
12

Fragmentation functions: e+e− annihilation to
hadrons, and SIDIS

We now extend our treatment of factorization to cover the distribution of final-state hadrons
in hard processes.

The simplest process is the cross section for inclusive one-hadron production in e+e−

annihilation, Fig. 12.1,

e+e− → γ ∗(q)→ h(p)+X, (12.1)

where the hadron is typically a pion, and, as usual, we work to lowest order in electroweak
interactions. Kinematically the process is the same as inclusive DIS, except that certain
particles are crossed between the initial and final states. We will see that the structure of
the factorization theorem, (12.21), is the same as for DIS. The differences concern the time
ordering of the process: the hard scattering is for a virtual photon to make a partonic state
from a highly virtual time-like photon of momentum q. The place of a parton density is
taken by a new object, called a fragmentation function; it represents the distribution of the
final-state detected hadron resulting from an outgoing parton that originated in the hard
scattering.

Our proof of factorization will introduce two important conceptual changes relative to
DIS. The first is that we need a more detailed examination of soft gluon effects before
we prove they cancel. This is because the detected hadron in the final state prevents the
transition to an uncut amplitude that we used for DIS in Sec. 11.2. We will first use Ward
identities to factorize the soft part, as we did for the Sudakov form factor in Ch. 10. Only
after that can we employ the sum-over-cuts argument to obtain cancellation.

The second change relative to DIS arises from an issue we discussed in Ch. 4 that
concerns final-state interactions. Our proof of factorization relies on the structure of leading
regions as seen in Feynman graphs, which also correspond to certain regions in space-time.
For our arguments to apply to full QCD, we need to assume that these regions are also
correct after non-perturbative effects are included.

We will need to make the assumption that the “breakable string” picture of hadronization
rather than the “unbreakable elastic spring” applies to QCD; see Sec. 4.3.1. (Of course our
arguments would also apply if quarks and gluons were unconfined.) This assumption is
abundantly supported by experimental data, but it is not (yet) derived from QCD. Associated
with this will be a notable jump in the logic of the derivation.
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12.1 Structure-function analysis 427

Fig. 12.1. Cross section for e+e− → h(p)+X.

If, instead, the unbreakable spring picture had been correct, then the partonic state from
the hard scattering would first form a resonance. In this case there would be no necessary
correspondence between the directions of the decay products and of the partons, contrary
to the measured situation with QCD jet physics.

For the DIS structure functions we evaded these issues by treating the uncut amplitude
T μν . But this option is no longer available to us now that we have a detected hadron in the
final state.

After our treatment for the single-hadron-inclusive cross section in e+e− annihilation,
we will have the methods necessary to treat other reactions. For example, factorization and
its proof can readily be generalized to inclusive cross sections with more than one detected
hadron. Another case is semi-inclusive deeply inelastic scattering (SIDIS). This is a cross
section for DIS in which one (or more) particles is detected in the final state. The label
SIDIS is generally applied to single particle production,

e + P → e + π (pB)+X, (12.2)

although the same ideas apply to more general cases.

12.1 Structure-function analysis of one-particle inclusive cross section

12.1.1 Hadronic tensor

As with DIS, the squared amplitude for our process, Fig. 12.1, factorizes into a leptonic
and a hadronic part. We use a structure-function analysis (Drell, Levy, and Yan, 1970) for
the hadronic tensor, which is defined by

Wμν(q, p)
def= 4π3

∑
X

δ(4)(pX + p − q) 〈0|jμ(0)|p,X, out〉 〈p,X, out|jν(0)|0〉

= 1

4π

∑
X

∫
d4z eiq·z 〈0|jμ(z/2)|p,X, out〉 〈p,X, out|jν(−z/2)|0〉 . (12.3)

The primary difference compared with DIS is that the selected hadron is in the final state, so
we cannot eliminate the

∑
X as we did for DIS in (2.18), and we need to explicitly indicate

that the states are out-states. The photon momentum q is now time-like. Our normalization
conventions, both for the states and for Wμν , differ from those of Drell, Levy, and Yan
(1970).

We define Q =
√

q2, and we define the equivalent of the Bjorken variable by

x = 2p · q/Q2. (12.4)
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428 Fragmentation functions

We interpret x as the center-of-mass energy of the detected particle relative to its maximum
value Q/2 (when masses are neglected). The decomposition into structure functions is

Wμν =
(
−gμν + qμqν

q2

)
F1(x,Q2)+

(
pμ − qμp·q

q2

) (
pν − qνp·q

q2

)
p · q F2(x,Q2), (12.5)

which assumes current conservation, parity invariance, and that the detected hadron is either
spinless or has its polarization states summed over. An F3 structure function [cf. (7.3)] is
needed if Z boson exchange is included, since then parity is violated.

The inclusive cross section is

E
dσ

d3 p
= 2α2

Q6
LμνW

μν, (12.6)

where the leptonic tensor is

Lμν = l
μ
1 lν2 + l

μ
2 lν1 − gμνl1 · l2, (12.7)

where l1 and l2 are the momenta of the incoming electron and positron, and where the
electron mass is neglected. Hence

E
dσ

d3 p
= 2α2

Q4

√
1− 4m2

Q2x2

[
F1(x,Q)+ x

4

(
1− 4m2

Q2x2

)
sin2 θF2(x,Q)

]

� 2α2

Q4

[
F1(x,Q)+ x

4
sin2 θF2(x,Q)

]
. (12.8)

Here, m is the mass of the detected hadron, and θ is its angle relative to the electron in the
center-of-mass frame. In the last line, m was neglected.

