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Abstract We formulate and prove a free quantum analogue of the first fundamental theorems of invari-
ant theory. More precisely, the polynomial function algebras on matrices are replaced by free algebras,
while the universal cosovereign Hopf algebras play the role of the general linear group.
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1. Introduction

This note was inspired by reading the paper by Goodearl et al . [5]. We have followed
part of their introduction very closely and we have tried to keep, as much as possible,
their terminology and notation in this paper.

Consider a fixed field K and positive integers m, n, t > 0. For integers u, v > 0, we
write Mu,v for the set of u × v matrices with entries in K. The general linear group
GLt = GLt(K) acts on the variety V = Mm,t × Mt,n, with action given by

GLt × V → V,

(g, (A, B)) �→ (Ag−1, gB).

Thus GLt acts on the algebra O(V ) ∼= O(Mm,t) ⊗ O(Mt,n). The first fundamental the-
orems of invariant theory describe the subalgebra O(V )GLt of invariants for this action
in the following way. Consider the multiplication map

θ : Mm,t × Mt,n → Mm,n,

(A, B) �→ AB,

and denote by θ∗ : O(Mm,n) → O(Mm,t) ⊗ O(Mt,n) the induced algebra morphism.

Theorem 1.1. The ring of invariants O(V )GLt equals Im θ∗.
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Theorem 1.2. Let Xij (1 � i � m, 1 � j � n) be the usual coordinate functions on
Mm,n. Let Tt+1 be the ideal of O(Mm,n) generated by the (t + 1) × (t + 1) minors of the
matrix (Xij) over O(Mm,n) (this ideal is zero if t � min{m, n}). Then the kernel of θ∗

is Tt+1.

These two theorems are respectively known as the first and second fundamental the-
orems of invariant theory (for GLt) (see [4]). They give a full description of the alge-
bra O(V )GLt .

Goodearl et al . [5] generalized these theorems for quantized coordinate algebras. In
this paper we prove analogues of these theorems for free algebras.

Let u, v > 0 be positive integers and denote by A(u, v) the free algebra on uv gener-
ators. The natural analogue of the algebra morphism θ∗ above is the algebra morphism
(denoted by θ for simplicity)

θ : A(m, n) → A(m, t) ⊗ A(t, m),

xij �→
t∑

k=1

yik ⊗ zkj ,

where xij , yij , zij stand for generators of A(m, n), A(m, t) and A(t, n), respectively.
It is easy to show that, contrary to the commutative case, the morphism θ is always
injective. The following question arises naturally: does there exist a quantum group
G acting on A(m,t) and A(t,n) and such that Im θ equals (A(m,t) ⊗ A(t,n))G? We show
that the universal cosovereign Hopf algebras introduced in [2], which are natural free
analogues of the general linear groups in quantum group theory, answer positively to this
question. The key for proving this result is a representation theoretic property of these
Hopf algebras, proved in [3].

Our work is organized as follows. In § 2 we recall the set-up of [5] for non-commutative
analogues of the first fundamental theorems of invariant theory. In § 3 we recall some basic
facts concerning the universal cosovereign Hopf algebras and state the main theorem. The
proof is given in § 4.

Throughout the paper we work over an arbitrary base field K.

2. The set-up for non-commutative invariant theory

Let us first recall the set-up, due to Goodearl et al ., for stating non-commutative ana-
logues of the first fundamental theorems of invariant theory. Similar considerations were
done independently by Banica [1] in the context of Kac algebras actions.

Let H be a Hopf algebra, let (A, ρ) be a right H-comodule algebra and let (B, λ) be a
left H-comodule algebra, where

ρ : A → A ⊗ H and λ : B → H ⊗ B

are the coactions of H. One can turn A into a left H-comodule with the coaction ρ′ =
τ ◦ (idA ⊗S)◦ρ, where τ : A⊗H → H ⊗A is the standard flip. Thus one can consider the
tensor product A⊗B of the left H-comodules A and B, which is a left H-comodule, but
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which, in the non-commutative situation, is not any more a comodule algebra in general.
However, we have the following result from [5] (see also [1]).

