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ABSTRACT

This paper presents a Bayesian approach using Markov chain Monte Carlo
methods and the generalized-t (GT) distribution to predict loss reserves for
the insurance companies. Existing models and methods cannot cope with irreg-
ular and extreme claims and hence do not offer an accurate prediction of loss
reserves. To develop a more robust model for irregular claims, this paper extends
the conventional normal error distribution to the GT distribution which nests
several heavy-tailed distributions including the Student-t and exponential power
distributions. It is shown that the GT distribution can be expressed as a scale
mixture of uniforms (SMU) distribution which facilitates model implementa-
tion and detection of outliers by using mixing parameters. Different models for
the mean function, including the log-ANOVA, log-ANCOVA, state space and
threshold models, are adopted to analyze real loss reserves data. Finally, the
best model is selected according to the deviance information criterion (DIC).
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1. INTRODUCTION

An insurance policy is a promise of an insurance company to pay claims to
the insureds if some defined events (death, accident, injury, etc.) occur. How-
ever in many cases, claims originating in a particular year are often not settled
in that year, but with a time delay of years or perhaps decades. Therefore, the
insurance company must have the necessary loss reserves to pay these out-
standing claims and settlement costs incurred. With many uncertainties in the
time lags inherently involved in the claims settlement process, the estimation
procedure of the required loss reserves is extremely complicated. Since loss
reserves generally represent by far the largest liability and the greatest source
of financial uncertainty in an insurance company, accurate prediction of the
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TABLE 1: Run-off triangle for claim data.

loss reserves is of great importance. Failure to estimate the loss reserves accu-
rately may result in large profit losses and hence weaken the financial stability
of the company which may ultimately drive it into insolvency.

Denote Yi, j, i, j = 1, …, n, the value of claims paid by an insurance com-
pany for accidents that occurred in policy year i and were settled after j – 1 years
(lag year j ). The observed claim amounts Yi, j, i = 1, …, n, j # n – i + 1 over a
period of n policy years can be presented by a run-off triangle; see Table 1.
The total number of observed claims in the upper triangle is SU = n (n + 1) / 2
and the number of unobserved claims to be predicted in the lower triangle is
SL = n (n – 1) / 2. The aim is to predict the unobserved values in the lower tri-
angle using an appropriate statistical model.

208 J.S.K. CHAN, S.T.B. CHOY AND U.E. MARKOV

Lag year j
1 2 3 . . . n - 1 n 

1 Y1,1 Y1,2 Y1,3 . . . Y1,n-1 Y1,n

2 Y2,1 Y2,2 . . . . Y2,n-1

3 Y3,1 . . . . .   
. . . . . .    
. . . . .     
. . . .      

n - 1 Yn-1,1 Yn-1,2       

Policy
year

i

n Yn,1        

The most popular method for prediction is the chain-ladder method (Renshaw,
1989) which uses loss ratio estimates and loss development factors. However it
is increasingly apparent that this method lacks some measures of variability.
Over the years, stochastic models with hierarchical structure have been developed
to overcome such shortcomings. For example, Verrall (1991, 1996) and Ren-
shaw and Verrall (1998) adopt the ANOVA-type and ANCOVA-type models.
The interaction between the policy year and lag year prompted the development
of the state space models which allow dynamic evolution of parameters in a
time-recursive way. See Verrall (1989, 1994). In addition, Hazan and Makov
(2001) propose the threshold models to allow for structural changes in the trend
of outstanding claims over time. Analyses of real data suggest that the dynamic
nature of the state space model and threshold model improves the prediction.

It is well known that the normal error distribution falls short of allowing
for irregular and extreme claims and hence contaminates the estimation proce-
dure and leads to poor prediction. To allow for irregular claims, error distrib-
utions that possess flexible tails are recommended. The Student-t distribution
has been widely used by many researchers for this purpose while Choy and
Chan (2003) use the exponential power (EP) family of distributions. In this
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paper, we shall adopt the generalized-t (GT) distribution (McDonald and
Newey, 1988) for the errors. The GT distribution is symmetric and is governed
by two shape parameters. By suitably choosing these shape parameter values,
one can easily show that the normal, Cauchy, Student-t, EP and Laplace dis-
tributions are members of the GT family.

