f
∂t

+ v‖
∂f
∂z

+ e
me

∂φ

∂z
∂f
∂v‖

= C, (2.1)

for φ the electric potential, z the coordinate parallel to the magnetic field line, v‖ the
parallel velocity, e the absolute electron charge, me the electron mass and C the collision
operator. We split up the collision operator into self-collisions (electron–electron, ‘e, e’)
and collisions with ions (electron–ion (species k), ‘e, ik’):

C = Ce,e( f )+
∑

k

Ce,ik( f ). (2.2)

Then, we express the left-hand side of the kinetic equation in terms of energy E =
mev

2/2 − eφ, magnetic moment μ = mev
2
⊥/(2B) and z:

∂f
∂t

+ v‖
∂f
∂z

− e
∂φ

∂t
∂f
∂E = Ce,e( f )+

∑
k

Ce,ik( f ). (2.3)

This form of the kinetic equation highlights the fact that any collisionless change in
electron energy is associated with explicit time variation of the electric potential. As the
problem is symmetric in z, f is an even function of v‖, so we do not need to account for
the part of f that is odd in v‖ when changing variables from (v‖, v⊥, z, t) to (E, μ, z, t).
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The self-collision operator is given by

Ce,e( f ) = e4 lnΛ
ε2

0m2
e

∇v · (∇vϕf − (∇v∇vψ)∇vf ) (2.4)

(Helander & Sigmar 2002, pp. 29–30, (3.15), (3.16), (3.21)), for ϕ and ψ the Rosenbluth
potentials

ϕ = − 1
4π

∫
f (v′)

u
d3v′, ψ = − 1

8π

∫
uf
(
v′) d3v′, u = v − v′, (2.5a–c)

the double nabla notation being

∇v∇vh := v̂iv̂j
∂2h
∂vi∂vj

. (2.6)

We stress that henceforth the integral notation will be such that, for integration variable
λ, the integrand is to the right of

∫
and to the left of dλ.

Collisions with ions are well-approximated by pitch-angle scattering against stationary
charges:

Ce,ik( f ) = e4 lnΛ
4πε2

0m2
e

Z2
k nik

1
v3
L( f ) (2.7)

for Lorentz scattering operator

L = 1
2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
, (2.8)

which serves to alter only the pitch angle θ = arctan (v⊥/v‖), leaving the energy of
the electron unaffected. We assume no variation of f in the gyroangle. In the variables
(E, μ, z), the Lorentz scattering operator is

L = mev‖
∂

∂μ

(
μv‖
B

∂

∂μ

)
, (2.9)

indicating that anisotropy in f is associated with its dependence on μ.
We note that the terms proportional to ∂f /∂t and ∂f /∂E on the left-hand side of (2.3) are

associated with the time variation of the potential, whereas v‖(∂f /∂z) is associated with
bounce motion. We seek to further simplify this kinetic equation in the context of rapid
pitch-angle scattering. To this end, turning our attention first to the electron self-collision
operator, we observe that in spherical coordinates (with no dependence on the gyroangle),

∇vϕ = v̂
∂ϕ

∂v
+ θ̂

v

∂ϕ

∂θ
, (2.10)

∇v∇vψ = (I − v̂v̂
) 1
v

∂ψ

∂v
+ v̂v̂

∂2ψ

∂v2
− 2θ̂ v̂

v2

∂ψ

∂θ
+
(
v̂θ̂ + θ̂ v̂

) 1
v

∂2ψ

∂θ∂v
+ θ̂ θ̂

v2

∂2ψ

∂θ 2
,

(2.11)

∇v · F = 1
v2

∂

∂v

(
F · v̂ v2)+ 1

v sin θ
∂

∂θ

(
F · θ̂ sin θ

)
, (2.12)
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which gives

Ce,e( f ) = e4 lnΛ
ε2

0m2
e

{
1
v2

∂

∂v

[
v2

(
∂ϕ

∂v
f − ∂2ψ

∂v2

∂f
∂v

)]
− 2
v3

∂ψ

∂v
L( f )+ R( f , ϕ, ψ)

}
(2.13)

for

R( f , ϕ, ψ) = − 1
v3

∂2ψ

∂θ∂v

∂f
∂θ

− 1
v2

∂

∂v

(
∂2ψ

∂θ∂v

∂f
∂θ

)

+ 1
v sin θ

∂

∂θ

[
sin θ

(
1
v

∂ϕ

∂θ
f −
(

1
v

∂2ψ

∂θ∂v
− 2
v2

∂ψ

∂θ

)
∂f
∂v

− 1
v3

∂2ψ

∂θ 2

∂f
∂θ

)]
,

(2.14)

noting that all terms in R are proportional to a θ derivate of one of the Rosenbluth
potentials. Thus,

Ce,e( f )+
∑

k

Ce,ik( f ) = e4 lnΛ
ε2

0m2
e

{
1
v2

∂

∂v

[
v2

(
∂ϕ

∂v
f − ∂2ψ

∂v2

∂f
∂v

)]

+
(

1
4π

∑
k

Z2
k nik − 2

∂ψ

∂v

)
1
v3
L( f )+ R( f , ϕ, ψ)

}
. (2.15)

In this form, collisions are split up into the following effects: energy-altering terms arising
from self-collisions, pitch-angle scattering arising from self-collisions and collisions with
ions, and the remainder term R which is composed of terms due to angular variation of the
Rosenbluth potentials.

We suppose that in the tail of the distribution function pitch-angle scattering and
electron bounce motion are faster than collisions that alter energy. That is, the tail
distribution follows the ordering∣∣∣∣ ∂∂t

∣∣∣∣ ∼ ∣∣Cenergy−altering

∣∣ ∼ |CR| �
∣∣∣∣v‖

∂

∂z

∣∣∣∣ ∼ ∣∣Cp.a. scattering

∣∣ , (2.16)

where Cp.a. scattering is the term proportional to L in (2.15), Cenergy−altering is the term
proportional to (1/v2)(∂/∂v) and CR is the term proportional to R.

