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The Erdős–Rado Arrow for Singular
Cardinals

Saharon Shelah

Abstract. We prove in ZFC that if cf(λ) > ℵ0 and 2cf(λ) < λ, then λ → (λ, ω + 1)2.

1 Introduction

For every finite cardinal κ, the Erdös–Dushnik–Miller theorem, [1, Theorem 11.1],

states that κ → (κ, ω)2. Erdös, Hajnal, Maté, and Rado proved that κ → (κ, ω + 1)

for every regular uncountable κ, (see [1, Theorem 11.3]). For singular cardinals,

κ, they were only able to obtain the weaker result in [1, Theorem 11.1] that κ →
(κ, ω)2. It is not hard to see that if cf(κ) = ω, then κ 6→ (κ, ω+1)2. If cf (κ) > ω and

κ is a strong limit cardinal, then it follows from the General Canonization Lemma,

[1, Lemma 28.1], that κ → (κ, ω + 1)2. Question 11.4 of [1] is whether this holds

without the assumption that κ is a strong limit cardinal, e.g., whether, in ZFC,

ℵω1
→ (ℵω1

, ω + 1)2.

In [5] it was proved that λ → (λ, ω + 1)2 if 2cf(λ) < λ and there is a nice filter

on κ (see [3, Ch.V]; it follows from suitable failures of SCH). Also proved there are

consistency results when 2cf(λ) > λ.

Here, continuing [5] but not relying on it, we eliminate the extra assumption, i.e.,

we prove the following (in ZFC).

Theorem 1.1 If ℵ0 < κ = cf(λ) and 2κ < λ then λ → (λ, ω + 1)2.

Before starting the proof, let us recall the well-known definition.

Definition 1.2 Let D be an ℵ1-complete filter on Y , f ∈ Y Ord, and α ∈ Ord∪{∞}.

We define rkD( f ) = α by induction on α (it is well known that rkD( f ) < ∞):

rkD( f ) = α if and only if β < α ⇒ rkD( f ) 6= β and for every g ∈ Y Ord satisfying

g <D f , there is β < α such that rkD(g) = β.

Notice that we will use normal filters on κ = cf(κ) > ℵ0, so the demand for

ℵ1-completeness in the definition is satisfied.

Recall also the following definition.
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Definition 1.3 Assume Y, D, f are as in Definition 1.2.

J[ f , D] = {Z ⊆ Y : Y \ Z ∈ D or rkD+Z( f ) > rkD( f )}

Lastly, we quote the next claim (Definition 1.3 and Claim 1.4 are from [2], and ex-

plicitly [4, 5.8(2),5.9].

Claim 1.4 Assume κ > ℵ0 is regular, and D is a κ-complete (resp. normal) filter

on Y .

Then for any f ∈ Y Ord, J[ f , D] is a κ-complete (resp. normal) ideal on Y disjoint

to D.

2 The Proof

In this section we prove Theorem 1.1, which, for convenience, we now restate.

Theorem 2.1 If ℵ0 < κ = cf(λ), 2κ < λ then λ → (λ, ω + 1)2.

Proof

Stage A. Given that ℵ0 < κ = cf(λ) < λ, 2κ < λ, we will show that λ → (λ, ω+1)2.

So, towards a contradiction, suppose that

(i) c : [λ]2 → {red, green} but has no red set of cardinality λ and no green set of

order type ω + 1.

Choose λ̄ such that:

(ii) λ̄ = 〈λi : i < κ〉 is increasing and continuous with limit λ, and for i = 0

or i a successor ordinal, λi is a successor cardinal. We also let ∆0 = λ0 and for

i < κ, ∆1+i = [λi , λi+1). For α < λ we will let i(α) be the unique i < κ such

that α ∈ ∆i .

We can clearly assume, in addition, that

(iii) λ0 > 2κ, for i < κ, λi+1 ≥ λ++
i , and each ∆i is homogeneously red for c.

The last is justified by the Erdös–Hajnal–Maté–Rado theorem for λi+1, i.e., as λi+1 →
(λi+1, ω + 1)2 because λi+1 is regular.

Stage B. For 0 < i < κ, we define Seqi to be

{〈α0, . . . , αn−1〉 : i(α0) < · · · < i(αn−1) < i}.

For ζ ∈ ∆i and 〈α0, . . . , αn−1〉 = ᾱ ∈ Seqi , we say ᾱ ∈ T
ζ if and only if

{α0, . . . , αn−1, ζ} is homogeneously green for c. Note that an infinite ⊳-increasing

branch in T
ζ violates the non-existence of a green set of order type ω + 1, so,

(iv) T
ζ is well-founded, that is we cannot find η0 ⊳ η1 ⊳ · · · ⊳ ηn ⊳ · · · .