A standard presentation is

dσ

dx d cos θ
= 3

8
(1+ cos2 θ )

dσT

dx
+ 3

4
sin2 θ

dσL

dx
, (12.9)

where

dσT

dx
= 4πα2

3Q2
xF1(x,Q), (12.10a)

dσL

dx
= πα2

3Q2

[
2xF1(x,Q)+ x2F2(x,Q)

]
. (12.10b)

12.1.2 Averaging with test function

To derive factorization, we will use certain cancellations generalizing those we saw in
Sec. 4.1.1, for the total cross section for e+e− → hadrons, and in Sec. 11.2.1, for DIS. The
cancellations involve terms that differ by whether particular lines are real or virtual, and
thus by change of final state. The proof is clearest if a loop integral involving the momentum
of a particular final-state particle can be routed out through the current vertex rather than
back through other final-state particles. This can be done by averaging the hadronic tensor
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with a test function f (q):

Wμν([f ], p)
def=
∫

d4q f (q) Wμν(q, p)

= 4π3
∑
X

f (pX + p) 〈0|jμ(0)|p,X, out〉 〈p,X, out|jν(0)|0〉 . (12.11)

Here, the square brackets in [f ] act as a reminder that the argument is a whole function, and
not just its value at one point. The integral over q has removed the momentum-conservation
delta function from (12.3), and therefore allows the desired routing of integrals of final-state
momenta.

The actual hadronic tensor is obtained by functional differentiation:

Wμν(q, p) = δWμν([f ], p)

δf (q)
. (12.12)

But the derivation of factorization only applies when the test function has a suitably
slow dependence on Q, so that factorization generally only applies to a locally averaged
quantity. If the actual hadronic tensor has smooth dependence on kinematic variables, the
local average is unnecessary.

12.2 Statement of factorization etc. for e+e− → h(p)+X

I now state the main results for factorization and fragmentation function evolution, all to
be derived in later sections.

12.2.1 Factorization for cross section

The factorized cross section has the form

E
dσ (e+e− → h(p)+X)

d3 p
=
∑

j

∫ 1+

x−

dz

z2
Ek

dσ̂j

d3k
dh/j (z; μ). (12.13)

As usual, this formula is valid up to corrections suppressed by a power of 1/Q. We
use dσ̂j to denote the perturbatively calculable hard-scattering factor, normalized like the
differential cross section for inclusive production of an on-shell massless parton of type j

and 3-momentum k. Like the hard scattering in DIS, it must contain subtractions to prevent
double counting between momentum regions. The 3-momenta, p and k, of the hadron and
parton are made parallel in the overall center-of-mass frame, with a ratio z: p = zk.

The quantity dh/j (z; μ) is the fragmentation function, whose exact definition we will
give later; we approximate its meaning as the number density to find hadron h in the jet
initiated by parton j , with the hadron having a fraction z of the parton’s momentum. The
reality of the jets is evidenced by pictures like Fig. 5.10, which shows an event in DIS.

As with parton densities, this intuitive meaning only applies literally in a super-
renormalizable non-gauge theory. After applying correct definitions and derivations in
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430 Fragmentation functions

Fig. 12.2. Structure of factorization for one-hadron-inclusive cross section in e+e−

annihilation.

QCD, the factorization formula will remain correct, but the number/probability interpreta-
tion will not be really correct. As with parton densities, there is a DGLAP evolution equation
for the fragmentation function. It lets us set the scale μ of the fragmentation functions to be
of order the experimentally dependent quantity Q, so that the hard scattering is calculable
in fixed-order perturbation theory.

The factor 1/z2 in (12.13) arises because of the change of variable between the hadron
momentum on the l.h.s. and the parton momentum on the r.h.s.: with neglect of masses
d3 p /E p = z2 d3k /Ek. If we were to use n space-time dimensions, the factor 1/z2 would
be replaced by 1/zn−2.

The structure of factorization is illustrated in Fig. 12.2. The hard scattering H makes
two or more final-state partons. One of these of momentum k goes into the fragmentation
subgraph, which is labeled C(1) to be consistent with a notation used later. The details of
the proof of factorization will show that Fig. 12.2 is misleadingly simple. There will be
non-trivial cancellations to be proved before we obtain the factorized structure. The figure
also omits reference to the Wilson lines in the definitions of the fragmentation functions.

Where fragmentation functions get used

The most basic situation for using a fragmentation function is the one-hadron-inclusive
cross section in e+e− annihilation, just described.

Straightforward generalizations of the factorization theorem apply to semi-inclusive
DIS (e.g., e + p→ e + π +X), to multiple hadron production in e+e− annihilation, and
to production of hadrons of high transverse momentum in hadron-hadron collisions. All
of these factorization theorems use fragmentation functions for the detected final-state
hadrons; the same fragmentation functions for all these processes. Global fits have been
performed in de Florian, Sassot, and Stratmann (2007); Albino, Kniehl, and Kramer (2008).