For a long time the Bayesian approach had very limited applications in sta-
tistical inference because the posterior functionals that involve high-dimen-
sional integration cannot be obtained analytically. Gelfand and Smith (1990)
develop the simulated-based Markov chain Monte Carlo (MCMC) techniques
that transform the integration problem into a sampling problem. The idea is
to construct a Markov chain whose limiting distribution is the intractable joint
posterior distribution. The simulated realizations from the Markov chain mimic
a random sample from the joint posterior distribution and the posterior func-
tionals can be estimated from these realizations. Amongst the MCMC algorithms,
Gibbs sampling (Geman and Geman, 1984), Metropolis-Hastings (Metropo-
lis et al., 1953 and Hastings, 1970) and Reversible Jump MCMC (Green, 1995)
are very common. Bayesian statistical inferences can be easily done using
WinBUGS (Spiegelhalter et al., 2004), a user-friendly software for MCMC
algorithms. Readers who are interested in or unfamiliar to WinBUGS may
find the educational materials on the official WinBUGS website very useful.
See www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml. They are referred to Gilks
et al. (1998) and Gelman et al. (2004) for MCMC applications in many sta-
tistical problems. For actuarial and insurance applications, see, for example,
Makov (2001), De Alba (2002), Ntzoufras and Dellaportas (2002), Ntzoufras
et al. (2005), Scollnik (1998, 2001, 2002) and Verrall (2004).

This paper makes the first attempt to adopt the GT error distribution via
a scale mixture of uniforms (SMU) form for model implementation and
for protecting inferences from the distorting effect of the possible outliers. The
proposed data augmentation scheme makes the Gibbs sampler easier to set up
and is able to detect possible outliers using the mixing parameters of the SMU
representation.

The rest of this paper is structured as follows. Section 2 introduces the
data that demonstrate the proposed loss reserves models. Section 3 reviews the
models with normal error distribution. Section 4 outlines the GT distribution
and its scale mixtures representations. Section 5 implements the models using
the Bayesian approach and proposes the DIC for choosing the best model.
Section 6 reports and compares the results. Finally, discussion of results and
further research direction is outlined in Section 7.

2. THE DATA

To demonstrate the models proposed in Sections 2 and 3, a loss reserves data
set as shown in Table 2 is analyzed. The data are the amount of claims paid
to the insureds of an insurance company during the period of 1978 to 1995
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TABLE 2: The amount of claims paid to the insureds of an insurance during 1978 to 1995.

over n = 18 years. The upper triangle has N = 171 observations and the 153
observations in lower triangle are not yet observed. For mathematical conve-
nience, two zero claim amounts are replaced by 0.01. Some general trends are
obvious in the data. Given a policy year, the amount of claims paid follows
an increasing trend in the first 4 to 6 lag years and then a decreasing trend there-
after. On the other hand, there are no obvious trends across policy years for
each lag year. Although the data are not adjusted for inflation, our analysis is
able to capture other sources of variability.

This data set contains some extreme outliers which are underlined in Table 2.
For example, extremely large claims (in italic), amount to 11,920 and 15,546 dol-
lars, were made in the 7-th lag year of policy year 1984 and in the 4-th lag year
of policy year 1992, respectively. These outliers distort the general trends in the
data and inflate the standard errors of the model parameters. Other outliers
have much smaller amount of claims than their neighboring claims. These
claims may lead to underestimates of loss reserves and hence lower the solvency
and increase the risk of bankruptcy for an insurance company. Hence for
robustness consideration, heavy-tailed error distributions are adopted to accom-
modate these irregular claims.

3. MODELING THE MEAN FUNCTION

The popular log-linear model was investigated by Renshaw (1989), Verrall
(1991, 1996) and Renshaw and Verrall (1998) in actuarial context. Depending
on the formulation of policy year and lag year effects, we consider the log-
ANOVA, log-ANCOVA and state space models for the mean function. For
the state space model, the interaction effects between the policy-year and the
lag-year are assumed. Each of these models is then allowed to switch to the
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model with a new set of parameters after certain thresholds. All models are
implemented using WinBUGS with vague and non-informative prior distri-
butions assigned to the model parameters.

3.1. ANOVA models

Within the Bayesian hierarchical modeling framework, the log-adjusted claim
amount yij, written in year i and paid with a delay j –1 years, adopts a two-
way ANOVA model as below:

log(Yij) = mij + eij (1)

mij = m + ai + bj (2)

eij a N(0, s2) (3)

for i = 1, …, n, j # n – i + 1 subject to the constraints i j1 1= = .0i
n

j
n

= =a b! !
mij is the mean function, ai is the policy year effects and bi is the lag year effects.
To complete the Bayesian framework, we adopt the following priors for the
model parameters:

m a N(0, sm
2), ai a N(0, sa

2), bj a N(0, sb
2), s2 a IG (a,b)

where IG (a,b) is the inverse gamma distribution with density

.expf
a

b b
s

s sG
1a a

2
2

1

2
= -

+

`
^

d dj
h

n n

Diffuse priors can be obtained by setting the hyperparameters sm
2 = sa

2 = sb
2 = 3

and a = b = 0, i.e. inflating the variances of the prior distributions to reflect the
lack of prior information (Ntzoufras and Dellaportas, 2002). In this case, the
joint prior density is 

p(m, A, b, s2) "
s
1

2

where A = (a1, …, an) and b = (b1, …, bn).

