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Abstract

John Henry Michell (1863-1940) published scientific papers only between 1830
and 1902, but included in his 23 papers from that short but productive period are
some of the most important contributions ever made by an Australian mathemati-
cian. In this article I shall concentrate on the extraordinary 1898 paper “The wave
resistance of a ship,” Phil. Mag.(5) 45, 106-123. There are many reasons why this
paper was an astounding achievement, but perhaps the most remarkable is that
the resulting formula has not been improved upon to this day. In the computer
age, many efforts have been made to do so, but with little success so far. The
formula itself involves a triple integral of an integrand constructed from the offset
data for the ship’s hull, and even the task of evaluating this triple integral is not a
trivial one on today’s computers; another reason for admiration of Michell’s own
heroic hand-calculated numerical work in the 1890’s. Lack of a routine algorithm
for Michell’s integral has inhibited its use by naval architects and ship hydrody-
namic laboratories, and there has been a tendency for it to receive a bad press
based on unfair comparisons, e.g. comparison of model experiments (themselves
often suspect) with inaccurate computations or computations for the wrong hull,
etc. The original integral is in fact quite reasonable as an engineering tool, and
some new results confirming this are shown. Improvement beyond Michell is how-
ever needed in some important speed ranges, and indications are given of recent
approaches that may be promising.

1. Historical summary

J.H. Michell retired as Professor of Mathematics at the University of Melbourne
in 1928, and died in 1940 at age 76. His only formal publication after 1902 (a year
in which he was elected a Fellow of the Royal Society at the early age of 39) was
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a calculus textbook that did not appear until after his retirement. Appendix 1 is
a list of Michell’s publications. Further details of his career and publications are
available in [11], in which is also re-published the Royal Society obituary written
by his brother A.G.M. Michell. A short biography by T.M. Cherry appears in
the Australian Dictionary of Biography [3]. Incidentally, the brothers Michell
are sometimes confused, especially by the engineering community, who know of
A.G.M. Michell’s thrust-bearing and other lubrication work, and assume that all
work in elasticity and hydrodynamics of engineering relevance under the Michell
name must be by the same person. However, unlike his brother, J.H. Michell was
not an engineer, but first and always a mathematician. That is surprise enough;
that he was also first and always an Australian is almost inconceivable to some.

Indeed, J.H. Michell seems to have spent all but about 6 years of his life in
or near Melbourne. His only period away from Australia involved postgraduate
study at Cambridge in 1884-1890, but that period was spent on Tripos-type
coursework. His research career is a totally Australian one.

That it was such a short research career is a great Australian scientific tragedy,
the cause for which seems not at all clear. Was he really burnt out as far as
research was concerned at age 397 Or rather did the lack of acceptance (even
of notice!) of his work by the practical world so disappoint him that he refused
to publish any more of his research? Was there an argument about priority of
ideas that turned him off the hurly-burly of the publishing game? I have not
been able to answer these questions.

His brother gives a little information in the obituary. Statements like
took his work as teacher very seriously and gave to it almost the whole of his
time and mental energy”, and “... onerous academic work almost excluded the
possibility of continuously prosecuting original research” have a familiar ring to
anyone who has ever sat on a promotion committee, but (although undoubtably
accurate at least for his later years, as confirmed to me by recollections of former
students) surely describe in part the consequences of abandonment of research
activity, not its cause. In my opinion, a much more telling remark made by
A.G.M. about J.H. is that “... absence of any response to such a paper as the
‘Ship Waves’ inevitably discouraged the making, or at least the publication, of
investigations involving, for him, so much anxious labour.”

I now turn to that particular paper, mainly because it is of prime interest to
me, but also because it was perhaps Michell’s finest achievement. For such an
achievement to be ignored for a quarter of a century would be almost enough to
cause anyone to give up research in disgust!