Terminology

The Particle Data Group (Amsler et al., 2008, p. 202) uses the term “fragmentation function”
to refer to both a partonic fragmentation function, as in (12.13), and to the following
normalized cross section:

Fh(x,Q2) = 1

σtot

dσ

dx
(e+e− → hX). (12.14)
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I find it preferable to distinguish these concepts, for the same reasons that the concepts of
“structure function” and “parton density” should be distinguished in DIS. So I only use
“fragmentation function” to refer to a partonic fragmentation function.

12.2.2 Renormalization and DGLAP evolution of fragmentation functions

As in the case of parton densities, the basic definitions of fragmentation functions have UV
divergences. The factorization formula uses renormalized fragmentation functions obtained
from bare fragmentation functions by formulae of the form

dh/j (z; μ) = lim
ε→0

∑
j ′

∫ 1+

z−

dρ

ρ
d(0) h/j ′(z/ρ) Lj ′j (ρ; g(μ), ε). (12.15)

(Here, as usual ε = 2− n/2, where n is the space-time dimension.)
There follow DGLAP evolution equations, of the same form (8.30) as for parton

densities:

d

d ln μ
dh/j (z; μ) = 2

∑
j ′

∫ 1+

z−

dρ

ρ
dh/j ′ (z/ρ; μ) Pj ′j (ρ; g(μ)). (12.16)

See Sec. 12.10 below for a calculation that shows the LO kernels have the same value as for
parton densities. The finite evolution kernels are obtained from the renormalization factors:

d

d ln μ
Lj ′j (ρ; g(μ), ε) = 2

∑
j ′′

∫
dρ ′

ρ ′
Lj ′j ′′ (ρ/ρ ′; g, ε) Pj ′′j (ρ ′; g, ε). (12.17)

Just as with parton densities, the convolutions in the above equations turn into multipli-
cations for moments. Let us define

d̃h/j (n; μ) =
∫ 1

0
dz zn−1dh/j (z; μ), L̃j ′j (n; μ) =

∫ 1

0
dρ ρn−1Lj ′j (ρ; μ), (12.18)

etc. Then the renormalization and DGLAP equations are

d̃h/j (n; μ) = lim
ε→0

∑
j ′

d̃(0) h/j ′(n) L̃j ′j (n; g(μ), ε), (12.19)

d

d ln μ
d̃h/j (n; μ) = 2

∑
j ′

d̃h/j ′(n; μ) P̃j ′j (n; g(μ)). (12.20)

12.2.3 Factorization for hadronic tensor

We convert (12.13) to a factorization for Wμν :

Wμν(p, q) =
∑

j

∫ 1+

x−

dz

z2
dh/j (z; μ) C

μν
j (k̂, q; g(μ), μ). (12.21)

The hard-scattering tensor C
μν
j is just like Wμν , except that it is at the partonic level, and

is defined with double-counting subtractions to remove non-short-distance contributions.
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Fig. 12.3. Lowest-order partonic graph for e+e− → quarkj (k̂)+X.

It uses an approximated parton momentum

k̂ = (p+/z, 0, 0T), (12.22)

where we use light-front coordinates such that p = (p+,m2/2p+, 0T).

12.2.4 Projection onto structure functions

We define partonic structure functions F̂ij by applying (12.5) to C
μν
j :

C
μν
j =

(
−gμν + qμqν

q2

)
F̂1j (x/z,Q2)+

(
k̂μ − qμk̂·q

q2

) (
k̂ν − qν k̂·q

q2

)
k̂ · q F̂2j (x/z,Q2).

(12.23)

Hence we get factorization formulae for the structure functions:

F1(x,Q2) =
∑

j

∫ 1+

x−

dz

z2
dh/j (z; μ) F̂1j (x/z,Q2), (12.24a)

F2(x,Q2) =
∑

j

∫ 1+

x−

dz

z3
dh/j (z; μ) F̂2j (x/z,Q2), (12.24b)

and similarly for the transverse and longitudinal cross sections:

dσT

dx
=
∑

j

∫ 1+

x−

dz

z
dh/j (z; μ)

dσ̂T ,j (x/z)

d(x/z)
, (12.25a)

dσL

dx
=
∑

j

∫ 1+

x−

dz

z
dh/j (z; μ)

dσ̂L,j (x/z)

d(x/z)
. (12.25b)

12.3 LO calculation

Even without a proof of factorization we can see how to get the lowest order of the hard
scattering. As in DIS, we just need the LO calculation of one-parton-inclusive scattering,
from the graph of Fig. 12.3:

C
μν
j =

e2
jNc

4π

∫
d3k2

(2π )32|k2| (2π )4δ(4)(q − k̂ − k2) Tr γ μ/̂kγ ν/k2

= e2
jNcδ(x/z− 1)

[
−gμν − 2

Q2
(2k̂μk̂μ − qμk̂ν − k̂μqν)

]
. (12.26)
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12.4 Introduction to fragmentation functions 433

We have included a factor Nc, since we always sum over parton color in the final state.
(The fragmentation function will have a color average.) In the first line, we integrate over
the momentum k2 of what we can term the unobserved parton, the one not associated
with the observed hadron. In the calculation of the hard scattering the external partons are
set on-shell, whereas the actual parton momenta are off-shell. In particular, k̂ denotes the
approximated on-shell momentum given in (12.22).