3.2. ANCOVA model

In the ANCOVA model, the effects of policy year i and lag year j are linear. The
three different combinations of effects are given below.

1. Linear effect of policy year and categorical effect of lag year,
2. Categorical effect of policy year and linear effect of lag year and
3. Linear effect of both policy year and lag year.
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Preliminary result of the analysis reveals that the first combination provides
the best fit to the data and hence is chosen for all subsequent analyses of the
ANCOVA model. Analysis of the model follows from the log-ANOVA model
from (1) to (3) except that the mean function becomes

mij = m + a · i + bj (4)

for i = 1, …, n, j # n – i + 1 subject to the constraints j 1= .0j
n

=b! The diffuse
priors are chosen to be 

p(m, a, b, s2) �
s
1

2

where b = (b1, …, bn).

3.3. State space model

To account for the interaction between the policy year and lag year in the
mean function, the state space model (Ntzoufras and Dellaportas, 2002,
De Jong and Zehnwirth, 1983 and Verrall, 1991, 1994) is considered. In the
model, parameters are allowed to evolve in a time-recursive pattern: ai depends
on ai–1 and an error term hi while bij depends on bi – 1, j and an error term ni.
The model again follows from log-ANOVA model from (1) to (3) except that
the mean function becomes

mij = m + ai + bij (5)

for i = 1, …, n, j # n – i + 1 where the recursive associations are

ai = ai –1 + hi, hi + N(0,sh
2), i = 2, 3, …, n (6)

bij = bi –1, j + ni, ni + N(0,sn
2), i, j = 2, 3, …, n (7)

subject to the constraints a1 = 0 and bi1 = 0 for i = 1, …, n. The priors for sh
2

and sn
2 are assumed to be sh

2 + IG (ah, bh) and sn
2 + IG (an, bn) respectively. Dif-

fuse prior distributions are chosen to be

p(m, b1, s2, sh
2, sn

2 ) �
h ns s s

1
2 2 2

where b1 = (b12, …, b1n).

3.4. Threshold model

Hazan and Makov (2001) suggested a switching regression model in which the
mean functions before and after a threshold T along the axis of policy year are
assigned the same model but with a different set of parameters. The reasoning
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behind is that some events such as a financial crisis or a change in the insur-
ance regulation may take place on or before certain threshold year T. These
events may change the effects of some factors on the claim amounts and hence
a new set of parameters is adopted to reveal such changes. The threshold mod-
els based on different mean function structures are given below:

Threshold log-ANOVA model: mij = m1 + a1i + b1j for i < T

mij = m2 + a2i + b2j for i $T, j ≤ n – T + 1

Threshold log-ANCOVA model: mij = m1 + a1 ≈ i + b1j for i < T

mij = m2 + a2 ≈ i + b2j for i $T, j ≤ n – T + 1

Threshold state space model: mij = m1 + a1i + b1ij for i < T (8)

mij = m2 + a2i + b2ij for i $T, j ≤ n – T + 1 (9)

The main difference in these threshold models is related to the set of b para-
meters which change after the threshold policy year T. On the contrary, the
criterion that the a parameters are different before and after the threshold also
holds for the simple models. Prior distributions for the parameters in the three
models remain the same as those in Sections 3.1 to 3.3. The threshold T can
be selected based on some model selection measures such as the Akaike infor-
mation criterion (AIC) (Akaike, 1974), Bayesian information criterion (BIC)
(Schwarz, 1978) and deviance information criterion (DIC) (Spiergelhalter et al.,
2002). We shall use the DIC in this paper because it is particularly useful in
Bayesian model selection problems where the posterior distributions of the
model parameters have been obtained by MCMC simulation. Threshold mod-
els with threshold lag-years, for example,

Threshold log-ANOVA model: mij = m1 + a1i + b1j for j < T,

mij = m2 + a2i + b2j for j $T, i ≤ n – T + 1,

are also possible. However they are not considered further in this paper as the
loss reserves data in the numerical illustration show no clear trends of claim
amounts across policy years for each given lag-year.

4. ERROR DISTRIBUTIONS

Past experience shows that irregular claims which often present in loss reserves
data may seriously distort the parameter estimates and hence affect the accu-
racy of the prediction. The traditional log-linear models with normal errors
fall short of allowing for the irregularities in the claim amounts. Heavy-tailed
distributions such as the Cauchy, Student-t, Laplace and EP distributions are
adopted for the errors in order to robustify the statistical inferences. However
searching across these error distributions for the most suitable distribution,
though workable, is time-consuming. The GT distribution, nesting all these
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competing heavy-tailed distributions as well as the lighter-tailed alternatives
including the normal and uniform distributions, provides a favorable choice for
the error distribution (Butler et al., 1990).