We correspondingly split up the distribution:

f = f0 + f1, f0 � f1, (2.17)

giving the lowest-order kinetic equation

v‖
∂f0

∂z
= v‖G(E, μ, z)

∂

∂μ

(
μv‖
v3B

∂f0

∂μ

)
, (2.18)

where

G = e4 lnΛ
ε2

0me

(
1

4π

∑
k

Z2
k nik − 2

∂ψ

∂v

)
. (2.19)

Dividing through by v‖ and orbit integrating, assuming that f0 is symmetric in z, yields∮
G
∂

∂μ

(
μv‖
v3B

∂f0

∂μ

)
dz = 0. (2.20)
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As we are in the context of fast pitch-angle scattering, the above and (2.18) are solved by

∂f0

∂μ
= ∂f0

∂z
= 0. (2.21)

However, we note that for the lowest-energy ‘core’ electrons, which are deeply trapped
in the potential well, self-collisions dominate. The distribution of these electrons will be
near-Maxwellian, with the distribution of Maxwellian core electrons being independent of
both z and μ.

Therefore, (2.17) and (2.21) hold for the total distribution function labelled f . The kinetic
equation to next order is given by

∂f0

∂t
+ v‖

∂f1

∂z
− e

∂φ

∂t
∂f0

∂E = e4 lnΛ
ε2

0m2
e

{
1
v2

∂

∂v

[
v2

(
∂ϕ0

∂v
f0 − ∂2ψ0

∂v2

∂f0

∂v

)]

+ mev‖

(
1

4π

∑
k

Z2
k nik − 2

∂ψ0

∂v

)
∂

∂μ

(
μv‖
v3B

∂f1

∂μ

)}
, (2.22)

where we henceforth treat f as the total electron distribution function. In the above, we
note that R vanishes in this order, and we denote ϕ0 and ψ0 the Rosenbluth potentials
calculated from f0.

Dependence upon f1 can be eliminated from the above by applying the following
integration to both sides: ∫ (E+eφm)/B

0

∮ ·
v‖

dz dμ, (2.23)

which corresponds to first integrating over bounce motion, then over all possible values of
μ, the variable representing anisotropy, for a given energy E .

We observe that the volume element is given by d3v dz = (4πB)/(m2
ev‖) dE dμ dz, so

the above may be interpreted as multiplying by the volume element and integrating over
z and μ, leaving only dependence on E . That is, the resulting kinetic equation describes
how electrons may move between shells of constant energy due to adiabatic change in the
potential and collisions. In essence, the zeroth moment of the kinetic equation is taken
with one integration variable in momentum space and another in physical space, which is
in contrast to the usual moment over all of momentum space.

Dropping the subscript from f0, the resulting kinetic equation is

∂f
∂t

= 〈C〉 (2.24)

for the integrated collision operator

〈C〉 = e4 lnΛ
ε2

0m2
e

∂

∂K

[
f
∫ K

0
f ′ dK ′ + H

∂f
∂K

(∫ K

0
f ′ K

′

H′ dK ′ + K
∫ ∞

K

f ′

H′ dK ′
)]
, (2.25)

where

K =
∮

s

m2
ev

3

3
dz, (2.26)

H = ∂K
∂E =

∮
s
mev dz. (2.27)

We note that f = f (K, t) in (2.24). Here K is the invariant associated with electrons
undergoing rapid pitch-angle scattering and bounce motion inside a slowly varying electric
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potential well while experiencing no energy-altering collisions. The definition of
∮

s and
the details of the integration procedure with its associated simplification of the kinetic
equation are contained in Appendix A.

2.2. Trapped and passing electrons
Equation (2.24) expresses the fact that in the absence of collisions that alter energy,
the quantity K is constant for an individual electron. The fact that K involves the orbit
integral of v3 rather than v corresponds to the energy of an individual electron being
equipartitioned into all three degrees of freedom by pitch-angle scattering.

At this point it is useful to make the distinction between passing and trapped electrons,
and those with energy E above or below zero. By convention, trapped electrons are those
that, when experiencing collisionless motion, are unable to escape the well; their position
does not tend to infinity in infinite time. The conditions for trapped/passing electrons are

{
E < μB, trapped,
E � μB, passing.

(2.28)

Consequently, bounce-averaged kinetic problems may have a separatrix at E = μB.
However, the kinetic equation (2.24) has also been integrated over μ, the variable

responsible for anisotropy. Physically speaking, any electron with E > 0 will experience
enough pitch-angle scattering to become untrapped within any timescale present in (2.24).
Conversely, electrons with E < 0 are never able to be pitch-angle scattered such that they
become passing: they simply do not have enough kinetic energy; if all their kinetic energy
were in the parallel degree of freedom, their parallel speed would not equal or exceed√

2eφ/me.
Therefore, we introduce the terminology energy-trapped and energy-passing

{
E < 0, energy − trapped,
E � 0, energy − passing,

(2.29)

in order to avoid confusion with the conventional definitions of trapped and passing.
When dealing with bounce-averaged problems on infinitely long magnetic field lines,

is it very important to distinguish between trapped and passing distributions, because
the bounce average of any quantity on such a field line takes on the value it has in the
limit |z| → ∞. This is a consequence of the orbit of a passing electron being infinitely
long. Such problems have a passing–trapped separatrix, the passing distribution typically
being static, with the trapped distribution equal to the passing at the separatrix to ensure
continuity.

However, for closed field lines, the orbit of a passing electron is simply the whole field
line. In order to account for a closed field line, it is enough to define the turning points of
an orbit integral to be ±zc, where

zc(E, μ, t) :

{
E − μB(zc, t)+ eφ(zc, t) = 0, E < μB,
LF/2, E � μB,

(2.30)

for connection length LF. Then, electrons of all energies and magnetic moments can be
considered in the bounce-integrated kinetic equation.
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2.3. Alternative forms of the integrated collision operator
The integrated collision operator can be expressed directly in terms of phase-space
moments of f :

〈C〉 = e4 lnΛ
2πε2

0

∂

∂K

(
NKf + H

∂f
∂K

(
2
3

EK + KMK

))
, (2.31)

for NK , EK and MK defined in Appendix B (see (B5), (B7) and (B8)). Here NK
corresponds to the line-integrated density of electrons with invariant less than K, EK is
the line-integrated kinetic energy of electrons with invariant less than K and KMK is not
so easily interpreted, but has the same dimensions as EK and is associated with electrons
with invariant larger than K.

The above is a friction-diffusion form of the collision operator (namely, Rosenbluth
potential form), and the contributions to each effect are somewhat intuitive: an electron
with invariant K experiences friction proportional to the number of electrons with
invariant less than K, and experiences diffusion proportional to two quantities, one being
the kinetic energy of electrons with invariants smaller than K, the other being associated
with electrons with invariants larger than K.