We deduce the partonic structure functions

F̂1j = e2
jNcδ(x/z− 1)+O(αs), F̂2j = −2e2

jNcδ(x/z− 1)+O(αs), (12.27)

which apply to both quarks and antiquarks.
From the factorization formula, we deduce that at the hadronic level

F1 = 1

x

∑
quarks j

e2
jNc

(
dh/j (x)+ dh/j̄ (x)

)+O(αs), (12.28a)

F2 = −2

x2

∑
quarks j

e2
jNc

(
dh/j (x)+ dh/j̄ (x)

)+O(αs). (12.28b)

We see that at lowest order an analog of the Callan-Gross relation applies: F2 = −2x−1F1.
Therefore the angular distribution of the hadron is given by the same 1+ cos2 θ factor as
for the elementary e+e− → qq̄ process:

E
dσ

d3 p
= α2

Q4x
(1+ cos2 θ )

∑
quarks j

e2
jNc

(
dh/j (x)+ dh/j̄ (x)

)+O(αs). (12.29)

From the inclusive cross section formula (12.8) and the total cross section formulae in
Sec. 4.1, we find that the normalized distribution in x directly reflects the values of the
fragmentation functions, weighted by quark charge squared:

dσ (e+e− → hX)/ dx

σ (e+e− → hadrons)
=
∑

quarks j e2
j

(
dh/j (x)+ dh/j̄ (x)

)
∑

quarks j e2
j

+O(αs). (12.30)

12.4 Introduction to fragmentation functions

The intuitive idea of a fragmentation function to represent the number density for hadrons
in the jet induced by a parton is quite natural. Light-front quantization, which we studied
in Sec. 6.6, gives a natural first attempt at a formal definition of fragmentation functions
that directly implements the desired distribution. We now present these definitions, which
are quite simple. They provide an orientation for the more complicated results in QCD.

Since the number interpretation depends on the use of the canonical commutation
relations for bare fields, the definitions in this section are for bare fragmentation functions.
Bare quantities are denoted by a subscript “(0)”. For a statement of the renormalization
properties, see Sec. 12.2.2.
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12.4.1 Kinematics

Our implementation uses two different coordinate frames, called the hadron and parton
frames, with components denoted by subscripts h and p respectively. Thus for a vector V ,
we write

Vh =
(
V +h , V −h , Ph T

)
, Vp =

(
V +p , V −p , Pp T

)
, (12.31)

in the hadron and parton frames. We will arrange that the plus components are the same in
both frames, so that for this component we can drop the frame’s subscripts: V +h = V +p =
V +.

The hadron frame is the one already used where the detected hadron has zero transverse
momentum: ph =

(
p+,m2/(2p+), 0T

)
. The actual parton momentum, as in Fig. 12.2, has

non-zero transverse momentum:

kh =
(
k+, k−h , kh T

) = (
p+/z, k−h , kh T

)
. (12.32)

Of course, the approximated parton has zero transverse momentum: k̂h = (k+, 0, 0T) =
(p+/z, 0, 0T).

For defining the number density of hadrons in the jet induced by a parton of momentum
k, we need a frame in which it is the parton that has zero transverse momentum, and the
hadron has non-zero transverse momentum. For this we use the parton frame, defined to be
obtained from the hadron frame by the following Lorentz transformation:

V +p = V +h ,

V −p =
k2
h T

2(k+)2
V +h + V −h −

kh T

k+
· V h T,

V p T = − kh T

k+
V +h + V h T,

(12.33)

a Lorentz transformation that changes as k varies. Hence the parton-frame components are

kp =
(
k+, k−p , 0T

) = (
k+, k−h − k2

h T/(2k+), 0T
)
, (12.34a)

pp =
(

zk+,
m2 + k2

h Tz2

2zk+
,−zkh T

)
. (12.34b)

Note carefully the factor of z and the reversed sign between the parton transverse momentum
in the one frame and the hadron transverse momentum in the other frame.

Although the parton frame is a natural one for defining fragmentation functions as
number densities, it is inconvenient for derivations of factorization. The problem is that,
in a physical process, there is an integral over parton momentum, and so the parton-
frame axes are not fixed. Neither parton momenta nor the resulting parton-frame axes can
be determined from experimentally measured quantities. Therefore we will express the
definitions of fragmentation functions in hadron-frame coordinates. In the derivation of
factorization, we will use a hadron frame defined in terms of measured quantities.
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12.4.2 General definition of fragmentation function

We define the fragmentation function as the number density for finding a hadron of flavor
h in a parton of flavor j , given the hadron’s fractional plus momentum, and its transverse
momentum:

d(0) h/j (z, pp T) 〈j ; k1|j ; k2〉 def= Trcolor

Nc,j

〈j ; k1|j ; k2〉 dNj/h

dz dn−2 pp T

= Trcolor

Nc,j

1

2z(2π )n−1

∑
X

〈j, k1|p,X, out〉 〈p,X, out|j, k2〉 .