4.1. Generalized-t distributions

Proposed by McDonald and Newey (1988) in econometric applications, the GT
distribution is symmetric and unimodal and has a probability density function
(PDF)
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where m ! � is a location parameter, s > 0 is a scale parameter, p > 0 and q > 0
are two shape parameters and B(·) is the beta function. When m = 0 and s = 1,
the rth moment of the GT distribution is given by 
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In particular, the variance is given by 
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The tail behavior and other characteristics are controlled by p and q. Large
values of p and q signify distributions with thinner tails than the normal dis-
tribution whereas small values of p and q signify distributions with thicker
tails. Hence the GT distribution can accommodate both leptokurtic and
platykurtic distributions.

The GT family includes several important distributions: the normal (p = 2,
q " �) , the Cauchy (p = 2, q = 1/2), the Student-t with 2q degrees of freedom
(p = 2), the Laplace (p = 1, q " �), the EP with shape parameter p (q " �), and
the uniform (p " �) distributions. When p = 2, the PDF in (10) reduces to 
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FIGURE 1: The GT distribution family tree.

which is the PDF of the Student-t distribution with degrees of freedom n = 2q
and scale parameter /t s 2= . Moreover, (10) converges to the PDF of the EP
distribution with shape parameter p

, ,
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when q"�. Lastly, (10) also converges to the PDF of the uniform distribution 

, ,U x I xm s s m s m s2
1

!= - +^ ^_h hi

when p"�. In addition, when p# 1, the GT distribution is cuspidate. Figure 1
summarizes the relationship amongst the well-known distributions within the
GT family. The graphs of the PDFs for different values of p and q when m = 0
and s = 1 are available from the authors.

4.2. The generalized gamma distributions

The generalized gamma (GG) distribution with parameters a, b, g > 0, denoted
by GG(a, b, g) has a PDF given by 

a, , expa aGG x x xb g
gb

b
G

a
g g g1= --
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^

ah
h
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where b is a scale parameter and a and g are shape parameters. The sth moment
of the distribution is 
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The GG distribution includes the Weibull (a = 1), gamma (g = 1), exponential
(a = g = 1) and lognormal (a = 0) distributions as special cases. In particular,
when g = 1, the GG distribution reduces to the gamma Ga(a, b ) distribution
having the PDF

, ,expa aGa x x xb
b

b
G

a
a 1= --

^
^

^h
h

h

the mean E [X ] = a /b and the variance V [X ] = a /b2 For inferential procedures
of the GG distribution, see Hager and Bain (1970). See also McDonald and
Butler (1987) for the applications in finance.

4.3. The scale mixtures representation of the GT distribution 

Recently, Arslan and Genc (2003) showed that the GT distribution can be
expressed into a scale mixtures of Box and Tiao distribution (Box and Tiao,
1973), or the scale mixtures of exponential power (SMEP) distribution because
the Box and Tiao distribution is another name for the EP distribution. Using
the SMEP density representation, the PDF in (10) can be rewritten as

, , , , , , , .GT x p q EP x q s p GG s q
p

dsm s m s 1 2
/ /p1 1 2

0
=

3
-#^ a dh k n (11)

The latent variable, s, arises in the above expression is called the mixing para-
meter of the SMEP density representation and has a GG(q,1, p /2) distribution.
Similar to the mixing parameters of the scale mixtures of normal (SMN) dis-
tributions (Choy and Smith, 1997) and the scale mixtures of uniform (SMU)
distributions (Choy and Chan, 2003), mixing parameter s in (11) can be used
as a global diagnostic of possible outliers. Small mean value of s associates with
possible outlier because the corresponding EP distribution in (11) must inflate
its variance to accommodate the outlier. See Choy and Smith (1997) and Choy
and Chan (2003) for outlier diagnostics using the mixing parameter of the
SMN and SMU distributions, respectively.

Many symmetric and non-normal distributions are extremely difficult to
handle in statistical inference because of the non-conjugate structure of the
models. In Bayesian computation, expressing the PDF of a distribution into
a certain kind of scale mixtures form enables efficient simulation-based algo-
rithms. Without using a scale mixtures representation, sampling non-standard
full conditionals in Bayesian Gibbs sampling procedure relies on the Metropo-
lis-Hastings algorithm, the slice sampler (Damien et al., 1999) or other simu-
lation algorithms. However, the Metropolis-Hastings algorithm and some other
simulation algorithms require expertise in simulation techniques to provide
reliable and efficient algorithms. The slice sampler is an easy-to-use algorithm
that introduces an auxiliary variable to reduce a non-standard full conditional
in a Gibbs sampler to standard full conditionals. However, there is no physical
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meaning for the auxiliary variable. On the contrary, the use of a scale mixtures
density representation for a non-normal distribution results in adding extra
latent variables in the model and hopefully produces a set of standard full
conditionals for the Gibbs sampler. In addition, these latent variables are used
to identify possible outliers. Therefore, the slice sampler and the use of scale
mixtures density representation play different roles in Gibbs sampling even
though they both use latent variables. Although our proposed data augmen-
tation scheme, as well as the slice sampler, suffers from a slow convergence of
the Markov chain, and hence increases the computational time, it does make
the Gibbs sampler easier to set-up.