Proposition 2.1. The set of coinvariants (A ⊗ B)coH is a subalgebra of A ⊗ B.

Here, it should be recalled that if M is a left H-comodule with coaction α : M →
H ⊗ M , the set of coinvariants is M coH = {x ∈ M | α(x) = 1 ⊗ x}. Denoting by C the
category of left H-comodules and by I the trivial one-dimensional comodule, then M coH

is canonically identified with HomC(I, M).
Fix positive integers m, n, t > 0. We denote by A(m, n), A(m, t) and A(t, n) the free

algebras on mn, mt and tn generators, respectively, with canonical generators denoted,
respectively, by xij , yij and zij . The free analogue of the comultiplication map θ∗ of the
introduction is the algebra morphism

θ : A(m, n) → A(m, t) ⊗ A(t, m),

xij �→
t∑

k=1

yik ⊗ zkj .

It may be shown easily by direct computations that θ is injective.
Now consider a Hopf algebra H having a multiplicative matrix u = (uij) ∈ Mt(H).

This means that, for i, j ∈ {1, . . . , t}, we have ∆(uij) =
∑

k uik ⊗ ukj and ε(uij) = δij .
Then A(m, t) is a right H-comodule algebra with coaction

ρ : A(m, t) → A(m, t) ⊗ H,

yij �→
t∑

k=1

yik ⊗ ukj .

In the same way, A(t, n) is a left H-comodule algebra with coaction

λ : A(t, n) → H ⊗ A(t, n),

zij �→
t∑

k=1

uik ⊗ zkj .

Thus we are in the preceding situation and we can consider the algebra (A(m, t) ⊗
A(t, n))coH . Similarly to Proposition 2.3 in [5], we have the following result.

Proposition 2.2. The algebra (A(m, t) ⊗ A(t, n))coH is a subalgebra of A(m, t) ⊗
A(t, n) containing Im θ.

It is then natural to ask whether a free analogue of the first fundamental theorem
of invariant theory holds, that is, to wonder when the corestriction of the algebra mor-
phism θ to a map A(m, n) → (A(m, t) ⊗ A(t, m))coH is surjective. We will see that this
is true for the universal cosovereign Hopf algebras [2]. In fact, the key property in order
that the corestriction map of θ be surjective is that the tensor powers of the comodule U

associated to the multiplicative matrix u be simple non-equivalent comodules. At the
ring-theoretic level, this corresponds to the fact that the elements uij generate a free
subalgebra on t2 generators.
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3. Universal cosovereign Hopf algebras and the theorem

Let F ∈ GLt. Recall from [2] that the algebra H(F ) is defined to be the universal algebra
with generators (uij)1�i, j�t, (vij)1�i, j�t and relations

u tv = tvu = It = vF tuF−1 = F tuF−1v,

where u = (uij), v = (vij) and It is the identity t × t matrix. It turns out (see [2]) that
H(F ) is a Hopf algebra with comultiplication defined by ∆(uij) =

∑
k uik ⊗ ukj and

∆(vij) =
∑

k vik ⊗ vkj , with counit defined by ε(uij) = ε(vij) = δij and with antipode
defined by S(u) = tv and S(v) = F tuF−1. Furthermore, H(F ) is a cosovereign Hopf
algebra [2]: there exists an algebra morphism Φ : H(F ) → k such that S2 = Φ ∗ id ∗ Φ−1.
The Hopf algebras H(F ) have the following universal property (see [2, Theorem 3.2]).

Property 3.1. Let H be a Hopf algebra and let V be a finite-dimensional H-comodule
isomorphic with its bidual comodule V ∗∗. Then there exists a matrix F ∈ GLt (t =
dim V ) such that V is an H(F )-comodule and such that there exists a Hopf algebra
morphism π : H(F ) → H with (1V ⊗ π) ◦ βV = αV , where αV : V → V ⊗ H and
βV : V → V ⊗H(F ) denote the coactions of H and H(F ) on V , respectively. In particular,
every finite type cosovereign Hopf algebra is a homomorphic quotient of a Hopf algebra
H(F ).