The collision operator in the form (2.31) is convenient for numerical implementation
and is clearly represented as a friction-diffusion operator. However, it may also be written
in the form

〈C〉 = e4 lnΛ
ε2

0m2
e

∂

∂K

∫ ∞

−eφm

Q
(

f ′ ∂f
∂E − f

∂f ′

∂E ′

)
dE ′, (2.32)

where
Q = K ′Θ

(E − E ′)+ KΘ
(E ′ − E) (2.33)

for Θ the Heaviside step function. Equation (2.32) closely resembles the Landau collision
operator as presented in the original paper (Landau 1936). In this form it is clear that the
integrated collision operator vanishes if the distribution is Maxwellian.

2.4. Particle conservation and the H theorem
As the integrated kinetic equation was obtained from the drift kinetic equation, it must
conserve particles and have an H theorem. Both may be proven within the framework
of the invariant K. Equation (2.32) provides the most convenient form for proving these
properties. We write 〈C〉 = A(∂I/∂K) for brevity, where A = (e4 lnΛ/ε2

0m2
e) and

I =
∫ ∞

−eφm

Q
(

f ′ ∂f
∂E − f

∂f ′

∂E ′

)
dE ′. (2.34)

The line-integrated electron density (B5) is

N = 2π

m2
e

∫ ∞

0
f dK, (2.35)

thus,
dN
dt

= 2πA
m2

e

∫ ∞

0

∂I
∂K

dK = 0, (2.36)

proving particle conservation. The line-integrated electron entropy density is

S = −2π

m2
e

∫ ∞

0
f ln f dK, (2.37)
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thus,
dS
dt

= −2π

m2
e

∫ ∞

0

∂f
∂t
(1 + ln f ) dK. (2.38)

Substituting (2.24), integrating by parts and changing the integration variable to E yields

dS
dt

= 2πA
m2

e

∫ ∞

−eφm

∫ ∞

−eφm

Qff ′
(
∂ ln f
∂E − ∂ ln f ′

∂E ′

)
∂ ln f
∂E dE dE ′. (2.39)

Using the fact that above expression holds when exchanging primed and unprimed terms
(noting that Q′ = Q), we see that

dS
dt

= πA
m2

e

∫ ∞

−eφm

∫ ∞

−eφm

Qff ′
(
∂ ln f
∂E − ∂ ln f ′

∂E ′

)2

dE dE ′ � 0, (2.40)

proving the H theorem. It is also clear that the line-integrated entropy density is constant
when f is Maxwellian.

2.5. Generalisation to an electric–magnetic potential well
The preceding section may be generalised to include a symmetric, time-dependent
magnetic field. If we include the magnetic mirror force −μ(∂B/∂z) in the kinetic equation
(2.3), the calculation may be carried out in the same fashion as in the theory section
and Appendix A (making sure not to neglect the (z, t) dependence of B, and replacing
(E + eφm)/B with (E + eφm)/(B(z = 0)) in (2.23)). We find that now the invariant K has
a contribution from the magnetic well:

K =
∮

s

m2
ev

3

3B
dz. (2.41)

The form of the integrated kinetic equation and integrated collision operator in terms of
K is identical. With regards to the conservation properties and H theorem, one subtlety
must be observed: the integration of particle density and entropy density must be carried
out over an infinitesimal flux tube rather than over a field line. Indeed, a time-varying
magnetic field changes the cross-section of the flux tube, moving the guiding centres of
electrons along with the field lines, resulting in compression or expansion of the plasma
due to collisionless transverse motion.

As this investigation concerns itself with parallel dynamics, the effect of magnetic field
variation has been neglected, allowing us to be agnostic about the transverse profile of the
plasmoid, ambient plasma and magnetic field.

3. Self-consistent electric potential

For the purpose of calculating the electric potential, there is no need to distinguish
between ions of differing charges; we write ni =∑k Zknik, which represents an effective
density of singly charged ions. Poisson’s equation formally determines the electrostatic
potential:

∂2φ

∂z2
+ e
ε0
(ni − ne) = 0, (3.1)

but when the Deybe length is much shorter than the length scale of interest (in our case,
the plasmoid length), then the quasineutrality condition

ne = ni (3.2)

is a good approximation.
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4. Energy conservation

The system of the electron kinetic equation and Poisson’s equation (with stationary ions)
must conserve the sum of the line-integrated electron kinetic and electric field energies.
The line-integrated electron energy (B6) is

W = 2π

m2
e

∫ ∞

0
E f dK, (4.1)

thus,

dW
dt

= 2π

m2
e

∫ ∞

0

(
∂E
∂t

∣∣∣∣
K

f + AE ∂I
∂K

)
dK

= 2π

m2
e

∫ ∞

−eφm

(
− ∂K
∂t

∣∣∣∣
E

f + AE ∂I
∂E
)

dE

= −2π

m2
e

∫ ∞

−eφm

∂K
∂t

∣∣∣∣
E

f dE − 2πA
m2

e

∫ ∞

−eφm

I dE . (4.2)

The former term expresses the change in electron energy due to adiabatic expansion or
compression. The latter term is associated with collisions, and vanishes. To see this,
we note that primed and unprimed terms in the integrand may be exchanged, and that
Q = Q′:

∫ ∞

−eφm

I dE =
∫ ∞

−eφm

∫ ∞

−eφm

Q
(

f ′ ∂f
∂E − f

∂f ′

∂E ′

)
dE ′ dE

= 1
2

∫ ∞

−eφm

∫ ∞

−eφm

[
Q
(

f ′ ∂f
∂E − f

∂f ′

∂E ′

)
+ Q′

(
f
∂f ′

∂E ′ − f ′ ∂f
∂E
)]

dE ′ dE

= 0. (4.3)

Thus,

dW
dt

= −2π

m2
e

∫ ∞

−eφm

∂K
∂t

∣∣∣∣
E

f dE . (4.4)

Comparing the expression for density (B9) with the above, we find

dW
dt

= −
∫ ∞

−∞
nee
∂φ

∂t
dz, (4.5)

where ne denotes the electron number density. As the line-integrated electron kinetic
energy is given by

E = W +
∫ ∞

−∞
eneφ dz, (4.6)

we see that
dE
dt

=
∫ ∞

−∞
e
∂ne

∂t
φ dz. (4.7)
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The electric potential is set by Poisson’s equation (3.1), so

e
∂ne

∂t
= ε0

∂3φ

∂t∂z2
(4.8)

(noting that ∂ni/∂t = 0). Substituting (4.8) into (4.7) and integrating by parts yields

d
dt

(
E +

∫ ∞

−∞

ε0

2

(
∂φ

∂z

)2

dz

)
= 0. (4.9)

As the Debye length is typically extremely short compared with the size of the plasmoid,
the electric field stores very little energy compared with the electrons;

ε0

(
∂φ

∂z

)2

pe
∼
ε0

(
φm

Lp

)2

pe
∼

(
ε0T
e2ne

)
L2

p

=
(
λD

Lp

)2

� 1 (4.10)

for λD the Debye length, Lp the plasmoid length, where φm ∼ T/e, pe = neT and ∂/∂z ∼
1/Lp have been assumed.

