
JFP 30, e3, 13 pages, 2020. c© The Author(s) 2020. Published by Cambridge University Press 2020 1
doi:10.1017/S0956796819000194

F U N C T I O N A L P E A R L S

An optimal, purely functional implementation
of the Garsia–Wachs algorithm

R I C H A R D S. B I R D
Department of Computer Science, Oxford University,

Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
(e-mail: bird@cs.ox.ac.uk)

1 Introduction

The Garsia–Wachs algorithm is an algorithm for building a binary leaf tree whose cost is
as small as possible. The problem and the algorithm are described in more detail below,
but the task is essentially the same as that of building a Huffman coding tree with the
added constraint that the fringe of the tree has to be exactly the given list of inputs (in
Huffman coding, the fringe of the tree can be any permutation of the input). As we will
show below, the Garsia–Wachs algorithm can be implemented with a linearithmic running
time—a running time of O (n log n) steps for an input of length n, the same time bound as
for Huffman coding.

The problem has an interesting history. It was first discussed in terms of restricted
Huffman coding in Gilbert & Moore (1959), where a cubic-time algorithm was proposed.
Knuth gave a quadratic-time algorithm in Knuth (1971) for a version of the problem in
terms of binary search trees and the expected frequencies of occurrence of the elements
in a search. A different method of attack was proposed by Hu & Tucker (1971); see also
Hu (1982) and the first edition of Knuth (1998). However, a rigorous proof of the cor-
rectness of the algorithm was obtained only later. Then along came a simplification of the
Hu–Tucker algorithm in Garsia & Wachs (1977). This algorithm was adopted in place of
the Hu–Tucker algorithm in the second edition of Knuth (1998). The best current proofs of
its correctness, while not exactly simple, are given in Kingston (1988) and Karpinski et al.
(1997); Kingston’s proof also appears in Knuth (1998). All these references describe only
a simpler, quadratic-time algorithm. There is a fairly short appendix to Garsia & Wachs
(1977), written by Robert E. Tarjan, that outlines how to implement the linearithmic ver-
sion, but some details are missing. Knuth also asks for the linearithmic algorithm in an
exercise (6.2.2, Exercise 45) in Knuth (1998), which is answered fairly briefly on page 713
with the suggestion that a doubly linked list should be used.

In 2008, Filliâtre (2008) wrote a very nice pearl on the implementation of the Garsia–
Wachs algorithm in ML. His algorithm depended on mutable references and local side
effects, so it was “mostly functional” in his words. He described only the quadratic version

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194
https://orcid.org/0000-0002-3901-742X
mailto:bird@cs.ox.ac.uk
https://doi.org/10.1017/S0956796819000194

2 R. S. Bird

of the problem, mainly so that he could compare it to Knuth’s implementation in C. Our
aim in this pearl is to give a purely functional description of the Garsia–Wachs algorithm
in Haskell that does achieve the linearithmic bound.

2 The problem

The problem concerns building a binary tree of the following kind:

data Tree a = Leaf a | Fork (Tree a) (Tree a)

Such a tree will be referred to as a leaf tree to distinguish it from another kind of tree
needed later on. The fringe of a leaf tree is defined by

fringe :: Tree a → [a]
fringe (Leaf x) = [x]
fringe (Fork t1 t2) = fringe t1 ++++ fringe t2

By definition, the depth of a leaf is the length of the path from the root of the tree to the
leaf. The depths of the leaves in fringe order are defined by

depths :: Tree a → [Int]
depths = from 0 where

from d (Leaf x) = [d]
from d (Fork t1 t2) = from (d + 1) t1 ++++ from (d + 1) t2

Both fringe and depths can be improved to take linear time; the optimisation, which uses
an accumulating parameter, is a standard one and we won’t go into details.

In Huffman coding, the input consists of a list of distinct values, usually characters,
paired with a measure of their likelihood of occurring in a text, a measure usually called the
weight of the value. To keep things simple, we will omit the values and suppose the input
consists only of a list of positive integer weights. The aim is to construct a leaf tree whose
fringe is exactly the given list of weights and whose cost is as small as possible, where

type Weight = Int

cost :: Tree Weight → Int
cost t = sum (zipWith (×) (fringe t) (depths t))

In words, the cost of a tree is the sum of the weighted path lengths from the root to the
leaves. For example, the tree of Figure 1 has cost

32 × 3 + 12 × 4 + 20 × 4 + 51 × 2 + 57 × 2 + 18 × 3 + 37 × 3 = 605

which happens to be the cheapest tree for the weights [32, 12, 20, 51, 57, 18, 37].