In view of this universal property, it is natural to say that the Hopf algebras H(F )
are the universal cosovereign Hopf algebras, or the free cosovereign Hopf algebras, and
to see these Hopf algebras as natural analogues of the general linear groups in quantum
group theory.

Coming back to the situation of § 1, we have the following result, which is a free
quantum analogue of the first fundamental theorems of invariant theory.

Theorem 3.2. Let m, n, t > 0 be positive integers and let F ∈ GLt. Then the algebra
morphism

θ : A(m, n) → (A(m, t) ⊗ A(t, n))coH(F )

is an isomorphism.

4. Proof of the theorem

4.1.

We begin with some general considerations. Let C be a K-linear strict tensor category,
that is C is an abelian K-linear category and C = (C, ⊗, I) is a strict tensor category
(see [6]) such that the tensor product is K-linear in each variable. Let X, Y be some
objects of C. We define a K-algebra C(X, Y ) in the following way. As a vector space,

C(X, Y ) =
⊕
k∈N

HomC(X⊗k, Y ⊗k).

The product of C(X, Y ) is defined on homogeneous elements

f1 ∈ HomC(X⊗k1 , Y ⊗k1) and f2 ∈ HomC(X⊗k2 , Y ⊗k2)
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by

f1f2 := f1 ⊗ f2 ∈ HomC(X⊗k1+k2 , Y ⊗k1+k2).

It is obvious that C(X, Y ) is an associative K-algebra.
Let m, n ∈ N

∗ and let U be an object of C. Let X = Um be the direct sum of m copies
of U . Let pi : Um → U and vi : U → Um, 1 � i � m, be the canonical morphisms such
that

∑m
i=1vi ◦ pi = 1X and pi ◦ vj = δij1U . Similarly, let Y = Un be the direct sum of n

copies of U . Let qi : Un → U and ui : U → Un, 1 � i � n, be the canonical morphisms
such that

∑m
i=1ui ◦ qi = 1Y and qi ◦ uj = δij1U .

Lemma 4.1. Assume that EndC(U) = K. Then the algebra morphism

ψ : A(m, n) → C(X, Y ),

xij �→ uj ◦ pi

is an isomorphism

Proof. Let i1, . . . , ik ∈ {1, . . . , m}, j1, . . . , jk ∈ {1, . . . , m}. Then

ψ(xi1j1 · · ·xikjk
) = (uj1 ⊗ · · · ⊗ ujk

) ◦ (pi1 ⊗ · · · ⊗ pik
).

Thus ψ transforms a basis of A(m, n) into a basis of C(X, Y ) and is an isomorphism. �

4.2.

Consider again the K-linear strict tensor category C. Let X be an object of C. Recall
(see [6]) that a right dual for X is a triplet (X∗, e, d), where X∗ is an object of C, while
e : X ⊗ X∗ → I and d : I → X∗ ⊗ X are morphisms such that

(e ⊗ 1X) ◦ (1X ⊗ d) = 1X and (1X∗ ⊗ e) ◦ (d ⊗ 1X∗) = 1X∗ .

We then have, for all objects Y , Z of C, isomorphisms

HomC(Y, X∗ ⊗ Z) ∼= HomC(X ⊗ Y, Z),

f �→ (e ⊗ 1Z) ◦ (1X ⊗ f).

Also recall that if X has a right dual (X∗, e, d), then X⊗n has a right dual (X∗⊗n, en, dn)
for all n ∈ N

∗, where

en = e ◦ · · · ◦ (1X⊗n−1 ⊗ e ⊗ 1X∗⊗n−1) and dn = (1X∗⊗n−1 ⊗ d ⊗ 1X⊗n−1) ◦ · · · ◦ d.