Although the GT distribution can be expressed as a SMEP distribution, the
EP distribution is difficult to handle analytically in statistical inference because
its density function involves an absolute term. Walker and Gutiérrez-Peña
(1999) showed that the EP distribution can be expressed as a SMU distribution
and Choy and Chan (2003) successfully adopt this SMU representation of the
EP distribution in an insurance application. In this paper, we combine the
SMEP for the GT distribution and the SMU for the EP distribution to obtain
a SMU representation for the GT distribution. The resulting Gibbs sampler
can be shown to have a set of easily sampled standard full conditional distri-
butions.

Let U be a gamma Ga(1+ 1/p,1) random variable and S be a generalized
gamma GG(q,1, p /2) random variable. Then, if X is a GT random variable with
parameters m, s, p and q we have 

, ,
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In other words, it can be expressed into an infinite mixture of uniform den-
sities. Therefore, conditioning on u and s, the variable X follows a uniform
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distribution with a variance of (qu)2/ps2/ (3s) which inflates with a large u and
a small s.

Hence the Gibbs sampling is performed with the observed data x and the
mixing parameters u and s. Although the number of parameters to be sampled
becomes larger with the inclusion of the mixing parameters, sampling can be
conducted more efficiently from the standard full conditional distributions.
Hence the SMU representation of the GT density function simplifies the Gibbs
sampler for Bayesian computation.

Robust analysis using heavy-tailed distributions to accommodate outliers
has been studied by many authors (Box and Tiao, 1973, Dawid, 1973). Choy
and Smith (1997) and Choy and Chan (2003) highlight the use of latent
variables of the normal and uniform scale mixtures distributions, respectively,
to simplify the Bayesian computational algorithms and as a proxy for outlier
diagnostics. For example, a normal scale mixtures distribution is an infinite
mixture of the normal distributions with identical means and different variances.
The weight and the variance of each normal component are determined by a
latent variable, known as a mixing parameter of a scale mixture distribution, which
follows a pre-deterministic distribution. A normal scale mixture distribution
accommodates a possible outlier by inflating the variances of the normal com-
ponents. Therefore, by comparing the posterior mean or median of the mixing
parameter for each observation, we can identify possible outliers. This argument
is similar for the uniform scale mixtures distributions.

For the GT distribution, we propose to use the ratio c = u1/ps–1/2 as a proxy
to identify outliers because it is proportional to the variances of the infinite
mixture of uniform components. The observations with significantly large pos-
terior mean values of ci are possible outliers.

5. BAYESIAN ANALYSIS

5.1. Model implementation

Bayesian approach is adopted for parameter estimation and is performed using
WinBUGS. Command codes for the implementations are available from the
authors. Parameters are estimated using the samples drawn from the intractable
joint posterior distribution. Due to the complexity of the models, simulated val-
ues of certain parameters may be highly correlated and the Markov chains of
the Gibbs sampler may suffer from a slow convergence. As a result, the num-
ber of iterations M should be large enough to ensure that the sample is uncor-
related, large and stationary. We set M = 105,000 and the burn-in period is at
least 5,000 iterations. After the burn-in period, parameters are taken from
every 50th iteration to mimic a random sample of size at least K = 1,000 from
the intractable joint posterior distribution. Trajectory plots and autocorrela-
tion plots of the simulated values are used to check for the convergence and
independence of the sample. The posterior sample means, or medians where
appropriate, are reported as parameter estimates.
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5.2. Model Selection

To choose the most appropriate Bayesian model for the loss reserves data, the
Deviance information criterion (DIC) is used. The DIC is proposed by Spiegel-
halter, et al. (2002) as a model selection method for complex hierarchical models
in which the number of parameters is not clearly defined. The DIC is defined as 

DIC = E [D (q )] + DD (q )

where E [D (q )] is a measure of the adequacy of model fitting and DD (q ) =
E[D(q)] – D(q) estimates the effective number of parameters in the model. Based
on the posterior sample, we calculate the DIC as

DIC = –2 kln lnK q q
2

ij ij ij ij
j

n i

i

n

j

n i

i

n

k

K

1

1

11

1

11

-
=

- +

==

- +

==

z zf f!!!!! t
J

L

K
K _ _

N

P

O
Oi i

where zij = lnyij is the log claim size, fij(·) is the GT density function given by
(10) when the mean m is replaced by mij in (2), (4) and (5) for the log-ANOVA,
log-ANCOVA and state space models, respectively, qk is a vector of all
parameters in the kth posterior sample and q̂ is a vector of posterior means.
Obviously, a model with the smallest DIC is the best model.