Before discussing the paper itself, 1 should report on my lack of success in
discovering historical facts about its publication record. Naively, I thought that
there might be archival material involving referee reports or the like. Sadly, no
such material seems to have survived. The Philosophical Magazine was (and still
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is) published independently of any scientific society, by the London publishers
Taylor and Francis, whom I visited in May 1986. They have deposited some
archival material about their journal from that period in the St. Brides Publish-
ing Library, Fleet Street, but this appears to consist of mainly financial details.
Lord Kelvin was Editor at the time, but there is no Michell correspondence in
the Kelvin papers at Glasgow University. The Royal Society has retained in
its archives no documents relating to Michell’s election as a Fellow in 1902, for
which this paper must have been used as evidence.

There is a Michell file in the archives of Melbourne University, which contains
some interesting handwritten notes and calculation sheets for other papers, but
not for this one; I would very much (see below) have liked to have seen the notes
for his numerical computation of the ship wave resistance example. The file does
contain a set of hand-marked proofs of the ship paper, which is interesting for
at least the fact that some of Michell’s corrections were not implemented. In
particular, he asked the printers to use partial derivative (3) symbols, but the
paper as published does not use them.

Such frustrating lack of archival material on journal publication is something
any of us involved in editorial functions should see does not happen again. It has
been the practice of the Australian Mathematical Society to deposit all corre-
spondence regarding accepted papers in the archives of the Australian Academy
of Science, so if we publish a masterpiece equivalent to Michell’s, a future histo-
rian will have less difficulty than I did!

I must close this section with a sad quote of Michell from page 111 of the paper
at issue, namely “... similar work to that of the present paper gives a theory of
the damping of the oscillation of ships due to wave-making. This I hope to give
in a subsequent paper.” Of course, he never did. This problem was not solved,
or at least a solution was not published, for nearly another half-century, e.g. by
Havelock [7], although only even later, in work of Newman [10] and others, was
a thin-ship method “similar” to Michell’s used for the ship oscillation problem
with non-zero forward speed.

2. Summary of the ship wave paper

As part of the obituary in [11], a brief appreciative summary of the ship
wave paper by T.M. Cherry is quoted, but I now propose to highlight here some
important modern aspects. The paper is concise and to the point, occupying 17
small pages in total, the main formula being derived within the first 8 pages.
The paper reads like a modern research article, apart from the lack of partial
derivative notation, which (as noted above) Michell wanted but did not get from
the printers.
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FREE SURFACE z = (x.,y)
( STOKES)

BODY y= r'(x.Z)
(NEUMANN)

FIGURE 1. The fully nonlinear (Neumann-Stokes) boundary-value problem for Laplace’s
equation in the fluid domain exterior to a ship hull.

The problem is simply to obtain that portion of the drag force on a steadily
moving ship which is due to the loss of energy into its wave pattern. Hence
viscosity is neglected, this being justified by arguments pioneered by Froude
for separating wave and viscous drag, but in Michell’s own introductory words
by boundary-layer-like arguments that could be said to anticipate Prandtl’s by
a decade or more. Once viscosity is neglected, classical inviscid-fluid theory
indicates that the flow is irrotational almost everywhere, and a velocity potential
exists.

The task of determining the velocity potential ¢(z,y, 2) is then a boundary-
value problem for Laplace’s equation

¢zz + ¢yy + ¢zz =0 (1)

in |y| > n, 2z < ¢, as sketched in Figure 1. It could be called a “Neumann-Stokes”
boundary-value problem. That is, the boundary conditions in y > 0 include the
usual Neumann condition

¢y = Pz + D272 (2)

of vanishing normal derivative on the ship’s hull y = #(z, z), representing the
requirement that the fluid velocity be tangent to that surface. It is assumed that
the problem is symmetric about the centerplane y = 0 of the ship; incidentally,
no-one has yet solved the generalisation of Michell’s problem where this is not so,
in spite of the fact that it has considerable interest for such problems as yawed
yachts. In addition, as in nonlinear Stokes waves, a pair of boundary conditions
must be satisfied on the (unknown) free surface z = ¢(z,y) of the water, namely
a kinematic condition