Thus, the energy balance with a short Debye length is well-approximated by

dE
dt

= 0, (4.11)

meaning that the line-integrated electron kinetic energy remains essentially constant.

5. Numerical implementation
5.1. Dimensionless scaling

For the purpose of numerics, we use a dimensionless scaling

f ∗ = 2πKm

m2
e

f , K∗ = K
Km
, H∗ = H

Hm
, φ∗ = φ

φm
, E∗ = E

eφm
, (5.1a–e)

where Km and Hm are the values of K and H at E = 0, respectively (their maximum values
for an energy-trapped electron). The resulting kinetic equation is

∂f ∗

∂t
= ∂

∂K∗

[(
K∗ d ln Km

dt
+ e4 lnΛ

2πε2
0Km

N∗
K∗

)
f ∗
]

+ ∂

∂K∗

[
e4 lnΛ
2πε2

0Km
H∗
(

2
3

E∗
K∗ + K∗M∗

K∗

)
∂f ∗

∂K∗

]
, (5.2)
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where

K∗ =
∮

s
(E∗ + φ∗)3/2 dz

/∮
s
(φ∗)3/2 dz,

Km = 2
3

√
2me (eφm)

3/2
∮

s
(φ∗)3/2 dz,

H∗ =
∮

s
(E∗ + φ∗)1/2 dz

/∮
s
(φ∗)1/2 dz,

Hm =
√

2me (eφm)
1/2
∮

s
(φ∗)1/2 dz,

N∗
K∗ =

∫ K∗

0
f ∗′ dK∗′ = NK,

E∗
K∗ = 3

2

∫ K∗

0
f ∗′ K

∗′

H∗′ dK∗′ = Hm

Km
EK,

M∗
K∗ =

∫ ∞

K∗
f ∗′ dK∗′

H∗′ = HmMK,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

and
∮

s in the absence of E∗ in the integrand corresponds to 2
∫∞

−∞.

5.2. Numerical scheme and the self-consistent electric potential
The numerical package FiPy (Guyer, Wheeler & Warren 2009) was used to solve (5.2). The
solver uses explicit time-stepping, and is based on the finite-volume method, so manifestly
conserves particles. Energy is not manifestly conserved, and is a significant challenge with
such a nonlinear collision operator. Obtaining sufficient energy conservation typically
requires a very fine K∗ grid, small time-stepping and multiple linear sweeps within a
timestep.

Supposing that the electric potential is self-consistent at a given timestep, it is no
longer self-consistent after f ∗ has been advanced by (5.2). The new self-consistent electric
potential must be found before the next timestep. Therefore, we introduce a ‘dummy’ time
variable s between timesteps, which is used in the procedure that finds the self-consistent
potential.

As ni is specified, and ne(z) = g[ f ](φ(z)) for the functional g[ f ] (namely, (B9)), we may
simply invert g[ f ] to find the φ that gives ne = ni at each point. However, the distribution
function must change if the potential changes. Therefore, any change in the potential
requires solving the kinetic equation excluding the effect of collisions that alter energy:

∂f ∗

∂s
= ∂

∂K∗

(
K∗ d ln Km

dt
f ∗
)
. (5.4)

Thus, we iteratively solve for φ via inversion of g[ f ], then update f via the above equation.
After many iterations, ne approaches ni and, consequently, φ approaches the self-consistent
value given by quasineutrality.

5.3. Ion profile
Any symmetric single-peak ion profile may be used within the model. In this paper, we
take the Gaussian profile from the self-similar plasmoid expansion in Aleynikov et al.
(2019), which provides a qualitative picture for the shape of a pellet plasmoid. We choose
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the ion density to be this Gaussian profile plus a constant density of ambient ions:

ni = na + Nip
1√
π

1
Lp

e−(z/Lp)
2

, (5.5)

where ni is the effective density of singly charged ions, Nip is the line-integrated density of
‘plasmoid ions’ (associated with the excess density) and Lp is the length of the plasmoid.
The ion profile qualitatively corresponds to that shown in figure 1.

6. Results

The plasma parameters na = 2 × 1019 m−3, Ta = 2 keV relevant for W7-X were chosen
for the numerical studies. With these parameters (given Coulomb logarithm lnΛ := 15),
the heating collision time

τ0 = 6
√

2π3/2ε2
0m1/2

e T3/2
a

nae4 lnΛ
(6.1)

is approximately 100 μs.
Two connection lengths and two line-integrated plasmoid densities were chosen, LF =

50 m, 200 m and Nip = 1021 m−2, 1022 m−2, respectively, giving four numerical runs in
total.

The plasmoid length was chosen to be Lp = 1 m, much smaller than the connection
length. The initial electron distribution was set to a Maxwellian of temperature T =
200 eV in the core (energy-trapped electrons) and a Maxwellian of temperature Ta in the
tail (energy-passing electrons). The two Maxwellians were splined together in the region
−T � E < 0. A self-consistent quasineutral electric potential was used throughout.

The line-integrated densities were chosen to be representative of those found during fuel
pellet injection in W7-X; the lower line-integrated density is found in the extremity of the
transverse plasmoid profile, and the higher found near the core. Arnold et al. (2021, § 2)
contains the corresponding analysis of how the W7-X pellet gas cloud deposits plasma
on a field line, as well as estimates of line-integrated densities according to transverse gas
cloud sizes observed by survey cameras (Baldzuhn et al. 2019, HFS in figure 4(2)).

In terms of analysing the problem at hand, it is important to note that the choices of
Nip and LF lead to a variety of regimes. Namely, for LF = 50 m the ambient plasma is
quenched, owing to the large deposition of material relative to the ambient plasma, but for
LF = 200 m the quenching is less severe. Here LF = 200 m is approaching the limit of
an infinitely long field line and leads to a visible boundary layer near E = 0. However, for
LF = 50 m, the distinction between energy-passing electrons and energy-trapped electrons
is less pronounced: we observe no boundary layer for this connection length.