6. RESULTS

6.1. Comparison between mean functions and error distributions

Various models with different mean functions and error distributions are fitted
to the claim data. For each type of mean function, we set the two shape para-
meters, p and q, of the GT distribution to take different values, which signify
different distributions that are nested within the GT family. In the simulation
study, we set p = 50 to approximate the uniform distribution and q = 50 to
approximate the EP distribution which includes the normal and Laplace dis-
tributions. From (10), these values for p and q approximate the limiting cases
of p"� and q"� well. Moreover, more general families of distributions can
be obtained by setting either p or q or both to be random. For example, p = 1
and q is random, and p is random and q = 0.5, 1 and 2, respectively, are used
in the simulation study. Models are ranked according to DIC. These shape
parameters are assigned a non-informative Ga(0.001, 0.001) prior distribution
if they are not fixed.

Table 3 exhibits the DIC values for a wide choice of error distributions for
the log-ANOVA, log-ANCOVA and state space models. For the log-ANOVA
model, the most appropriate error distribution is the GT distribution with p = 1
and q being random. The posterior mean of q is 2.46. For the log-ANCOVA
and state space models, the GT error distribution with a random p and q = 2
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TABLE 4: Posterior means of p and q (standard deviations in parentheses)
and DIC for different state space threshold models.

TABLE 3: Model comparison using DIC for ANOVA, ANCOVA and state space models with different
error distributions. Posterior means of the shape parameters of the error distributions are reported

while bold type values correspond to fixed shape parameter values.

is chosen and the posterior means of p are 1.20 and 1.12, respectively. These
p and q values correspond to the GT distributions that are heavier-tailed than
the normal distribution. The DIC values for these three models are 336.0, 332.6
and 321.1, respectively and the state space model with a random p and q = 2
is preferred amongst the models studied.

6.2. Comparison between simple and threshold models

To allow for structural changes in the trend of claim amount over time,
threshold model that assumes a structural change at policy year T is suggested.
For the loss reserves data used throughout this paper, state space model is
shown to perform better than the log-ANOVA and log-ANCOVA models
across a wide choice of error distributions in general. Therefore, the state space
threshold model and the GT error distribution with unknown p and q are used
to re-analyze the claim data in this section. The threshold T is fixed within the
range (1, n) for the policy year, not too close to either sides of the range. The
mean function takes two different sets of parameters – one set before T and
the other set on and after T. Table 4 exhibits the posterior means and posterior

220 J.S.K. CHAN, S.T.B. CHOY AND U.E. MARKOV

Model ANOVA ANCOVA State space  

Distribution  p q  DIC p q DIC p q  DIC 

542.4 2 50  529.9 2 50  528.3 
2 1.24        338.6  2 1.26        333.6  

375.0 2 0.5  340.8 2 0.5  356.7 
EP 430.4 1.24  50 416.9 1.24  50 418.3 

375.6 1 50  359.0 1 5  350.9 
582.1 50 2  617.2 50 2  800.4 

GT q=0.5  383.2 3.54  0.5 357.9 3.52  0.5 374.0 
GT q=1  357.5 1.90  1 333.4 1.93  1 332.3 
GT q=2  345.0 1.20  2 332.6 1.12  2 321.1 

1 3.09        333.5  1 2.49        321.9  

GT 2.26        333.9        1.06        2.73        323.4  

Threshold 4=T 5=T 6=T 7=T 8=T 9=T
p 1.19 (0.16) 0.84 (0.10) 0.79 (0.07) 0.81 (0.16) 0.84 (0.08) 0.79 (0.10) 
q 2.12 (0.45) 2.77 (0.48) 3.12 (0.64) 2.63 (0.61) 2.56 (0.47) 2.93 (0.58) 

DIC 290.3 269.8 261.6 228.3 240.3 280.2 
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FIGURE 2: Change of DIC against threshold year, T, for threshold state space models.
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TABLE 5: Run-off triangle of the predicted claims (upper triangle) and projected claims (lower triangle)
using the state space threshold model with T = 7.

Values in italic are the predicted or projected claims for policies written on and after 1984.
Values in black are the predicted claims and those in grey are the projected claims.
Values underlined in black are the outlying predicted claims.
Values underlined in grey are the projected claims with standard errors larger than half of the values.
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standard deviations of p, q and DIC of various state space threshold models.
Figure 2 displays the change of DIC versus T. The state space model with
threshold year T = 7 (year 1984) is shown to be the most appropriate model
(DIC = 228.3). The posterior means of p and q are p = 0.81 and q = 2.63, respec-
tively. This threshold model is chosen for the loss reserves prediction.