3 The algorithm

The Garsia–Wachs algorithm is a two-stage process. In the first stage, we build a leaf tree
from the given list of weights and in the second stage we rebuild it:

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

Garsia–Wachs algorithm 3

Fig. 1. A minimum cost tree.

gwa :: [Weight] → Tree Weight
gwa ws = rebuild ws (build ws)

With Label as another synonym for Int, the types of build and rebuild are

build :: [Weight] → Tree Label
rebuild :: [Weight] → Tree Label → Tree Weight

The result of build ws is a tree whose fringe is not ws but some permutation of the labels
[1 . . n], where n is the length of ws. The critical property of this tree concerns the depths
of its leaves. Suppose the depths are d1, d2, . . . , dn, where dj is the depth of Leaf j. Then
there is a tree with minimum cost and fringe ws in which the depth of the leaf labelled with
wj is dj. As an example, suppose build applied to [32, 12, 20, 51, 57, 18, 37] produces the
tree

4 5

6 7 1

2 3

The list of depths in numerical order of leaf value is [3, 4, 4, 2, 2, 3, 3]. The claim, which
we will not prove, is that there is a minimum cost tree for the given input whose depths in
fringe order are exactly this list, and that tree is just the tree in Figure 1.

The tree in Figure 1 can be obtained from the one above by starting with a list of
pairs; the first component of each pair being a leaf containing the label wj and the second
component being the depth dj. For our example, this is the list

(32, 3), (12, 4), (20, 4), (51, 2), (57, 2), (18, 3), (37, 3)

in which a pair (w, d) represents (Leaf w, d). This list of pairs is reduced to a single pair
by repeatedly combining the first two adjacent trees on the list with the same depth until
only a single pair remains. When two trees with a common depth are combined, the depth
is reduced by 1. Thus, for our example, we get the sequence of steps pictured in Figure 2,
ending with a single tree and a final depth of 0. The trees in Figure 2 are displayed using
parentheses, so the tree of Figure 1 is displayed as

(((32 (12 20)) 51) (57 (18 37)))

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

4 R. S. Bird

Fig. 2. Combining trees.

This process is not guaranteed to work for any list of depths, but only those that result from
the first stage of the Garsia–Wachs algorithm. For example, the tree ((1 3) 2) has depths
[2, 1, 2] in numerical order of leaf label, but no adjacent pair has the same depth so no pair
can be combined and the reduction process fails to make progress.

The obvious way to implement this reduction process is by a function reduce, defined by

reduce :: [(Tree Label, Depth)] → Tree Label
reduce = extract · until singleton step where

step (x : y : xs) = if depth x == depth y
then join x y : xs
else x : step (y : xs)

where Depth is a synonym for Int, depth = snd and singleton is a test for whether a list is
a singleton. The functions extract and join are defined by

extract :: [(Tree Label, Depth)] → Tree Label
extract [(t,)] = t

join :: (Tree Label, Depth) → (Tree Label, Depth) → (Tree Label, Depth)
join (t1, d) (t2,) = (Fork t1 t2, d − 1)

The function step is applied repeatedly until it produces a singleton list. However, this defi-
nition of reduce can take quadratic time because step can take linear time. The inefficiency
arises because if step finds the first pair to be joined at positions k and k + 1, then the next
call of step will repeat the unsuccessful search on the first k − 2 elements when it could
begin a new search at position k − 1, the earliest position at which two depths could be the
same. One way to avoid the inefficiency is to use a foldl and a recursive definition of step,
redefining reduce to read

reduce :: [(Tree Label, Depth)] → Tree Label
reduce = extract · foldl step [] where

step [] y = [y]
step (x : xs) y = if depth x == depth y

then step xs (join x y)
else y : x : xs

The first argument to step maintains the invariant that no two adjacent pairs on the list have
the same depth; this list is kept in reverse order for efficiency. To maintain the invariant,
step is called recursively whenever two pairs are joined. Each call of step takes time pro-
portional to the number of join operations, and there are exactly n − 1 of these operations
in total, so reduce now takes linear time.