As the plasmoid is initially much colder than the ambient plasma, we can estimate the
ratio Tfinal/Ta by the dilution formula

Tfinal

Ta
= naLF

naLF + Nip
. (6.2)

For the given Nip, LF combinations, the ratio above may vary from 0.1 to 0.8, ranging from
extreme quenching to minimal perturbation of the ambient temperature.

Figures 2 and 3 show the LF = 200 m runs. Figures 4 and 5 show the LF = 50 m runs. In
all cases, the energy-trapped electron temperature T , trapped and passing electron densities
nt, np, electric potential φ, and peak potential φm are plotted as time series. The distribution
function at various times is also plotted. Here T is estimated from a least-squares fit
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Maxwellian

(a) (b)

(e)

(g) (h)

( f )

(c) (d)

FIGURE 2. (a–d) Time series of the energy-trapped electron temperature T , trapped and passing
electron densities nt, np, electric potential peak φm and electric potential φ. In (a), the final
(equilibrated) temperature is given by the horizontal black dashed line. (e–h) Plots of the
distribution function f at various times.

of a Maxwellian distribution to the energy-trapped distribution. For comparison, the
temperature curve in the case of no potential (a homogeneous plasma) is plotted. This
curve is obtained evolving the system of superposed Maxwellians of temperatures T
and Ta, respectively with line-integrated densities and kinetic energies corresponding to
those of the energy-trapped and energy-passing distributions. The details are contained in
Appendix C. The potential arising from the Boltzmann relation eφ = T ln(n/na) is shown
for comparison with φ, indicating the effect of the non-Maxwellian distribution function
on the self-consistent potential.

In all cases, it is evident that T increases more slowly in the presence of the potential
well. The well grows in height as T increases. More electrons become trapped as φm
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Maxwellian

(a) (b)

(e)

(g) (h)

( f )

(c) (d)

FIGURE 3. (a–d) Time series of the energy-trapped electron temperature T , trapped and passing
electron densities nt, np, electric potential peak φm and electric potential φ. In (a), the final
(equilibrated) temperature is given by the horizontal black dashed line. (e–h) Plots of the
distribution function f at various times.

increases. The distribution function resembles Maxwellians of different temperatures at
each end of the E domain. They smoothly spline together in the intermediate region, with
the exception of a small boundary layer formed near E = 0. This boundary layer is only
clearly visible with LF = 200m. The boundary layer for the Nip = 1022 m−2, LF = 200m
run at 200 μs is plotted in figure 6.

After many collision times (several times τ0 (6.1) if the ambient plasma is not quenched),
the distribution function becomes a Maxwellian of a single temperature. A limitation of
the numerics is that the distribution function does not reach a perfect Maxwellian without
an arbitrarily fine K∗ grid, explaining the small discrepancy in the final temperature in
some plots despite the long evolution.
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Maxwellian

(a) (b)

(e)

(g) (h)

( f )

(c) (d)

FIGURE 4. (a–d) Time series of the energy-trapped electron temperature T , trapped and passing
electron densities nt, np, electric potential peak φm and electric potential φ. In (a), the final
(equilibrated) temperature is given by the horizontal black dashed line. (e–h) Plots of the
distribution function f at various times.

7. Discussion

The main result is that temperature equilibration between the energy-trapped and
energy-passing electrons occurs more slowly than if no well is present. We also see
that the distribution function is essentially Maxwellian for energy-trapped electrons. For
LF = 200 m, we observe a boundary-layer structure near E = 0.

The reduced heating and essentially Maxwellian energy-trapped distribution are due in
part to the change in the nature of collisions in the well, and can be explained by inspecting
the friction and heating terms in the integrated collision operator. Namely, the collisional
friction against the energy-trapped population experienced by energy-trapped electrons in
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Maxwellian

(a) (b)

(e)

(g) (h)

( f )

(c) (d)

FIGURE 5. (a–d) Time series of the energy-trapped electron temperature T , trapped and passing
electron densities nt, np, electric potential peak φm and electric potential φ. In (a), the final
(equilibrated) temperature is given by the horizontal black dashed line. (e–h) Plots of the
distribution function f at various times.

the tail of the distribution is approximately

〈C〉friction = e4 lnΛ
2πε2

0

1
H
∂

∂E (NE=0ftail) , (7.1)

and the heating by energy-passing electrons experienced by core energy-trapped electrons
is approximately

〈C〉heating = e4 lnΛ
2πε2

0

1
H
∂

∂E
(

KME=0
∂fcore

∂E
)
. (7.2)
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FIGURE 6. Distribution function near the boundary layer at t = 200 μs for Nip = 1022 m−2

and LF = 200 m.

Therefore, the E-convection coefficient due to friction against the energy-trapped
population is proportional to H−1. The E-diffusion coefficient due to heating of the
energy-trapped population by the energy-passing population is proportional to KH−1.

The strength of friction and heating in the presence of the potential may be compared
with that when there is no potential. An analytical estimate for the relative strength of the
heating in the well can be made by assuming that the potential is a cut-off parabola. As
the coldest electrons (those with energy E ∼ −eφm) are essentially confined to the peak of
the potential, a cut-off parabola is a good model for understanding the dynamics of these
electrons (in Aleynikov et al. (2019), the potential was modelled as a parabola for all z).

On a closed field line of connection length LF with no electric potential,

HF = 2
√

2meLF

√
E + eφm, KF = 4

3

√
2meLF (E + eφm)

3/2 . (7.3a,b)

For a cut-off parabolic potential

eφ =

⎧⎪⎨
⎪⎩

eφm

(
1 −

(
z

Lp

)2
)
, |z| < Lp,

0, |z| > Lp,

(7.4)

H and K for E < 0 are given by

Hpar = π
√

2me (E + eφm)
Lp√
eφm

, Kpar = 1
2
π
√

2me (E + eφm)
2 Lp√

eφm
. (7.5a,b)

Thus, the strengths of friction and heating in a cut-off parabolic potential well relative to
those on a closed field line with no well (i.e. a homogeneous plasma) are

rel. friction = H−1
par/H

−1
F = 2

π

LF

Lp

√
eφ

E + eφm
, (7.6)

rel. heating = Kpar

Hpar

/
KF

HF
= 3

4
. (7.7)

Relative heating and friction may of course also be calculated using numerical results;
these are plotted in figure 7 for the final timestep of the Nip = 1022 m−2 and LF = 200 m
run.
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FIGURE 7. Friction and heating rates for energy-trapped electrons relative to a homogeneous
plasma for the last timestep of the Nip = 1022 m−2 and LF = 200 m run. In the relative friction
plot, the width of the parabolic potential was chosen to best match the φ profile.