¢z = ¢z§x + ¢y§y (3)
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again expressing flow tangency, and a dynamic condition
29¢ + 6% + ¢} + 92 = U? (4)

expressing (via Bernoulli’s theorem) constancy of pressure. Here g is the (con-
stant) acceleration of gravity and U the ship’s speed. The problem formulation
is completed by suitable boundary conditions at infinity, including a “radiation
condition” that demands that any waves lie behind, not ahead of the ship.

This Neumann-Stokes problem is nonlinear, due to the quadratic nature of
the Bernoulli free-surface condition, and also rendered difficult by the fact that
this free surface z = ¢(z,y) is not known in advance. So difficult that there have
been no successful numerical solutions of it to this day.

Michell then fully linearises the Neumann-Stokes problem, such linearisation
(of both body and free surface conditions) being justified on the basis that the
ship is thin, i.e. that its longitudinal slope is everywhere numerically small. The
linearised hull boundary condition (on y = 0), namely

¢y = U’?za (5)

may be called a Michell condition, and the linearised free-surface condition (on
z =0), namely

9%z + U2¢z:c =0, (6)

called a Kelvin condition. The resulting “Michell-Kelvin” boundary-value prob-
lem has several simplifying features, not least of which is that the only bound-
aries are planes y = 0 and z = 0. Michell makes no further approximations, and
proceeds to solve the Michell-Kelvin problem exactly using Fourier-transform
methods.

The role played by the depth of the water in Michell’s paper is a little mixed.
The boundary-value problem is at first formulated for a body of water of finite
uniform depth, and the special form of the Fourier representation that Michell
needs is derived for such a case. However, he then assumes after 7 pages “.
for simplicity, the water infinitely deep”, and indeed that simplicity is evident,
for he takes only one further page to derive the wave resistance formula for the
infinite-depth case. The equivalent wave resistance formula for finite depth was
in fact not derived [12] for another 38 years.

However, a little-known feature of the ship paper is that, almost as an af-
terthought, Michell also includes on its last two pages a mini-study of the shallow-
water case, i.e. of the limit as the water depth vanishes, that is quite independent
of his finite-depth work from earlier in the paper. This shallow-water analysis is
itself of remarkable historical interest, since it uses what we would now identify
as an analogy between sub- or super-critical hydraulics, and sub- or super-sonic
aerodynamics. Since manned flight was still a decade away, and supersonic flight
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a half century away, this is truly remarkable work, that would make these two
pages significant even if the infinite-depth portion were discounted.

However, it must be said that quite similar and now better known aerody-
namic work was being done by Joukowski at about that time (though published
later, see e.g. [8]). Michell gives no indication that he has seen any of Joukowski’s
work, and it hardly seems likely in view of his geographical isolation that he had
done so. At the very least, Michell’s application of the hydraulic analogy to the
ship context is original, and personally I believe that (based on nothing more
than these two pages) he should be given at least equal credit with Joukowski
for this whole research area.

Returning to the main topic of the Michell paper, namely the infinite-depth
wave resistance, Michell uses his special Fourier-integral theorem (derived as
the limit of a Fourier series, and then proved directly) to obtain the velocity
potential, and hence the pressure on the limiting plane y = 0 representing the
linearised hull, and integrates to yield the final formula, namely (almost as it
appears on his p.113):

4pg® A2d)
=4 /1 (17 + 1) ™)
where
=// 17_.,(:r:,z)e)‘2"z/U2 cos(Agz/U?)dzdz (8)
H

with a similar integral for J involving sine instead of cosine.