Therefore the following definition of a rank function, rkζ , on Seqi can be carried

out. If η ∈ Seqi \ T
ζ then rkζ(η) = −1. We define rkζ : Seqi → Ord ∪ {−1} by

induction on the ordinal ξ as follows. We have rkζ(ᾱ) = ξ if and only if for all ǫ <
ξ, rkζ(ᾱ) was not defined as ǫ but there is a β such that rkζ(ᾱ

⌢

〈β〉) ≥ ǫ. Of course,
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if ξ is a successor ordinal, it is enough to check for ǫ = ξ − 1, and for a limit ordinal,

δ, if for all ξ < δ, rkζ(ᾱ) ≥ ξ, then rkζ(ᾱ) ≥ δ. In fact, it is clear that the range of

rkζ is a proper initial segment of µ+
i , where µi := card(

⋃
{∆ǫ : ǫ < i}), and so, in

particular, the range of rkζ has cardinality at most λi . Note that λi+1 ≥ λ++
i > µ+

i .

Now we can choose Bi , an end-segment of ∆i such that for all ᾱ ∈ Seqi and all

−1 ≤ γ < µ+
i , if there is ζ ∈ Bi such that rkζ(ᾱ) = γ, then there are λi+1 such

ζ. Recall that ∆i and therefore also Bi are of order type λi+1, which is a successor

cardinal > µ+
i > |Seqi |, hence such Bi exists. Everything is now in place for the main

definition.

Stage C. (ᾱ, Z, D, f ) ∈ K if and only if

(a) D is a normal filter on κ,

(b) f : κ → Ord,

(c) Z ∈ D

(d) for some 0 < i < κ we have ᾱ ∈ Seqi , Z is disjoint to i + 1 and for every j ∈ Z

(hence j > i) there is ζ ∈ B j such that rkζ(ᾱ) = f ( j) (so, in particular, ᾱ ∈ T
ζ).

Stage D. Note that K 6= ∅, since if we choose ζ j ∈ B j , for j < κ, take Z =

κ \ {0}, ᾱ = the empty sequence, choose D to be any normal filter on κ and define

f by f ( j) = rkζ j (ᾱ), then (ᾱ, Z, D, f ) ∈ K .

Now clearly by Definition 1.2, among the quadruples (ᾱ, Z, D, f ) ∈ K , there is

one with rkD( f ) minimal. So, fix one such quadruple, and denote it by (ᾱ∗, Z∗, D∗,
f ∗). Let D∗

1 be the filter on κ dual to J[ f ∗, D∗]; so by Claim 1.4 it is a normal filter

on κ extending D∗.

For j ∈ Z∗, set C j = {ζ ∈ B j : rkζ(ᾱ∗) = f ∗( j)}. Thus by the choice of

B j we know that card(C j) = λ j+1, and for every ζ ∈ C j the set (Rang(ᾱ∗) ∪ {ζ})

is homogeneously green under the colouring c. Now suppose j ∈ Z∗. For every

Υ ∈ Z∗ \ ( j + 1) and ζ ∈ C j , let C+
Υ

(ζ) = {ξ ∈ CΥ : c({ζ, ξ}) = green}. Also, let

Z+(ζ) = {Υ ∈ Z∗ \ ( j + 1) : card(C+
Υ

(ζ)) = λΥ+1}.

Stage E. For j ∈ Z∗ and ζ ∈ C j , let Y (ζ) = Z∗ \Z+(ζ). Since λ0 > 2κ and λ j+1 > λ0

is regular, for each j ∈ Z∗ there are Y = Y j ⊆ κ and C ′

j ⊆ C j with card(C ′

j) = λ j+1

such that ζ ∈ C ′

j ⇒ Y (ζ) = Y j .

Let Ẑ = { j ∈ Z∗ : Y j ∈ D∗

1}. Now the proof splits into two cases.

Case 1. Ẑ 6= ∅ mod D∗

1

Define Y ∗
= { j ∈ Ẑ: for every i ∈ Ẑ ∩ j, we have j ∈ Yi}. Notice that Y ∗ is

the intersection of Ẑ with the diagonal intersection of κ sets from D∗

1 (since i ∈ Ẑ ⇒
Yi ∈ D∗

1 ), hence (by the normality of D∗

1 ) Y ∗ 6= ∅ mod D∗

1 . But then, as we will see

soon, by shrinking the C ′

j for j ∈ Y ∗, we can get a homogeneous red set of cardinality

λ, which is contrary to the assumption toward contradiction.