In essence, hot energy-trapped electrons experience very strong friction due to the fact
that they are confined to the well and collide with the cold population very frequently. This
explains the strongly Maxwellian energy-trapped distribution.

The relative heating is of particular interest, because it is analytically predicted to be
3/4 in all cases, as long as the potential is parabolic near its peak. The length of the field
line, the length of the plasmoid, and line-integrated plasmoid density do not affect this
heating rate. This can be understood by noting that a passing electron will, in the course
of its orbit, traverse the entire field line, which includes the entire plasmoid; every passing
electron ‘sees’ every trapped electron on its orbit. The line-integrated plasmoid density is
irrelevant to the heating by passing electrons, because the heating rate is, by definition,
per electron. The mere fact that the coldest electrons are trapped in a parabolic well is
responsible for the factor 3/4.

The physical origin of the reduced heating is the acceleration of passing electrons
through the well, which increases their kinetic energy but decreases their collisionality.
These effects counteract each other, with the decrease in collisionality being dominant.

Although collisional heating is combined with many other effects, we find that
the 3/4 estimate is very accurate during the linear phase of heating, as plotted
in figure 8.

The reduction in heating and increase in friction are purely collisional effects. However,
particle exchange between the energy-trapped and energy-passing distributions may
also contribute to heating or cooling of the energy-trapped population. To see this,
we write

nt = 4π

m2
e

∫ Km

K(E=−eφ)
fmev dK, (7.8)

WKm = 2π

m2
e

∫ Km

0
E f dK, (7.9)

EKm = WKm +
∫ ∞

−∞
entφ dz, (7.10)
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FIGURE 8. Linear phase of heating in numerical runs, and a comparison with the heating in a
homogeneous plasma given a collision frequency reduced to 3/4 its usual value.

which are the density, line-integrated energy density and line-integrated kinetic energy
density of energy-trapped electrons, respectively. We find that

dEKm

dt
=
∫ ∞

−∞
e
∂nt

∂t
φ dz + 2π

m2
e

∫ Km

0
E 〈C〉 dK, (7.11)

so the energy-trapped distribution may gain energy collisionlessly if the energy-trapped
density changes. The density can change due to electrons passing from positive to
negative energies; an electron with energy E + δ, just above the separatrix, finds itself
below the separatrix if the well increases in height by more than δ. This is referred
to as collisionless capture. The kinetic energy of the newly trapped electron, eφ,
contributes to the line-integrated kinetic energy density of energy-trapped electrons. As
the energy-trapped distribution gains particles in its tail, the average electron energy will
increase, consequently increasing the temperature. If instead the well becomes shallower,
the inverse process occurs, causing cooling of the energy-trapped distribution due to the
loss of the hottest electrons.

One remaining feature of the numerics is the boundary layer formed near E = 0 with
LF = 200 m (magnified in figure 6). Friction experienced by electrons goes as H−1, which
is plotted for Nip = 1022 m−2 and LF = 200 m in figure 9. We note that friction increases
rapidly as E → 0+, resulting in ‘piling up’ of energy-passing electrons falling into the
energy-trapped distribution. This can be understood within the parabolic-well model:
energy-trapped electrons have H ≈ Hpar, and energy-passing H ≈ HF, so we refer to (7.6)
for the relative amounts of friction experienced by these electrons. The fact that relative
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FIGURE 9. Plot of H−1 at t = 200 μs for Nip = 1022 m−2 and LF = 200 m.

friction is proportional to LF/Lp explains the appearance of the boundary layer when LF is
large.

If we wish to consider the effect of bounce-integrated collisions of test particles with a
Maxwellian, we may simply substitute a Maxwellian fM of temperature T and density nM
into the integral terms of the collision operator 〈C〉. Then, we obtain a collision operator
with integrated Chandrasekhar functions:

〈C〉 ( f , fM) = nMe4 lnΛ
4πε2

0m2
e

1

v

∮
s
v′ dz′

∂

∂v

(
2x2 〈GF〉 (x)f + 〈GD〉 (x)v ∂f

∂v

)
, (7.12)

where x = v/vT , v′ = √v2 + (2/me)(eφ′ − eφ)/T for primes indicating an argument z′,
and

〈GF〉 (x) = 2
x2

√
π

∫ x

0
ye−y2

∮
s
y′ dz′ dy, (7.13)

〈GD〉 (x) = 2
3x2

√
π

(
2
∫ x

0
ye−y2

∮
s

(
y′)3 dz′e−y2

dy + e−x2

∮
s

(
x′)3 dz′

)
, (7.14)

where y′ = √y2 + (eφ′ − eφ)/T and x′ = √x2 + (eφ′ − eφ)/T . When φ = 0, both 〈GF〉
and 〈GD〉 become the Chandrasekhar function G(x) = (erf(x)− (2/

√
π)x exp(−x2))/(2x2),

recovering the usual collision operator against a Maxwellian.
Velocity moments of the collision operator (7.12) could be taken to obtain a closure for

a fluid system which takes into account the bounce motion of electrons, recovering the
corrected heating and friction which arises due to trapped and passing orbits.

8. Conclusions and future work

Despite the seemingly complicated nature of the electron kinetic problem in a
self-consistent electric potential, useful conclusions can be drawn about the effect of the
potential on the heating and friction experienced by trapped electrons. Namely, owing
to the facts that the potential well is deep relative to the plasmoid electron temperature
and has a parabolic peak, trapped electrons experience exactly 3/4 the collisional heating
by ambient electrons than if no well were present. The trapped electron distribution is
also very close to Maxwellian, owing to the increased convection of hot energy-trapped
electrons to the core.
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As plasmoid electron heating is a consequence of collisions that alter energy, the
observation of slower heating in the presence of a potential well suggests that the ordering
(2.16) is strengthened by the presence of the well, so the integrated electron kinetic
equation could possibly be applied to plasmoids with low-Z ions. This would mean that
the integrated kinetic equation may be appropriate for the electrons in the presence of the
plasmoid produced during MCF fuel pellet injection. In addition, the reduced collisional
heating rate could simply be implemented directly in a fluid model of the plasmoid
electrons. A more rigorous approach to a fluid model involves taking moments of the
integrated collision operator against a Maxwellian (7.12).