(12.35)

Here |j, k1〉 denotes a partonic state created by a light-front creation operator, i.e.,
a
†
j,k+1,p,k1,p T

|0〉 . A number density is obtained from matrix elements of normalized states

for partons and hadrons. Since we wish to use momentum eigenstates, we bring in an
off-diagonal matrix element in (12.35). To cover the generalization to QCD, we define
the fragmentation function to include an average over parton color. We let Nc,j be the
number of colors for field φj ; in QCD it is 3 for a quark and 8 for a gluon. Then
the color average is implemented as 1/Nc,j times a trace over color indices for the
parton.

Next we use formulae like (6.64a) to express the annihilation and creation operators in
terms of fields, and use methods similar to those used for the pdf in Sec. 6.7.3.

12.4.3 Scalar quark

For a scalar quark we get

d(0) h/j (z, pp T) = Trcolor

Nc,j

∑
X

k+

z

∫ dx−p dn−2xp T

(2π )n−1
eik+x−p

× 〈0|φ(0)
j (x/2)|p,X, out〉 〈p,X, out|φ(0)

j (−x/2)†|0〉 , (12.36)

where xp = (0, x−p , xp T). In the hadron frame, we get

d(0) h/j (z,−zkh T) = Trcolor

Nc,j

∑
X

k+

z

∫
dx−h dn−2xh T

(2π )n−1
eik+x−h −ikh T·xh T

× 〈0|φ(0)
j (x/2)|p,X, out〉 〈p,X, out|φ(0)

j (−x/2)†|0〉

= Trcolor

Nc,j

k+

z

∫
dk−h

(2π )n
(12.37)
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where the vector x has hadron-frame components xh = (0, x−h , xh T). The integrated frag-
mentation function is

d(0) h/j (z)
def=

∫
dn−2 pp T dh/j (z, pp T)

= Trcolor

Nc,j

∑
X

k+zn−3
∫

dx−h
2π

eik+x−h

× 〈0|φ(0)
j (x/2)|p,X, out〉 〈p,X, out|φ(0)

j (−x/2)†|0〉

= Trcolor

Nc,j

k+zn−3
∫

dk−h dn−2kh T

(2π )n
(12.38)

where now xh = (0, x−h , 0T). The factor zn−3 is perhaps unexpected, given the corresponding
formula (6.124) for a parton density. It arises from the normalization of the hadron state,
and then from the change of variable from the parton to the hadron frame.

12.4.4 Unpolarized Dirac quark

For a Dirac field, the derivations are readily modified to give

d(0) h/j (z, pp T) = Trcolor

Nc,j

TrDirac

4

∑
X

1

z

∫
dx−h dn−2xh T

(2π )n−1
eik+x−h −ikT·xh T

× 〈0|γ+ψ (0)
j (x/2)|p,X, out〉 〈p,X, out|ψ̄ (0)

j (−x/2)|0〉

= Trcolor

Nc,j

TrDirac

4

1

z

∫
dk−h

(2π )n
γ+ (12.39)

Here we assume we work with an unpolarized situation, where there is a spin average on
the quark; this gives a factor TrDirac /2. There is another factor of 1

2 that arises in the same
way as for the pdf for a Dirac parton. The corresponding integrated fragmentation function
is

d(0) h/j (z) = Trcolor

Nc,j

TrDirac

4

∑
X

zn−3
∫

dx−h
2π

eik+x−h

× γ+ 〈0|ψ (0)
j (x/2)|p,X, out〉 〈p,X, out|ψ̄ (0)

j (−x/2)|0〉

= Trcolor

Nc,j

TrDirac

4
zn−3

∫
dk−h dn−2kh T

(2π )n
γ+ (12.40)
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12.4.5 Unpolarized Dirac antiquark

The same approach works for fragmentation functions in an antiquark. The result is that
(12.40) can be used to define the fragmentation function of an antiquark, just with the
positions of the ψ and ψ̄ field exchanged, and the natural change in the flow of indices.

12.4.6 Renormalization

In a renormalizable theory, the integral over k− and kT for an integrated fragmentation
function has a UV divergence quite similar to that of a parton density. Renormalization
works in the same way as for parton densities (Secs. 8.3 and 11.4). This leads to the
statement of renormalization already given in (12.15).

12.4.7 Polarized Dirac quark

The hard scattering can generate a polarized quark, whose state is parameterized (Sec. 6.4.1)
by a helicity λ and a transverse Bloch vector sT. To deal with the most general case, we
make the following replacement in the definition of the fragmentation function (integrated
or unintegrated):

1

4
Tr

Dirac
γ+ . . . �→ 1

4
Tr

Dirac
γ+(1+ γ5λ− γ5γ T · sT) . . . (quark), (12.41a)

1

4
Tr

Dirac
γ+ . . . �→ 1

4
Tr

Dirac
γ+(1− γ5λ− γ5γ T · sT) . . . (antiquark), (12.41b)

These projections are applied in the hadron frame. They arise from the wave functions used
in light-front quantization, which correspond to those for massless Dirac particles. They
are obtained from (A.27), which is surrounded by factors of γ+ from the formula (6.64b)
that gives the light-front annihilation operator. This reverses the sign of the helicity term
relative to (A.27). Note also the reversal of the sign of the helicity terms between the quark
and antiquark cases. The definitions of λ and sT are normalized to have a maximum value
of unity (for a pure state).