Figure 3 displays the box-plots of the posterior samples of all model para-
meters except the bij because there are too many parameters. The alpha and beta
parameters in (8) and (9) are given by (6) and (7) respectively before and after
the threshold year of 1984. The beta parameters for each policy year form a peri-
odic trend across lag years: they increase up to lag years 4 to 6 and then decrease.
Moreover the beta parameters at higher lag years have larger variability due to
the insufficiency of observations to estimate the parameters accurately. Box-
plots of the alpha parameters also show trends of increasing variances across
policy years before and after 1984 (the first five box-plots and the remaining
box-plots respectively).

Table 5 reports the predicted claims in the upper triangle. Claims in italic
refer to the predicted claims from policies written on and after 1984. Claims
underlined are predicted from claims which are extremely large or small as
compared with their neighboring claims.

The predicted claims in Table 5 show two different trends of claims before
and after 1984. For claims from policies written before 1984, the predicted
claims increase with the lag year till the 4th lag year and drop slowly there-
after. For policies written on and after 1984, the predicted claims start from
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TABLE 6: Total projected outstanding claims for each policy year and their standard errors.

lower levels, rise to the lower maximums at the 6th lag year and drop more
rapidly thereafter. In general, the predicted claims (Table 5) lie close to the
observed claims (Table 2) showing that the chosen model fits the data well.

Projection for the outstanding claims in the lower triangle of Table 2 using
the chosen model is reported in Table 5. The values are the posterior medians
of the projected claims using the K = 1,000 sets of parameter estimates. The
projected total outstanding claims, as the posterior median of the 1,000 sums
of projected claims, is 296,159 dollars with an estimated standard error of
123,867 dollars. The projected total outstanding claims for each policy year and
their standard errors are reported in Table 6. Note that the projected claims
Yij, i $ 7, j $ 13 are estimated using

b2,ij = b1, i–1, j + n2,i, i $ 8, j $ 13

and b2,7j = b1,1j , j $13 because their lag year effects b2,ij are not given by the
model. Moreover it should be noted that some projected claims are underlined
in Table 5 because their standard errors are more than half of the estimated
values. As discussed above, the beta parameters for higher lag year have higher
variability because fewer observations are available to estimate these parame-
ters accurately.

ROBUST BAYESIAN ANALYSIS OF LOSS RESERVES DATA 223

FIGURE 4: Observed and predicted relative frequencies for residuals using the chosen model.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5

residuals

re
la

tiv
e 

fr
eq

ue
nc

y

Observed

Expected

0587-07_Astin38/1_12  02-06-2008  13:10  Pagina 223

https://doi.org/10.2143/AST.38.1.2030411 Published online by Cambridge University Press

https://doi.org/10.2143/AST.38.1.2030411


TABLE 7: Posterior medians of cij, observed values yij, fitted values E(yij)
and the posterior p-values pij of the extreme observations.

Figure 4 plots the observed relative frequencies and the expected probabil-
ities using the density function (10) for the residuals rij = lnyij – mij where mij is
given by (8) and (9). As the observed relative frequencies are very close to the
expected probabilities, the chosen model provides a very good fit to the loss
reserves data. The mean, median, standard deviation, skewness and kurtosis
for the residuals are –0.1655, –0.00715, 1.1306, –5.651 and 46.189 respectively.
The residuals are quite leptokurtic and negatively skewed due to the existence
of several extremely small outliers.

6.3. Detection of Outliers

The SMU representation of the GT distribution not only simplifies the model
implementation using the Bayesian approach but also allows detection of
possible outliers using the parameter cij = uij

1/psij
–1/2. An unusually large cij value

indicates that the observed claim amount is a possible outlier. The posterior
medians of cij for the chosen model are displayed in Figure 5. They identify
observations 14, 29, 33, 34 and 35 (64 and 65 are marginal), labeled across a
row from top to bottom in Table 2, to be possible outliers since their cij > 10
(cij for observations 64 and 65 are 8.94 and 8.70 respectively). The level of 10
is chosen to identify a moderate number of observations as outliers. Table 7
gives a summary of these outlying observations. These observations, grey in
color and underlined in Table 2, correspond to the claim amounts which are
substantially lower than their neighboring values. They may lead to an under-
estimation for the loss reserves and hence lower the solvency of an insurance
company and increase its risk of bankruptcy. However, distorting effects from
these outliers are down-weighted and hence inference is protected when the
GT error distribution is used.

224 J.S.K. CHAN, S.T.B. CHOY AND U.E. MARKOV

Outlier 
index  Policy year  i Lag year  j ij ij y ) ( ij y E  Post.  p -value  ij p 

14 1978 14 40.05 0.01 392 0.0000  

29 1979 11 11.55 35 798 0.0106  

33 1979 15 12.69 6 244 0.0080  

34 1979 16 10.81 1 29 0.0099  

35 1979 17 13.25 0.01 3 0.0000  

64 1981 13 8.94 38 391 0.0197  

65 1981 14 8.70 45 450 0.0213  

100 1984 7 1.30 11920 8493 0.1712  

165 1992 4 2.50 15546 8467 0.2595  

C
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FIGURE 5: Posterior medians of the parameters  in the chosen model.