A boundary layer near E = 0 was observed with a large connection length,
the distribution resembling a lower-temperature Maxwellian for E < 0 and a
higher-temperature Maxwellian for E > 0. Therefore, if we have a very large connection
length, the model given by assuming that the distribution is two cut-off Maxwellians
splined in some small region near E = 0 could be appropriate. This would allow
for simplification of the kinetic problem; only the tail of the energy-trapped electron
distribution need be modelled kinetically. If the effect of the tail is insignificant, a fluid
model concerning two Maxwellians would suffice.

Previous work on modelling the parallel expansion of fuel pellet plasmoids did not
consider a self-consistent well, thereby overestimating the heating of plasmoid electrons
(Aleynikov et al. 2019; Arnold et al. 2021; Runov et al. 2021). It was predicted that
approximately 50 % of plasmoid electron heating power is transferred to ions in the form
of flow velocity due to the ambipolar expansion. However, with the reduction in plasmoid
electron heating, we expect an even larger transfer of energy to the ions (Runov et al.
2021), thereby increasing the plausibility of ambipolar expansion as a mechanism for an
increased Ti/Te ratio after pellet injection in W7-X (Baldzuhn et al. 2019, 2020).

It should be noted that the invariant K produced by the integrating procedure is constant
for an electron experiencing only pitch-angle scattering and bounce motion. Therefore,
the electron kinetic problem which uses the Lorentz scattering operator in place of the
true collision operator can be compared with (∂f /∂t)(K, t) = 0.

Some studies of turbulent transport rely on the consideration of free energy while
conserving invariants (Mackenbach, Proll & Helander 2022). For collisionless electrons,
these invariants are usually chosen to be the magnetic moment and second adiabatic
invariant. However, in the presence of strong pitch-angle scattering, K is conserved
instead: the effect of this on the minimisation of electron free energy should be
investigated.
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Appendix A. Integrating the kinetic equation over bounce motion and anisotropy

We wish to apply the integration procedure (2.23) to the kinetic equation (2.22). We
note that the order of integration can be changed:

∫ (E+eφm)/B

0

∮
· dz dμ =

∫ (E+eφm)/B

0
2
∫ zc(E,μ)

−zc(E,μ)
· dz dμ

= 2
∫ zc(E,μ=0)

−zc(E,μ=0)

∫ (E+eφ)/B

0
· dμ dz

:=
∮

s

∫ (E+eφ)/B

0
· dμ dz, (A1)

where zc(E, μ) denotes the positive value of the turning point of an electron of energy E
and magnetic moment μ: E + eφ(zc)− μB(zc) = mev

2
‖/2 = 0.

The left-hand side of the kinetic equation then becomes

1
B
∂f0

∂t

∮
s
mev dz − 1

B
∂f0

∂E
∮

s
e
∂φ

∂t

√
2me

√
E + eφ dz. (A2)

The quantity

K =
∮

s

m2
ev

3

3
dz (A3)

is such that
∂K
∂E =

∮
s
mev dz =: H (A4)

and
∂K
∂t

=
∮

s
e
∂φ

∂t

√
2me

√
E + eφ dz, (A5)

which means that the left-hand side is given by

1
B

[
∂K
∂E
(
∂f0

∂t

)∣∣∣∣
E

− ∂K
∂t

(
∂f0

∂E
)∣∣∣∣

E

]
, (A6)

where |E indicates derivatives at constant energy (i.e. the derivatives in the above are for
f (E, t)). Dropping the subscript from f0, this is equal to

1
B
∂K
∂E

∂f
∂t
, (A7)

where f is expressed as a function of (K, t).
As for the right-hand side of the kinetic equation, we observe that the integration

procedure makes the pitch-angle scattering term vanish. This can be seen by changing the
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order of integration via (A1) and noting that the prefactor 1/(4π)
∑

k Z2
k nik − 2∂ψ0/∂v is

independent of μ:

∫ (E+eφm)/B

0

∮ (
1

4π

∑
k

Z2
k nik − 2

∂ψ0

∂v

)
∂

∂μ

(
μv‖
v3B

∂f1

∂μ

)
dz dμ

=
∮

s

∫ (E+eφ)/B

0

(
1

4π

∑
k

Z2
k nik − 2

∂ψ0

∂v

)
∂

∂μ

(
μv‖
v3B

∂f1

∂μ

)
dμ dz

=
∮

s

(
1

4π

∑
k

Z2
k nik − 2

∂ψ0

∂v

)∫ (E+eφ)/B

0

∂

∂μ

(
μv‖
v3B

∂f1

∂μ

)
dμ dz

=
∮

s

(
1

4π

∑
k

Z2
k nik − 2

∂ψ0

∂v

)[
μv‖
v3B

∂f1

∂μ

]μ=(E+eφ)/B

μ=0
dμ dz

= 0, (A8)

the term in square brackets vanishing because

μv‖ = μ

√
2

me
(E − μB + eφ) (A9)

vanishes at each limit.
The electron self-collision term is all that remains, so the right-hand side of the kinetic

equation becomes

e4 lnΛ
ε2

0

∮
s

1
B
∂

∂E
[
v2 ∂ϕ0

∂v
f0 − mev

3 ∂
2ψ0

∂v2

∂f0

∂E
]

dz. (A10)

Using expressions for Rosenbluth potentials of an isotropic distribution (Nishimura
2015)

∂ϕ0

∂v
= 1

mev2

∫ E

−eφ
v′f ′

0 dE ′ (A11)

and

∂2ψ0

∂v2
= − 1

3me

(
1
v3

∫ E

−eφ

(
v′)3 f ′

0 dE ′ +
∫ ∞

E
f ′
0 dE ′

)
(A12)

gives

∮
s

1
B
∂

∂E
(
v2 ∂ϕ0

∂v
f0

)
dz

= 1
meB

∮
s

∂

∂E
(

f0

∫ E

−eφ
v′f ′

0 dE ′
)

dz
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= 1
m2

eB
∂

∂E
(

f0

∮
s

∫ E

−eφ
mev

′f ′
0 dE ′ dz

)
, since E + eφ(±zc(μ = 0)) = 0

= 1
m2

eB
∂

∂E
(

f0

∫ E

−eφm

f ′
0

∮
s
mev

′ dz dE ′
)
, since

∮
s

∫ E

−eφ
· dE ′ dz =

∫ E

−eφm

∮
s
· dz dE ′

= 1
m2

eB
∂

∂E
(

f0

∫ E

−eφm

f ′
0
∂K ′

∂E ′ dE ′
)