The effects of polarization depend on the situation:

• For an integrated fragmentation function, the situation is like that for the pdfs. From a
combination of parity invariance and conservation of angular momentum about the z

axis, we find the following.
– If the measured hadron is spinless, like a pion, or if its polarization is not detected,

then there is no dependence on λ and sT. Only the unpolarized fragmentation function
is non-zero; our original definition suffices. This is the most common case.

– If the measured hadron has spin 1
2 , then there are polarized fragmentation functions

comparable to the �f and δT f parton densities, with the analogous interpretations.
– It is possible to generalize the definition of the fragmentation function to have two

(or more) nearby measured hadrons instead of one. In dihadron fragmentation the
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azimuthal distribution of the hadrons can be correlated with the transverse spin of the
quark, and an appropriate fragmentation function is defined (Collins, Heppelmann,
and Ladinsky, 1994), for which measurements can be found in Airapetian et al. (2008);
Vossen et al. (2009); Wollny (2009).

– For a spin-1 gluon, further possibilities arise which have not been explored in the
literature.

• For a kT-dependent unintegrated fragmentation function, angular momentum can be
taken up by the azimuthal dependence of the measured hadron. The possibilities are
described by several fragmentation functions:
– The unpolarized fragmentation function defined above, which gives a uniform distri-

bution in the azimuthal angle of kT or pp T, i.e., this fragmentation function depends
only on the size of the transverse momentum.

– The Collins function. This is obtained from the γ+γ5γ T · sT part of the trace (Collins,
1993). It gives a characteristic sin φ dependence, where φ is the azimuthal angle of the
hadron relative to the quark spin. See Boer (2008) for a review of recent theoretical
and experimental work.

– Other possibilities involving a detected hardron polarization. These have undergone
little investigation.

See Sec. 13.4.1 for more details.

12.4.8 Sum rules and symmetry properties

Momentum sum rule

In a fragmentation function, we have a state created by a light-front creation operator:
a
†
j,k+,kT

|0〉, and we project it onto a particular final state |p,X, out〉. The total plus momen-
tum in the final state is k+. We can measure the plus momentum in the final state by
integrating the fragmentation function over all p, with a weight p+, and summing over all
hadron types. Dividing by k+ gives the momentum sum-rule:

∑
h

∫ 1

0
dz zd(0) h/j (z) =

∑
h

∫ 1

0
dz zdh/j (z) = 1. (12.42)

The derivation applies to the bare quantities. As with the sum rules for parton densities,
it implies that there is no UV divergence in the sum over h of the second moment, and
therefore that if we use a suitable renormalization scheme, like MS, the sum rule applies
also to the renormalized fragmentation functions, as indicated above.

Flavor relations

There is one fragmentation function for each combination of hadron type and parton
type. In QCD, even with just pions, and light quarks and antiquarks and gluons, this
gives 21 fragmentation functions. But many of these can be related by applying isospin
transformations and charge conjugation transformations. This leaves just four independent
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Fig. 12.4. Leading regions in gauge theory for one-hadron-inclusive cross section. The
subgraphs H are the hard subgraphs, and there can be any number (greater than 2) of
collinear subgraphs C(1), C(2), . . . , of which two examples are shown. The soft subgraph
may have any number of connected components, including zero. In (b), each gluon from
the soft subgraph may connect to any collinear subgraph.

fragmentation functions

dπ+/u(z) = dπ−/d (z) = dπ−/ū(z) = dπ+/d̄ (z), (12.43a)

dπ−/u(z) = dπ+/d (z) = dπ+/ū(z) = dπ−/d̄ (z), (12.43b)

dπ+/s(z) = dπ0/s(z) = dπ−/s(z) = dπ+/s̄(z) = dπ0/s̄(z) = dπ−/s̄(z), (12.43c)

dπ+/g(z) = dπ0/g(z) = dπ−/g(z). (12.43d)

From these we obtain π0 fragmentation functions of u and d quarks:

dπ0/u(z) = dπ0/ū(z) = dπ0/d (z) = dπ0/d̄ (z) = 1

2
[dπ+/u(z)+ dπ−/u(z)]. (12.43e)

by a Clebsch-Gordan decomposition of the final state. Only isospin 1
2 and 3

2 are possible
for the X part of the state when the initiating parton has I = 1

2 and the detected hadron has
I = 1.

12.5 Leading regions and issues in a gauge theory

In a gauge theory, like QCD, the power-counting rules of Ch. 5 show that the general leading
region (and its associated PSS) has the form specified by Fig. 12.4. Each electromagnetic
vertex is part of a hard-scattering subgraph H , and out of each H exit two or more groups of
lines of high energy and low virtuality. These groups each go into a collinear subgraph which
crosses the final-state cut. To the collinear subgraphs may be connected a soft subgraph S

(which consists of any number of connected components and can be absent).
We define the first collinear subgraph C(1) to be the one attached to the detected hadron.

Consequently the direction for the corresponding collinear singularity of the region’s PSS is
fixed by p. The distinctness of the collinear configurations implies that the different collinear
groups are treated as being at wide angle to each other. However, the angles of the other
collinear groups are to be integrated over. When two or more of the directions get close, the
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Fig. 12.5. Leading regions in non-gauge theory.

originally separate collinear configurations combine into a single collinear configuration,
i.e., the corresponding jets merge into a single jet. In defining the contribution CR� for a
region R with N collinear groups, there are subtractions for smaller regions, in particular for
regions with fewer collinear groups. This results in a suppression of CR� where the angles
of two or more collinear groups approach each other. Note that before subtractions there is
a logarithmic enhancement after angular integration between a separated jet configuration
and a merged jet.