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

Garsia–Wachs algorithm 5

Having dealt with reduce, we can now define rebuild:

rebuild :: [Weight] → Tree Label → Tree Weight
rebuild ws t = reduce (zip (map Leaf ws) (sortDepths t))

The function sortDepths sorts the depths of a tree into increasing order of label value.
Since labels take the form [1 . . n], where n is the number of nodes in the tree, sorting can
be accomplished in linear time using an array:

sortDepths :: Tree Label → [Depth]
sortDepths t = elems (array (1, size t) (zip (fringe t) (depths t)))

The functions size, which counts the number of nodes in a tree, fringe and depths can all
be computed in linear time, so sortDepths and rebuild each take linear time.

It remains to deal with the first stage, the function build. This is where the intricacy
of the Garsia–Wachs algorithm resides. The plan of attack is to develop a quadratic-time
solution first and then improve it to a linearithmic one by a suitable choice of data structure.

For input [w1, w2, . . . , wn] the starting point is a list

(0, w0), (1, w1), (2, w2), . . . , (n, wn)

of pairs of leaves and weights, so (j, w) abbreviates (Leaf j, w). The first pair (0, w0) is a
sentinel pair in which w0 = ∞. Use of a sentinel simplifies the description of the algorithm
but is not essential. The following two steps are now repeated until just two pairs remain,
the sentinel pair and one other:

1. Given the current list (0, w0), . . . , (tp, wp), where p > 1, find the largest j with
1 � j < p such that wj−1 + wj � wj + wj+1, equivalently wj−1 � wj+1. Such a j is
guaranteed to exist since w0 = ∞. Replace the pairs (tj, wj) and (tj+1, wj+1) by a
single pair

(t∗, w∗) = (Fork tj tj+1, wj + wj+1)

giving a new list (0, w0), (t1, w1), . . . , (tj−1, wj−1), (t∗, w∗), (tj+2, wj+2), . . . , (tp, wp).
2. Now move (t∗, w∗) to the right over all pairs (t, w) for which w < w∗.

At the end of this process there are just two pairs left, the sentinel and a second pair whose
first component is the required tree. It is difficult to give a convincing intuition as to why
this process works, except to say that it is similar in outline to the way Huffman’s algorithm
proceeds. In Huffman’s algorithm the trees are kept in order of weight, and at each step
the two lightest trees are combined. The resulting tree is inserted into the remaining list in
such a way as to maintain weight order. With the Garsia–Wachs algorithm the process is
more complicated.

Here is an example. Suppose we begin with the list

(0, ∞), (1, 32), (2, 12), (3, 20), (4, 51), (5, 57), (6, 18), (7, 37)

The first pair to be combined is (6, 18) and (7, 37) (because 57 � 37). The result is shifted
zero places to the right, giving

(0, ∞), (1, 32), (2, 12), (3, 20), (4, 51), (5, 57), ((6 7), 55)

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

6 R. S. Bird

The next pair to be combined is (2, 12) and (3, 20) (because 32 � 30). The result is shifted
zero places to the right, giving

(0, ∞), (1, 32), ((2 3), 32), (4, 51), (5, 57), ((6 7), 55)

The next pair to be combined is (1, 32) and ((2 3), 32) (because ∞� 32). The result is
shifted three places to the right, giving

(0, ∞), (4, 51), (5, 57), ((6 7), 55), ((1 (2 3)), 64)

The remaining three steps are similar in that they all involve combining the second
two pairs:

(0, ∞), ((6 7), 55), ((1 (2 3)), 64), ((4 5), 108)
(0, ∞), ((4 5), 108), (((6 7) (1 (2 3))), 119)
(0, ∞), (((4 5) ((6 7) (1 (2 3)))), 227)

The first component of the second pair is the final tree. Note that the sentinel plays a passive
role and is never combined with another pair.