Recall finally that, in the tensor category of finite-dimensional left comodules over a
Hopf algebra, every object has a right dual.
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4.3.

Let m, n, t > 0 be positive integers and let F ∈ GLt. Consider the multiplicative matrix
u = (uij) ∈ Mt(H(F )). One associates a right H(F )-comodule Ur to u: as a vector space
Ur = Kt, with its standard basis e1, . . . , et, and the coaction α : Ur → Ur ⊗H(F ) is given
by α(ei) =

∑
jej ⊗uji. Similarly, one associates a left H(F )-comodule Ul to u: as a vector

space Ul = Kt, and the coaction β : Ul → H(F ) ⊗ Ul is given by β(ei) =
∑

juij ⊗ ej .
We have the following key result from [3, Corollary 2.6].

Proposition 4.2. The left (respectively, right) H(F )-comodules U⊗k
l , k ∈ N

∗

(respectively, U⊗k
r , k ∈ N

∗), are simple non-equivalent left (respectively, right) H(F )-
comodules, and have endomorphism algebras isomorphic with K.

As a right H(F )-comodule algebra, A(m, t) is naturally identified with the tensor
algebra

T (Um
r ) =

⊕
i∈N

(Um
r )⊗i.

Now transform A(m, t) and T (Um
r ) into left H(F )-comodules in the manner of § 2. Then

it is immediate that, as a left H(F )-comodule, T (Um
r ) is identified with T (Um∗

l ). We
have an isomorphism

φ1 : A(m, t) → T (Um∗
l )op,

yij �→ vi(ej)∗,

which is both an algebra isomorphism and an H(F )-comodule isomorphism (we use
the notations of § 4.1). Similarly, A(t, n) is identified with T (Un

l ) by the following left
H(F )-comodule algebra isomorphism:

φ2 : A(t, n) → T (Un
l ),

zij �→ uj(ei).

We have now all the ingredients necessary to prove Theorem 3.2. We work in the K-
linear tensor category C of left H(F )-comodules. Since C is a concrete tensor category of
vector spaces, we can proceed as if it was strict and the considerations of §§ 4.1 and 4.2
are valid. We put U = Ul. We have

(T (Um∗) ⊗ T (Un))coH(F ) ∼= HomC(I, T (Um∗) ⊗ T (Un))

∼= HomC

(
I,

⊕
i,j∈N

(Um∗)⊗i ⊗ (Un)⊗j

)

∼=
⊕
i,j∈N

HomC(I, (Um∗)⊗i ⊗ (Un)⊗j)

∼=
⊕
i,j∈N

HomC((Um)⊗i, (Un)⊗j) (by § 4.2)

∼=
⊕
i∈N

HomC((Um)⊗i, (Un)⊗i) (by Proposition 4.2)

= C(Um, Un).
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It is a straightforward matter to check that, for i1, . . . , ip ∈ {1, . . . , m} and j1, . . . , jp ∈
{1, . . . , n}, the isomorphism just considered transforms the element

∑
k1,...,kp

vip(ekp)∗ ⊗ · · · ⊗ vi1(ek1)
∗ ⊗ uj1(ek1) ⊗ · · · ⊗ ujp(ekp)

into the element
(uj1 ⊗ · · · ⊗ ujk

) ◦ (pi1 ⊗ · · · ⊗ pik
)

of C(Um, Un). Hence this isomorphism, composed with (φ1 ⊗ φ2) ◦ θ, yields the isomor-
phism ψ of Lemma 4.1, and θ is itself an isomorphism. This concludes the proof of
Theorem 3.2.

Remark 4.3. Theorem 3.2 is still valid if one replaces the Hopf algebra H(F ) by
H(t), the free Hopf algebra generated by the matrix coalgebra M∗

t (see [7]). This is clear
from the proof and from the fact that as H(F ) is a quotient of H(t), Proposition 4.2
remains valid for H(t).
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