This is the famous Michell integral. It must have frightened some of the
practical people that Michell hoped would use it, since he first derived it as a
quintuple integral. However, the final form, as quoted here, shows it to be “only”
a triple integral. One must first evaluate the quantities I and J, by a double
integral over the projection H of the hull surface onto the centreplane y = 0,
and afterward integrate a function involving the squares of these quantities,
with respect to a variable A. Thus the formula provides the wave resistance as
a positive definite quadratic functional in the input quantity n(z, z) that defines
the geometry of the hull.

Just this qualitative feature alone of the formula is pioneering. I have heard
it asserted that this was the first ever “engineering design” formula, in the sense
that it provides an output quantity of design interest from an input that specifies
the actual (unrestricted) design geometry. Certainly in hydrodynamics before
Michell, the only solutions of boundary-value problems were for special shapes
like circles and spheres. Michell’s theory is quite similar to that for (nonlifting)
thin wings in aerodynamics, but that theory (although very much simpler be-
cause of the absence of the free surface) took another 20 years to be developed,
and of course when it appeared there was no credit given to Michell.
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Having derived the formula, Michell goes on to prove explicitly that the re-
sistance vanishes at high speed, i.e. R — 0 as U — o0, and to derive some other
properties of the solution in terms of Bessel functions. He then, quite remark-
ably, and in less than one page, provides a specific example involving a numerical
evaluation of the integral. I reproduce that particular page as Appendix 2, since
it also contains clear indications of his (unrealised) expectations for acceptance
of his formula in the practical world.

Michell does not say what “mechanical quadrature” he used. The integral with
respect to A has a square-root singularity at A = 1, which should be removed
by a transformation such as A = secf. Incidentally, a modern treatment (e.g.
[16]) of this type of integral identifies # as the angle at which the wave energy
is propagating. The final integral then has a nice physical interpretation as a
summation of contributions from waves of all possible angles.

Perhaps Michell did not make such a transformation before using his me-
chanical quadrature. In any case, my own recomputation of the actual integral
quoted by Michell as 0.620 yielded the slightly more accurate value 0.6157; I
used Simpson’s rule after the sec § transformation, and needed to divide the in-
terval 0 < 6 < w/2 into at least 50 sub-intervals, since the integrand is very
oscillatory. This computation was also confirmed by inputting this special hull
to a general-purpose program [15] that takes as input a table of the offsets
n(z, 2).

So Michell did not quite achieve the 3-figure accuracy that he quoted. We
must forgive him for this. He did get about 2 figures, his error being at most
0.7%. Just think of the effort he must have expended to achieve this, not having
available even the most rudimentary of computing equipment! The integrand
won'’t even fit on one line of the page, it is so complicated. When he first saw it,
I am sure he must have despaired of ever being able to evaluate it numerically,
but he did, and without blunder, to adequate engineering accuracy.

3. Modern developments

We must draw the shades on the next 25 years. Did Michell expect the naval
architectural world to receive his wonderful formula instantly as its salvation?
He had some right to, but it didn’t. Sir Thomas Havelock [7] was the most
famous theoretician working in ship hydrodynamics in the period, and he had
already published several papers on the wave resistance problem (the first in
1909) before making explicit use of Michell’s integral in 1923. It seems likely
that (in spite of the fact that it was published in one of the world’s premier
scientific journals) neither Havelock nor almost anyone else had even noticed
it until then. Havelock’s outstanding achievements were spread over 60 papers

https://doi.org/10.1017/50334270000006329 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000006329

372 E.O. Tuck (8]

0.05 —
MICHELL —_
Experiments :
— — B/D=2.25
0.04— .. B/D=3.00

----- B/D=3.75

0.03 —

pu?g?

-l

& 0,02

0.01 —

=3
-t

0 1 I L ] ]
0.2 0.3 0.4 0.5 0.6
Froude # U//gL

FIGURE 2. Wave resistance of a “Taylor Standard Series” ship, with prismatic coefficient
0.56 and length/draft ratio 30.

in a 40-year career. The contrast with Michell’s solitary paper on this topic is
interesting.