The obvious way to implement this algorithm is repeatedly to scan the whole list from
right to left at each step, looking for the largest j such that wj−1 � wj+1. However, a better
way of organising the search stems from the following observation. Say that a sequence
w1, w2, . . . is two-sorted, if w1 < w3 < w5 < . . . and w2 < w4 < w6 < . . . It follows from
the definition of j in step 1 that the sequence wj, . . . , wp is two-sorted. Suppose that the
following sequence of w-values is produced by step 2:

w0, w1, w2, . . . , wj−1, wj+2, . . . , wk−1, w∗, wk , . . . , wp

Again, both wk , . . . , wp and wj+2, . . . , wk−1, w∗ are two-sorted because wk−2 < w∗.
Furthermore, we know that wj+r < w∗ � wk for 2 � r < k − j. That means the next pair
to be combined is the first one on the following list of three possibilities:

1. wk and wk+1, provided w∗ � wk+1;
2. wj+2 and wj+3, provided wj−1 � wj+3;
3. wi and wi+1, provided 1 � i < j − 1 and wi−1 � wi+1.

These three cases can be captured by expressing build in terms of foldr:

build :: [Weight] → Tree Label
build ws = extract (foldr combine [] (zip (map Leaf [0 . .]) (infinity : ws)))

where extract [, (t,)] = t
infinity = sum ws

No weight arising during the algorithm can be greater than the sum of the input weights,
so this definition of infinity is adequate. The function foldr combine [] scans the input from
right to left, looking for the next pair to be combined. To define combine, we first introduce

type Pair = (Tree Label, Weight)

weight :: Pair → Weight
weight (t, w) = w

Then combine is defined by

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

Garsia–Wachs algorithm 7

combine :: Pair → [Pair] → [Pair]
combine x (y : z : xs) = if weight x � weight z

then combine x (insert (fork y z) xs)
else x : y : z : xs

combine x xs = x : xs

fork :: Pair → Pair → Pair
fork (t1, w1) (t2, w2) = (Fork t1 t2, w1 + w2)

insert :: Pair → [Pair] → [Pair]
insert x xs = ys ++++ combine x zs where (ys, zs) = split x xs

split :: Pair → [Pair] → ([Pair], [Pair])
split x xs = span (λy. weight y < weight x) xs

The function insert makes use of an instance split of the general utility function span to
find the right place for a combined pair to be inserted and calls combine again to deal
with Case 1. The recursive call to combine in the definition of combine deals with Case 2,
and Case 3 is handled by the right-to-left search in foldr combine []. Note that the second
argument of combine and insert is always a two-sorted list, a fact we will exploit later on.

In the worst case, each pass through the data leads to a single pair being combined, so
the running time of build is quadratic in the length of the input. One worst case is when
the list of weights takes the form

[k, k, k + 1, k + 1, . . . , 2 × k − 1, 2 × k − 1]

In such a case, the first two trees are combined at each step and inserted at the end of the
list. The culprit is the function insert, which takes linear time at each step. If we could
arrange that insert took logarithmic time, then the total running time of the Garsia–Wachs
algorithm would be reduced to a linearithmic number of steps. Such an implementation is
indeed possible because the second argument to insert is not an arbitrary list of pairs but
one that is two-sorted on second components.

4 An improved algorithm

The revised implementation is carried out in two stages. The first stage is to rewrite build in
terms of a new data type List Pair, designed for representing lists of pairs of leaf trees and
weights that are two-sorted on weights. The following six operations are to be provided:

emptyL :: List a
nullL :: List a → Bool
consL :: a → List a → List a
deconsL :: List a → (a, List a)
concatL :: List a → List a → List a
splitL :: Pair → List Pair → (List Pair, List Pair)

Most of these operations are self-explanatory. Only the last function, splitL is specific to
lists of pairs; the others work for lists of any type. The function splitL is the analogue
of split used in the definition of insert. The function build is replaced by a new version

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

8 R. S. Bird

Fig. 3. A two-sorted binary search tree.

buildL, basically the same as before except that [Pair] operations are replaced by List Pair
operations:

gwaL :: [Weight] → Tree Weight
gwaL ws = rebuild ws (buildL ws)

buildL :: [Weight] → Tree Label
buildL ws = extractL (foldr combineL emptyL (zip (map Leaf [0 . .]) (infinity : ws)))

where infinity = sum ws

The new functions extractL and combineL are defined by

extractL :: List Pair → Tree Label
extractL xs = t where ((t,),) = deconsL (snd (deconsL xs))

combineL :: Pair → List Pair → List Pair
combineL x xs = if nullL xs ∨ nullL ys ∨ weight x < weight z

then consL x xs else combineL x (insertL (fork y z) zs)
where (y, ys) = deconsL xs