We define Ĉ j for j ∈ Y ∗ by induction on j such that Ĉ j is a subset of C ′

j of

cardinality λ j+1. Now, for j ∈ Y ∗, let Ĉ j be the set of ξ ∈ C ′

j such that for every

i ∈ Y ∗∩ j and every ζ ∈ Ĉi we have ξ 6∈ C+
j (ζ). So, in fact, Ĉ j has cardinality λ j+1, as

it is the result of removing < λ j+1 elements from C ′

j where |C ′

j | = λ j+1 by its choice.

Indeed, the number of such pairs (i, ζ) is ≤ λ j and for i ∈ Y ∗ ∩ j and ζ ∈ Ĉi

(a) j ∈ Yi [by the definition of Y ∗ as j ∈ Y ∗].
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(b) ζ ∈ C ′

i [as ζ ∈ Ĉi and Ĉi ⊆ C ′

i by the induction hypothesis].

(c) Y (ζ) = Yi [as by (b) we have ζ ∈ C ′

i and the choice of C ′

i ].

(d) j ∈ Y (ζ) [by (a)+(c)].

(e) j /∈ Z+(ζ) [by (d) and the choice of Y (ζ) as Z∗ \ Z+(ζ)].

(f) C+
j (ζ) has cardinality < λ j+1 [by (e) and the choice of Z+(ζ), as j ∈ Ẑ ⊆ Z∗].

So Ĉ j is a well defined subset of C ′

j of cardinality λ j+1 for every j ∈ Y ∗. But then,

clearly the union of the Ĉ j for j ∈ Y ∗, call it Ĉ , satisfies the following.

(a) it has cardinality λ [as j ∈ Y ∗ ⇒ |Ĉ j | = λ j+1 and sup(Y ∗) = κ as Y ∗ 6=
∅ mod D∗

1 ],

(b) c↾[Ĉ j]
2 is constantly red [as we are assuming (iii),

(c) if i < j are from Y ∗ and ζ ∈ Ĉi , ξ ∈ Ĉ j then c{ζ, ξ} = red [as ξ /∈ C+
j (ζ)].

So Ĉ has cardinality λ and is homogeneously red. This concludes the proof of Case 1.

Case 2. Ẑ = ∅ mod D∗

1 .

In this case there are i ∈ Z∗, β ∈ Ci such that Z+(β) 6= ∅ mod D∗

1

[Because Z∗ ∈ D∗ ⊆ D∗

1 and Ẑ = ∅ mod D∗

1 , hence Z∗ \ Ẑ 6= ∅. Choose

i ∈ Z∗ \ Ẑ. By the definition of Ẑ, Yi /∈ D∗

1 . So, if β ∈ C ′

i then Y (β) = Yi /∈ D∗

1 and

choose β ∈ C ′

i , so Y (β) /∈ D∗

1 hence by the definition of Y (β) we have Z∗ \ Z+(β) =

Y (β) /∈ D∗

1 . Since Z∗ ∈ D∗

1 , we conclude that Z+(β) 6= ∅ mod D∗

1 ].

Let ᾱ ′
= ᾱ∗⌢〈β〉, Z ′

= Z+(β), D ′
= D∗ + Z ′. It is a normal filter Claim 1.4,

and by the previous sentence which makes sure that Z ′ 6= ∅, as D∗ ⊆ D∗

1 . Lastly we

define f ′ ∈ κOrd by

(a) if j ∈ Z ′ then f ′( j) = Min{rkγ(ᾱ ′) : γ ∈ C+
j (β) ⊆ B j},

(b) otherwise f ′( j) = 0.

Clearly

(a) (ᾱ ′, Z ′, D ′, f ′) ∈ K , and

(b) f ′ <D ′ f ∗

[Because, as Z ′ ∈ D ′ and if j ∈ Z ′ then for some γ ∈ C+
j (β) we have f ′( j) =

rkγ(ᾱ ′) = rkγ(ᾱ∗⌢〈β〉) which by the definition of rkγ is < rkγ(ᾱ∗) = f ∗( j),

recalling (d) from Stage C.]

hence

(c) rkD ′( f ′) < rkD ′( f ∗)

[By Definition 1.2].

But rkD ′( f ∗) = rkD∗( f ∗) as Z ′
= Z+(β) 6= ∅ mod D∗

1 by the definition of D∗

1 as

extending the filter dual to J[ f ∗, D∗], see Definition 1.3. Hence rkD ′( f ′) < rkD∗( f ∗),

so we get a contradiction to the choice of (ᾱ∗, Z∗, D∗, f ∗).

Clearly at least one of the two cases holds, so we are done.
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