C. Wigley [18] was an advocate of use of Michell’s formula from 1925 onward,
and Wigley and Havelock then provided sample computations and comparison
(both favourable and unfavourable) with experiment. It is appropriate at this
point to provide a new example of such comparisons; many more are provided
by Wehausen {16] and others.

Figure 2 shows the wave resistance of a conventional merchant-ship hull as a
function of speed, for three different beam/draft ratios. The experimental results
at beam/draft=2.75 and 3.75 are from D.W. Taylor’s original model data, as
tabulated by Gertler [5], while those for beam/draft=3.00 are as retested by
Graff et al [6).

A feature of Michell’s integral is that it scales with the square of the ship’s
beam, so that the nondimensional resistance coefficient shown in Figure 2, (with
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beam-squared in the denominator) should be independent of the beam. The
three experimental curves are for ships of the same shape, length and draft,
but varying beam. Hence if Michell was right, all three curves would agree
with each other and all would agree with computations from Michell’s integral.
Further, since Michell assumes small beam, Michell should agree best with the
experiments (long dashes) for the model with the least beam.

Looked at as a whole, one would have to say that the formula is doing rather
well, as a predictor of the wave resistance over a complete speed range including
that for which the resistance is a maximum. The error is generally less than
that to be expected in the experiments, e.g. that due to scale effects from use of
different model sizes.

Unfortunately, the naval architect is not really interested in the complete
graph of wave resistance, and in particular (for very good reasons!) is not usually
interested in those speeds where the wave resistance is a maximum. Commer-
cially viable vehicles run at speeds just below those where the wave resistance
begins to increase toward its main maximum. That increase is so rapid that it
is not (except in some military contexts) sensible to provide the engine power to
overcome it. This means that the important speed range is for a Froude number
(nondimensional speed) of about 0.2 to 0.35.

Michell’s integral does not do a particularly good job in that range. The
errors are of the order of 50% to 100%. In particular, the last minimum, at a
Froude number of about 0.31 in Figure 2, is not observed in practice. Incidentally,
Figure 2 indicates an aspect of the model-testing methodology that worries some
observers, namely that the experimental “wave resistance” coefficient does not
tend to zero as the speed tends to zero. Furthermore (see the discussion to [6])
the anomalous zero speed limit changes its value when models of different sizes
are tested. The magnitude of this effect is comparable with the errors between
Michell’s integral and the experiments; however, it would not be satisfactory to
simply subtract the zero-speed limit from the experimental results, since this
would make the agreement worse at higher speeds.

Really, what Michell is saying is that (relative to the peak resistance, and also
therefore relative to the viscous drag), the wave resistance is quite small in the
speed range corresponding to Froude numbers less than 0.3. But that is little
comfort to the naval architect, who is anxious to reduce it to the lowest possible
value, and hence wants an accurate predictor of what little he has left.

The fact that Michell’s integral is only moderately successful at practical
speeds gradually became clear in the years after its rediscovery by Wigley and
Havelock, especially as precomputer evaluation techniques were developed by
authors such as Weinblum [17]; see also Birkhoff et al [2]. Even so, its rou-
tine evaluation as a triple integral for actual hull data (rather than idealised
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mathematically-defined surfaces) was hardly feasible until the advent of comput-
ers. Even now, very few serious attempts have been made to provide such code.
There are important numerical issues with physical (short-wave) and geometrical
(end-effect) implications concerning accuracy of the integration to determine I
and J when the parameter X is large. An implementation of my own [15] uses
Filon’s quadrature for this purpose.

But however carefully Michell’s integral is worked out, and however little faith
one has in the model experiments (which are not easy in a speed range where
viscosity dominates the measured output and the “experimental” wave resistance
must be estimated as the difference of two larger numbers), there seems little
doubt that a better theory is needed in this speed range. No such theory yet
exists.