Figure 6 plots the observed verses predicted claims (in black for the cho-
sen model). The plot shows that observations 100 and 165 (grey, italic and
underlined in Table 2) are potential outliers as the observed claim amounts
are much higher than their predicted values. However, their cij values are 1.3
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and 2.5, respectively indicating that cij is less sensitive to large outliers. One pos-
sible explanation lies on the log-linear model: the log function is more sensi-
tive to low values than large values. As effects from large outliers are less likely
to be down-weighted by the mixing parameters in the SMU representation, loss
reserves may be over-estimated. However the problem of over-estimating loss
reserves may lower the profit of an insurance company but it may not weaken
its solvency. Hence the risk of bankruptcy may not be seriously affected by the
over-estimation.

Table 7 displays the posterior medians of cij, observed claims yij and poste-
rior expected claims E(yij) and posterior predictive p-values, pij, for the possi-
ble outliers. The posterior p-values (Meng, 1994 and Spiegelhalter, et al., 2004)
are approximated using the following equation

i
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where Fa(·) is an approximated cumulative distribution function of the density
function in (10) and mij is given by (8) and (9). First, we set the approximated
density function fa(·) to be GT(mk | m,s,p,q) in (10) at a number of mass points
mk within m ± 5.5s and with an increment of 0.01. Then the approximated
cumulative distribution function Fa(ln(yij)) is given by the sum of the area of
the trapeziums such that 

Fa(ln(yij)) = .0 005
k k�#

! [GT(mk | m,s,p,q) + GT(mk + 0.01 | m,s,p,q)]

and mk� < ln(yij) < mk� + 0.01. All except observations 100 and 165, written in
italic in Table 7, give negative residuals, rij = lnyij – mij. The posterior p-values
pij indicate that these extreme observations, except observations 100 and 165,
are outliers.

6.4. Comparison with chain ladder method

The chosen model produces more accurate prediction of claims than the pop-
ular chain ladder method which indirectly estimates the incremental loss yij by
projecting the cumulative loss Sij

Sij = Si, j–1 ≈ fj , i = 2, …, n, j = n – i + 2, …, n

where Sij = ik 1= k
j y! and Si,n+1– i = Si,n+1– i using the projective factors 
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TABLE 8: Run-off triangle of predicted claims (black) and projected claims (grey)
using the chain ladder method.

The prediction of Sij on higher lag years, which is further away from the lat-
est known claim amount requires the product of more projection factors and
hence becomes less reliable as less data are available. We predict Sij in the upper
triangle of Table 2 using only one year ahead projective factor so that

Sij = Si, j–1 ≈ fj , 2 # j # n – i + 1

and Si1 = Si1. We project Sij in the lower triangle by 

Sij = Si,n– i+1 ≈ ,kk n i

j

2= - +
f% i = 2, …, 18, j > n – i + 1.

The predicted and projected claims are reported in Table 8. Note that there are
some negative values. They refer to predicted and projected claims which are
very close to zero. The MSE for the predicted claims using the chain ladder
method is 3,908,069 which is much larger than 1,584,478 for the chosen model.
Moreover Figure 6 reveals that the predicted claims using the chosen model
(black diamonds) are closer to the observed claims than those using the chain
ladder method (grey triangles). Thus the GT model provides more reliable pre-
diction of loss reserves. Accurate prediction of loss reserves is very important
to insurance companies since the levels of loss reserves have a dramatic impact
on the profitability and solvency of insurance companies.

7. CONCLUSION

In this paper, log-linear models with three different forms of mean function are
used to model loss reserves. For the data set analyzed, the GT error distribution
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performs better than the normal and other well-known heavy-tailed distributions
such as the Student-t and EP distributions. Meanwhile, the time-recursive state
space model with threshold in 1984 provides the best fit to the data. Prediction
and projection of loss reserves are based on Bayesian approach. Expressing
the GT distribution into the uniform scale mixtures form makes Gibbs sampler
easier to set up and enables outlier diagnostics using the mixing parameters.
Model selection relies on the deviance information criterion. Comparing with
the popular chain ladder method, the chosen GT model is shown to provide
more accurate predicted claims. The chosen model is then used to project out-
standing claims of the lower triangle in Table 2.

As the log-linear model is more sensitive to low values than large values,
the residuals for the data set analyzed are negatively skewed. To allow for a
skewed error distribution, one may consider the skewed heavy-tailed distributions
including the skewed-t distribution or the scale mixtures of beta distribution.
Further investigation into the skewed error distributions will surely improve the
modeling of loss reserves data.
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