(z, zs) = deconsL ys

insertL :: Pair → List Pair → List Pair
insertL x xs = concatL ys (combineL x zs) where (ys, zs) = splitL x xs

The second stage is to implement List Pair so that the six operations above take at most
logarithmic time. Then buildL will take linearithmic time. There are various options and
we choose an implementation based on a modification of balanced binary search trees,
also called AVL trees after their inventors, Georgy Adelson-Velsky and Evgenii Landis,
see Knuth (1998). To motivate the modification, consider the AVL tree in Figure 3 whose
nodes are labelled with pairs of leaf trees and their weights, although only the weights
are shown. Flattening this tree produces a list of weights [6, 8, 12, 10, 14, 15, 20] which is
two-sorted but not sorted. Now suppose we want to insert a new pair with weight w into
this AVL tree. We cannot use straightforward binary search because the labels of the tree
are not in increasing order of weight. Instead, as well as comparing w to the weight of the
leaf tree at the root, we have also to compare it with the weight of the preceding leaf tree
in the list. Only if w is greater than both these weights, we can continue by searching the
right subtree; otherwise, we have to search the left subtree. In order to avoid repeatedly
having to discover the weight of the preceding leaf tree, we can install the preceding leaf
tree at the root of an AVL tree, rather than just its weight. If there is no preceding leaf tree,
then we can artificially install a copy of the leaf tree. That leads to the tree of Figure 4.

The data type List Pair is now introduced as an instance of

data List a = Null | Node Height (List a) (a, a) (List a)
type Height = Int

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

Garsia–Wachs algorithm 9

Fig. 4. An augmented two-sorted binary search tree.

The first label of a Node records the height of the AVL tree, needed to maintain balance.
The second label is a pair of values. The data type invariant on List a is that flattening a list
produces a list of the form (x1, x1), (x1, x2), (x2, x3), . . . , (xn−1, xn); when each x is a Pair,
the list x1, x2, . . . , xn is two-sorted on weight components.

The implementations of emptyL and nullL are immediate:

emptyL :: List a
emptyL = Null

nullL :: List a → Bool
nullL Null = True
nullL = False

The operation consL adds a new pair as a leftmost element of a binary tree:

consL :: a → List a → List a
consL x Null = node Null (x, x) Null
consL x (Node t1 (y, z) t2) = if nullL t1

then balance (consL x t1) (x, z) t2
else balance (consL x t1) (y, z) t2

For an empty tree t, the operation consL x t creates a new node with label (x, x). For a
non-empty tree t whose left subtree is empty, consL x t creates a new node with label (x, x)
and, since x is now the predecessor of t, assigns x as the new predecessor of t. Otherwise
consL x is applied to the left subtree of t. The code makes use of two smart constructors,
node and balance. The function node is defined by

node :: (List a) → (a, a) → List a → List a
node t1 xy t2 = Node h t1 xy t2 where h = 1 + max (height t1) (height t2)

height Null = 0
height (Node h) = h

The function balance has the same type as node and is needed for restoring balance in an
AVL tree. The value balance t1 x t2 is defined only for two trees t1 and t2 whose heights
differ by at most 2. We will not give the code for balance since it is completely standard.
However, in a moment we will define a second, more general balancing function gbalance
that can be applied to two trees of arbitrarily different heights.

Next, the function deconsL is defined by

deconsL :: List a → (a, List a)
deconsL (Node t1 xy t2) = if nullL t1 then (snd xy, t2) else (z, balance t3 xy t2)

where (z, t3) = deconsL t1

This function searches along the left spine of a tree to find the first element.

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

10 R. S. Bird

Next, the function concatL is defined by

concatL :: List a → List a → List a
concatL t1 Null = t1
concatL Null t2 = t2
concatL t1 t2 = gbalance t1 (lastL t1, y) t3 where (y, t3) = deconsL t2

The subsidiary function lastL returns the last value in a non-empty tree:

lastL :: List a → a
lastL (Node t1 xy t2) = if nullL t2 then snd xy else lastL t2