It is clear that Michell’s thin-ship assumption 7, << 1 is the culprit, and
must be relaxed. In the age of super-computers, one might expect that a direct
attack on the original nonlinear boundary-value problem of Figure 1 would be
feasible. Perhaps so, but we are still a long way from that. In the meantime,
there has been some work on the so-called “Neumann-Kelvin” problem, namely
that in which one retains the full Neumann boundary condition on the actual:
hull surface y = n(z, z), while (inconsistently) simplifying the full nonlinear
Stokes free-surface boundary condition to that of Kelvin, by linearisation onto
the plane z = 0. Even then, one is faced with quite intimidating numerical
difficulties, and some authors [4] have expressed pessimism about the feasibility
of routine numerical solution of the Neumann-Kelvin problem.

There is even some doubt about existence, in the formal mathematical sense,
of a solution to the Neumann-Kelvin problem! After all, if the ship is not thin,
what justification do we have for linearisation of one boundary condition without
the other? The Neumann and Kelvin boundary conditions are incompatible at
their junction, a defect from which neither the fully nonlinear Neumann-Stokes
problem, nor the fully linearised Michell-Kelvin problem appears to suffer. This
is an aspect of the ship-hydrodynamic problem that could stand some pure-
mathematical attention.

There are some other promising recent research directions, all associated with
exploiting the fact that most ships are not only thin, but also slender, in the
sense that their draft as well as their beam is small. Generally these slender ship
theories retain some nonlinear features of both boundary conditions, but achieve
tractable numerical properties by replacing the 3D Laplacian by a 2D Laplacian
in each separate cross-section plane. There were several rather unsuccessful
attempts at such theories in the 1960s, including one of my own [13], but quite
recently [9,14] a new look at this class of approximation has seemed likely to
allow better predictive capability in the important speed range.

https://doi.org/10.1017/50334270000006329 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000006329

[11) Wave resistance formula of J.H. Michell 375

Meanwhile, the original unadulterated Michell integral remains competitive
and reliable. After reviewing the performance of some 22 rival computer pro-
grams, all complex in detail and expensive in implementation, Bai [1] was forced
to conclude in 1979 that “... wave resistance predictions by first-order thin-ship
[i.e. Michell] theory are rather consistent in comparison with experimental data
and not worse than the envelope of predictions of seemingly more sophisticated
methods ...”. The situation is not much better today.
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Appendix 2: An extract from the wave-resistance paper

As an illustration of the process of calculating the resist-
ance of a given ship at any speed, we may consider one of
simple analytical form which is fairly ship-shape and easily
realisable. Experimental confirmation of the result was not
practicable, and the matter must be left in the hands of those
who have the necessary apparatus at command.

Let the surface of the ship be

y=+c(1+cosax)(l+cosbz),

between z= +7fa,
z=0 and w/b;
Fig. 2.

so that, for y positive,

S, )= Z—'Z = —acsinaz(l +cos bz).
Here I=0,

/b la
J=—ac| (1+cosbe) e‘*""/"dzf sin az sin Az/kdz
0

—afa

and

2ak?
+0%%) (a2 —2\2)

=—ac )é (2N* + B%h2 — e~ A0k p2 %) o sin w\/ka,

where £=1v%/g; and therefore

_169p o5 (ons 212 __ ,—aAYbk £21,2\2 sin? 7rA/ka axr
BR= = atck ,(27\ + 0%k —e bk)(?»‘*-i—bgk‘*)’(a"/c’—?\'z)q7\,24/}72—_"1

which is best calculated by mechanical quadrature.
Suppose, for example, in foot-second units

v = 20 (velocity of ship),
27fa = 200 (length of ship),

w[b = 20 (depth below water-line),
8¢ = 32 (greatest breadth),

then the integral is found to be '620, and the resistance is

R = 940 lbs. wt. about.

This seems to be about what one would expect from the
experimental results available; but I know of no formula with
which to compare it, and experiment alone can decide whether
the theory has numerical value.
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