= 1
m2

eB
∂K
∂E

∂

∂K

(
f0

∫ K

0
f ′
0 dK ′

)
(A13)

and

−
∮

s

1
B
∂

∂E
(

mev
3 ∂

2ψ0

∂v2
∂f0
∂E
)

dz

= 1
B

∮
s

∂

∂E
[

mev
3 1

3me

(
1
v3

∫ E

−eφ

(
v′)3 f ′

0 dE ′ +
∫ ∞

E
f ′
0dE ′

)
∂f0
∂E
]

dz

= 1
B
∂

∂E

[
∂f0
∂E
∮

s

(∫ E

−eφ

(
v′)3
3

f ′
0 dE ′ + v3

3

∫ ∞

E
f ′
0 dE ′

)
dz

]
, since E + eφ(±zc(μ = 0)) = 0

= 1
B
∂

∂E

[
∂f0
∂E

(∫ E

−eφm

f ′
0

∮
s

(
v′)3
3

dz dE ′ +
∮

s

v3

3
dz
∫ ∞

E
f ′
0 dE ′

)]

= 1
m2

eB
∂

∂E
[
∂f0
∂E
(∫ E

−eφm

f ′
0K′ dE ′ + K

∫ ∞

E
f ′
0 dE ′

)]

= 1
m2

eB
∂K
∂E

∂

∂K

[
∂f0
∂E
(∫ K

0
f ′
0

K′

H′ dK′ + K
∫ ∞

K

f ′
0

H′ dK′
)]
. (A14)

Combining these results (and dropping the 0 subscript) gives the kinetic equation

∂f
∂t

= 〈C〉 , (A15)

where f = f (K, t) and the integrated collision operator is given by

〈C〉 = e4 lnΛ
ε2

0m2
e

∂

∂K

[
f
∫ K

0
f ′ dK ′ + H

∂f
∂K

(∫ K

0
f ′ K

′

H′ dK ′ + K
∫ ∞

K

f ′

H′ dK ′
)]
. (A16)

Appendix B. Phase-space moments

The volume element in (E, μ, z) phase space is

d3v dz = 4π

m2
e

B
v‖

dE dμ dz. (B1)

Given some quantity ψ associated with individual electrons, the line-integrated density of
this quantity is therefore given by

Ψ =
∫ ∞

−∞

∫ ∞

−eφ

∫ (E+eφ)/B

0

4π

m2
e

B
v‖
ψ f dμ dE dz. (B2)
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The same quantity calculated considering only electrons with energy less than E is
similarly given by

ΨE =
∫ ∞

−∞

∫ E

−eφ

∫ (E ′+eφ)/B

0

4π

m2
e

B
v′

‖
ψ ′f ′ dμ dE ′ dz. (B3)

Naturally, we may write ΨK = ΨE(K,t) for the quantity associated with electrons with
invariant less than K. If ψ is independent of μ and z, then

ΨE = 4π

m2
e

∫ ∞

−∞

∫ E

−eφ
ψ ′f ′

∫ (E ′+eφ)/B

0

B
v′

‖
dμ′ dE ′ dz

= 4π

m2
e

∫ ∞

−∞

∫ E

−eφ
ψ ′f ′mev

′ dE ′ dz

= 2π

m2
e

∫ E

−eφm

ψ ′f ′
∮

s
mev

′ dz dE ′

= 2π

m2
e

∫ E

−eφm

ψ ′f ′H′ dE ′

= 2π

m2
e

∫ K(E)

0
ψ ′f ′ dK ′. (B4)

Writing Ψ = N when ψ = 1, Ψ = W when ψ = E and Ψ = E when ψ = mev
2/2,

NK = 2π

m2
e

∫ K

0
f ′ dK ′, (B5)

WK = 2π

m2
e

∫ K

0
E ′f ′ dK ′, (B6)

EK = 4πB
m2

e

∫ ∞

−∞

∫ E(K,t)

−eφ

∫ (E ′+eφ)/B

0

1
2

mev
2f ′ dμ dE dz

= π

m2
e

∫ E(K,t)

−eφm

f ′
∮

s
m2

e(v
′)3 dz dE ′

= 3
2

2π

m2
e

∫ E(K,t)

−eφm

f ′K ′ dE ′

= 3
2

2π

m2
e

∫ K

0
f ′ K

′

H′ dK ′. (B7)

A quantity that appears in the integrated collision operator is given by

MK = 2π

m2
e

∫ ∞

K

f ′

H′ dK ′. (B8)
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Density is obtained by integrating only over μ and E :

ne = 4π

m2
e

∫ ∞

−eφ

∫ (E+eφ)/B

0

B
v‖

f dμ dE

= 4π

m2
e

∫ ∞

−eφ
fmev dE

= 4π

m2
e

∫ ∞

K(E=−eφ)
f

mev

H
dK. (B9)

Appendix C. Electron temperature equilibration in a homogeneous plasma

As a comparison to the relaxation of the distribution function to a Maxwellian in
the presence of a well (implying temperature equilibration between the energy-trapped
and energy-passing parts of the distribution), we consider temperature equilibration in
a homogeneous plasma: one without a potential well. Given an initial energy-trapped
temperature T and energy-passing temperature Ta, we choose the constant quantities
(nt, na) such that

(nt + na)LF = N,
3
2 (ntTa + naTa)LF = E,

}
(C1)

N and E being the line-integrated density and line-integrated kinetic energy density of the
numerical run, respectively: both constants. Then, we evolve T and Ta according to

3
2

dT
dt

= 3νt/a(Ta − T),

3
2

dTa

dt
= 3νa/t(T − Ta),

⎫⎪⎪⎬
⎪⎪⎭ (C2)

where

να/β = nβe4 lnΛ

6
√

2π3/2ε2
0m1/2

e (Tα + Tβ)3/2
(C3)

is the frequency associated with heating of electron species α by electron species β. These
equations ensure that the line-integrated energy density is always given by E. In the final
state, Ta = T and

3
2 NT = E, (C4)

which is also the expected final state of the system with a potential well (when the
distribution reaches a Maxwellian). Thus, both the homogeneous system and the system
with a potential well will have T → 2E/(3N) as t → ∞, allowing for a valid comparison.
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