The basic situation is more easily visualized by the leading regions in a model theory
without gauge fields, in Fig. 12.5. Then there is no soft subgraph, and each collinear
subgraph is initiated by a single parton, which can correspond to any of the fields in the
theory. For a leading power, only one collinear line on each side of the final-state cut
initiates each collinear subgraph, whose final state is essentially a jet.

To return to QCD, we have any number of extra gluons joining each collinear subgraph
to the hard subgraphs, and we have a possible soft subgraph with gluonic couplings to any
of the collinear subgraphs. Basically all these extra gluons have the polarization that we
characterize as a Grammer-Yennie K gluon, as defined in Sec. 11.2.3.

Initially, each diagram like Fig. 12.4 codes a particular region of momentum space for
some generic graph. According to the subtractive methods of Ch. 10, we reinterpret the
diagram as an actual Feynman graph with integrals over all internal momenta, but with
approximations applied that are appropriate for the region, and with subtractions to prevent
double counting. Thus to leading power, the complete hadronic tensor Wμν of (12.3) is a
sum over all cases of Fig. 12.4.

12.5.1 Complication 1: super-leading regions

But one annoying extra possibility is generated by collinear groups that are purely gluon ini-
tiated. The amplitude between a photon and two gluons is prohibited by charge-conjugation
invariance, so the smallest case is three collinear groups (Fig. 12.6). Just as we found with
DIS in Secs. 11.2.3 and 11.3, there are graph-by-graph super-leading contributions, when
all the external gluons of a collinear subgraph are K gluons. The Ward-identity arguments
of Sec. 11.9 show that there is a cancellation after a sum over all graphs for the hard
scattering. The result is that the gluons attaching to the hard subgraphs combine to give the
operator defining the collinear factor, with its Wilson line.
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Fig. 12.6. A possible leading region in gauge theory, where all the jets are gluon initiated.
Possible extra collinear gluons and a soft subgraph are not shown, for simplicity.

Fig. 12.7. To illustrate soft cancellation. The quarks and the pion (modeled by an elementary
scalar field) form two collinear groups. The gluon is soft, and emitted off an internal
line.

12.5.2 Complication 2: soft gluons and sum-over-cuts

Another complication is that to get the expected factorization theorem we need to show the
soft factor cancels. The basic tool for getting the necessary cancellations is a sum-over-cuts.
In the case of DIS, this was implemented in the conversion from a cut hadronic tensor Wμν

to the corresponding uncut quantity T μν , in Sec. 11.2. But this argument is insufficient
for our current process, because the final-state cut is restricted by being anchored at the
detected hadron. This prevents the basic sum-over-cuts argument from combining some
of cut graphs relevant to the cancellation of soft gluon effects, and we will need a more
powerful argument to be given later.

As a simple example, consider the graphs in Figs. 12.7 and 12.8. We have chosen a
model in which the pion is replaced by an elementary scalar field with a Yukawa coupling
to the quarks. The pion analog may or may not be color singlet. We choose kinematics in
which there is a quark and an antiquark jet, with the quark collinear to the pion, and then
we add a soft gluon.

https://doi.org/10.1017/9781009401845.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.012


442 Fragmentation functions

+ Graphs with gluon attached to the “pion” line ( ).

Fig. 12.8. The same as Fig. 12.7, but with soft gluon emission off the external quark in the
upper jet.

First consider graphs where the gluon is emitted off the internal quark line (Fig. 12.7).
Graphs (a) and (b) are related by moving the final-state cut, as are graphs (c) and (d). But
cancellation within each pair of graphs is not sufficient to get a soft gluon cancellation; see
problem 12.4 and Sec. 12.5.3. Graphs (c) and (d) are needed in the cancellation, but are not
related to (a) and (b) by moving the final-state cut. Moreover, the cancellation will need,
among others, a term that behaves as if the cut were moved to the leftmost quark-antiquark
pair in graph (a); but this cut does not keep the pion analog in the final state.

To demonstrate cancellation of the soft subgraphs, we first factorize the soft subgraph,
just as for the Sudakov form factor in Ch. 10. In our example this requires us to sum all
ways of attaching the soft gluon to the lines in the collinear graph, and thus to include the
diagrams with external-line emission of the soft gluon (Fig. 12.8). After applying the soft
approximation and Ward identities, we get a factorized result:

× (12.44)

Here the first factor is just as in a non-gauge theory, and is a product of two collinear
factors. The soft gluon is in second factor, where it is attached to eikonalized quark lines
(i.e., Wilson lines). The sum-over-cuts argument applies to the soft factor:

(12.45)

and as with the corresponding argument for the total cross section in Sec. 4.4, we will see
in Sec. 12.7 that this implies that the integration is not trapped in the soft region.
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12.5.3 KLN theorem is not sufficient

The above summary indicates that the cancellation of soft gluons is obtained somewhat
indirectly: first the soft part is factorized, and then the sum-over-cuts argument is applied.
Now the soft-gluon issue is a generalization of the IR-divergence problem in QED. It is
therefore tempting to suppose that a more direct proof of cancellation can be done by
appealing to the theorem of Kinoshita (1962) and Lee and Nauenberg (1964) (KLN theo-
rem). This theorem is well known in applications to QED, and it also applies to the e+e−

total cross section discussed in Sec. 4.1. The KLN theorem (together with minor gener-
alizations) applies when the canceling terms are related by a sum-over-cuts of individual
graphs.