In the third clause of concat t1 t2, the last value in t1 and the first value in t2 are combined
as a new root. The new function is gbalance which is defined for two trees of arbitrarily
different heights. To compute gbalance t1 x t2, suppose firstly that abs (h1 − h2) � 2. Then
gbalance can be defined as an instance of balance. Now suppose h1 > h2 + 2. In this case,
the subtrees r1, r2, . . . along the right spine of t1 can be traversed to find a subtree r = rk

satisfying

0 � height r − height t2 � 1

Such a tree is guaranteed to exist because the subtrees r1, r2, . . . decrease in height by at
least 1 and at most 2 at each step. Furthermore, if l is the left sibling of r, then

abs (height l − height (node r x t2)) � 2

because t1 is a balanced tree and abs (height l − height r) � 1. That means l and node r x t2
can be combined with balance. Rebalancing can increase the height of a tree by at most
1, so further rebalancing up the tree maintains the precondition on balance. The case
h2 > h1 + 2 is dual, except that the left spine of t2 is traversed. With that explanation,
the complete definition of gbalance is as follows:

gbalance :: List a → (a, a) → List a → List a
gbalance t1 x t2

| abs (h1 − h2) � 2 = balance t1 x t2
| h1 > h2 + 2 = balanceR t1 x t2
| h1 + 2 < h2 = balanceL t1 x t2
where h1 = height t1; h2 = height t2

The subsidiary functions balanceR and balanceL are defined by

balanceR, balanceL :: List a → (a, a) → List a → List a
balanceR (Node l y r) x t2 = if height r � height t2 + 2

then balance l y (balanceR r x t2)
else balance l y (node r x t2)

balanceL t1 x (Node l y r) = if height l � height t1 + 2
then balance (balanceL t1 x l) y r
else balance (node t1 x l) y r

It is clear that balanceR t1 x t2 takes O(h1 − h2) steps, where h1 and h2 are the heights of t1
and t2. Dually, balanceL t1 x t2 takes O(h2 − h1) steps. It follows that gbalance t1 x t2 takes

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

Garsia–Wachs algorithm 11

O(abs (h1 − h2)) steps and that concatL t1 t2 applied to two balanced trees of sizes m and n
takes O(log n + log m) steps.

The final function we have to implement is splitL. The function splitL x has to split a
tree t into a pair of trees (t1, t2) in which t1 consists of the initial segment of t whose weight
components are all less than weight x, and t2 is the remaining final segment of t. Thus,
concatL t1 t2 = t. To carry out this process, we split a tree into pieces and then sew the
pieces together again to make the final pair of trees. Thus,

splitL :: Pair → List Pair → (List Pair, List Pair)
splitL x t = sew (pieces x t)

A piece consists of a tree minus one of its subtrees, so it consists of a label and either a left
or right subtree:

data Piece a = LP (List a) (a, a) | RP (a, a) (List a)

A left piece LP t1 xy is missing its right subtree, and a right piece RP xy t2 is missing its
left subtree. To see how to define pieces x, consider the tree of Figure 4 and suppose the
weight of pair x is 11. The root of the tree has value (12, 10) and 11 is not greater than both
these weights, so we construct a right piece and continue by searching the left subtree. If
the weight of x were, say 13, then we construct a left piece and continue searching the
right subtree. The idea of breaking a tree into pieces is similar to Huet’s zipper function,
see Huet (1997). The function pieces is defined by

pieces :: Pair → List Pair → [Piece Pair]
pieces x t = addPieces t [] where

addPieces Null ps = ps
addPieces (Node t1 (y, z) t2) ps =

if w > max (weight y) (weight z)
then addPieces t2 (LP t1 (y, z) : ps)
else addPieces t1 (RP (y, z) t2 : ps)

w = weight x

For example, with weight x = 11, the tree of Figure 4 produces the three pieces

in which the missing tree is indicated by a dashed line.
Finally, we can sew a list of pieces into a pair of trees by

sew :: [Piece Pair] → (List Pair, List Pair)
sew = foldl step (Null, Null)

where step (t1, t2) (LP t x) = (gbalance t x t1, t2)
step (t1, t2) (RP x t) = (t1, gbalance t2 x t)

For example, sewing the three pieces above produces the two trees

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

12 R. S. Bird

We claim that split x t takes O(h) steps, where h = height t. Certainly, pieces x t takes this
time, so we have to show that sew does too. If we define the height of a piece to be
the height of the tree associated with the piece, then pieces x t produces a list of pieces
whose heights h1, h2, ..., hk are strictly increasing and bounded above by h. For example,
the pieces pictured above have heights 0, 1, 2. The total cost of sew is proportional to

(h1 − 0) + (h2 − h1) + ... + (hk − hk−1) � h

because each call of gbalance t1 x t2 takes time proportional to the difference between the
heights of t1 and t2. Thus, both piece and sew take logarithmic time in the size of the sets,
so split does too.

5 Comparisons and conclusions

In his pearl, Filliâtre compared his OCaml implementation with a C implementation writ-
ten by Knuth as he was preparing for the second edition of Knuth (1998). For example, with
n = 500 and random weights in the range 1 � w � 5000, the OCaml code took 1.82 s, while
the C code took 1.56 s. Both implementations had the same quadratic-time worst-case com-
plexity. But that was in 2008 and computers have got faster in the past dozen years. One
of the referees of this paper translated our Haskell quadratic-time algorithm for gwa into
OCaml and compared it with Filliâtre’s original benchmark code and inputs, showing that
gwa was about three times slower than Filliâtre’s version (0.64 ms versus 0.2 ms). This
statistic was confirmed by running the code on the author’s machine. The linearithmic
version gwaL was translated into OCaml and the results compared. With n = 5000, both
Filliâtre’s version and gwaL took about the same time (14 ms), but for greater values of n
the linearithmic version pulled ahead, being about three times faster for n = 15000.1

In summary, it does seem that the internal use of references and purely local side effects
present in the OCaml implementation are not necessary for reasonable efficiency. Wadler’s
famous question “Shall I be pure or impure?” can still be answered, at least for problems
in algorithm design, with “Stay pure as long as possible”. Indeed in our new book (Bird
& Gibbons, 2020), from which this pearl was extracted, we adopt a purely functional
approach to many other algorithms in computer science.

Acknowledgments

I am indebted to the referees of this paper for a careful reading of the original submission.
One referee pointed out that my original code of gwaL was a factor of log n worse than

1 The code for gwa and gwaL in both Haskell and Ocaml is available at http://www.cs.ox.ac.uk/people/
richard.bird/GW.lhs (and similarly for GW.ml).

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

http://www.cs.ox.ac.uk/people/richard.bird/GW.lhs
http://www.cs.ox.ac.uk/people/richard.bird/GW.lhs
https://doi.org/10.1017/S0956796819000194

Garsia–Wachs algorithm 13

linearithmic and suggested the idea of keeping both the current value and its predecessor
in each node to avoid having to search for predecessors at each step. Another referee, as
mentioned above, carried out the timing comparisons for Filliâtre’s version and ours. For
these and many other suggestions for improvement, I am very grateful.

Conflict of Interest

None

References

Bird, R. & Gibbons, J. (2020) Algorithm Design with Haskell. Cambridge University Press. To
appear.

Filliâtre, J.-C. (2008) A functional implementation of the Garsia Wachs algorithm. In ACM
SIGPLAN Workshop on ML, Victoria, British Columbia, Canada.

Garsia, A. M. & Wachs, M. L. (1977) A new algorithm for minimum cost binary trees. SIAM J.
Comput. 6(4), 622–642.

Gilbert, E. N. & Moore, E. F. (1959) Variable length binary encodings. Bell Syst. Tech. J. 38,
933–968.

Hu, T. C. (1982) Combinatorial Algorithms. Reading, MA: Addison-Wesley.
Hu, T. C. & Tucker, A. C. (1971) Optimal computer-search trees and variable-length alphabetic

codes. SIAM J. Appl. Math. 21, 514–532.
Huet, G. (1997) The Zipper. J. Funct. Program. 7(5), 549–554.
Karpinski, M., Larmore, L. L. & Rytter, W. (1997) Correctness of constructing optimal alphabetic

tree revisited. Theor. Comput. Sci. 180(1–2), 309–324.
Kingston, J. H. (1988) A new proof of the Garsia-Wachs Algorithm. J. Algorithms 9, 129–136.
Knuth, D. E. (1971) Optimum binary search trees. Acta Inf. 1(1), 14–25.
Knuth, D. E. (1998) The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed.

Reading, MA: Addison-Wesley.

https://doi.org/10.1017/S0956796819000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000194

	FUNCTIONAL PEARLS
	Introduction
	The problem
	The algorithm
	An improved algorithm
	Comparisons and conclusions