With a massless gluon, the KLN theorem does indeed show that the actual IR divergences
cancel. These arise from where the gluon momentum goes to zero, and therefore only from
graphs like Fig. 12.8, where the IR gluons are emitted from external lines. In this case the
sum-over-cuts argument succeeds. But for merely soft gluons we use a much broader range
of gluon momenta: any that are much less than Q and central in rapidity. Then internal line
emission, Fig. 12.7, is also important.

To see this explicitly, we apply power-counting from Ch. 5 to the loop momenta defined
in Fig. 12.7(a). We characterize the relative transverse momentum of the upper collinear
lines by λ, so that the pion-quark invariant mass is of order λ2. We let the size of the soft
momentum l be of order λS in all components. The size of the denominator of an internal
line carrying soft and collinear momenta is then

(k + l)2 −m2
q = O(λ2)+O(QλS). (12.46)

For lines next to an external line attachment, the λ2 term is missing:

(k − p + l)2 −m2
q = O(QλS), (12.47)

because the momentum k − p is exactly on-shell.

IR gluon: λS � λ2/Q

When λS is sufficiently small, much less than λ2/Q, graphs with emission from external
lines give logarithmic power-counting, from the external line factors (12.47) and the gluon
line. This gives an IR divergence in the graphs of Fig. 12.8, if the gluon is massless. Internal
line emission, Fig. 12.7, is suppressed because a denominator of order QλS is replaced by
a much larger denominator of order λ2; see (12.46).

Hence in this region only external line emission is important, and the KLN theorem
applies.

Harder gluon: λS � λ2/Q

When the contrary situation holds, i.e., λS � λ2/Q, internal-line emission, Fig. 12.7,
dominates. In this case those collinear denominators that carry soft momentum are of order
λSQ; collinear denominators without a soft momentum have the much smaller value λ2.
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Relative to a graph without the soft gluon, internal line emission has two collinear
denominators of order λSQ, and we get logarithmic power-counting, and hence a contribu-
tion at leading power. But for external line emission, a second collinear denominator λ2 is
replaced by an extra larger λSQ denominator, which is much larger and therefore leads to
a suppression.

Borderline: λS ∼ λ2/Q

In the intermediate range of gluon momentum both internal and external emission are
equally important.

Combination is simple

The Ward-identity argument for soft gluons combines all the above contributions and
applies independently of the relative size of λS and λ. We get a coherent sum over gluon
emission from the whole jet, and the result is as if the gluon were emitted from a single
quark, as in the right-hand factor in (12.44). In this factor we have uniform power-counting
independently of the relative size of λS and λ.

12.6 Which gauge to use in a proof?

Our characterization of leading regions was appropriate to Feynman gauge. But, as we saw
in Sec. 5.5, the situation is gauge dependent.

The most notable effect is in the axial gauge, n · A = 0, for which numerator of the
gluon propagator is (5.40). We choose the gauge-fixing vector n proportional to q, i.e.,
to be at rest in the overall center-of-mass frame (Collins and Sterman, 1981). Then the
enhancement of gluons connecting a collinear subgraph to a hard subgraph is removed.
Regions with extra gluons connecting collinear to hard subgraphs, as in Fig. 12.4, are now
power-suppressed. Regions with gluon-generated jets, Fig. 12.6, are merely leading instead
of super-leading. To see this, we observe that in the rest frame of a collinear momentum, the
gauge-fixing vector n is approximately a light-like vector w2, and that the same light-like
vector can be used in the Grammer-Yennie K term, (11.6), when the gluon attaches to the
hard scattering. The K term then gives zero, because the w

νj

2 factor in (11.6) contracts with
a gluon propagator which is being treated as if it were in w2 · A = 0 gauge.

More formally, consider a collinear subgraph for a region R, and let w1 be the light-like
vector for the subgraph’s momenta on the PSS for the region. We let w2 be the conjugate
light-like vector used in the Grammer-Yennie decomposition (11.6) for the attachment of a
collinear gluon to the hard subgraph. Define light-front coordinates such that w

μ
1 = δ

μ
+ and

w
μ
2 = δ

μ
−. Then for a collinear momentum k, its contraction with the gauge-fixing vector

is k · n � k+n− = k · w2n · w1. By scaling n we can set n− = 1, and therefore to leading
power, k · n � k · w2, i.e., we can replace n by w2 on collinear gluons. The w2 factor in the
K-gluon definition gives zero when contracted into the approximated propagator.

In the n · A = 0 gauge, a Wilson line in direction n is simply unity. So if this Wilson
line were used in the definition of a fragmentation function or parton density, the Wilson
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Fig. 12.9. Leading regions in gauge theory for one-hadron-inclusive cross section, now in
n · A = 0 gauge for case of (a) two and (b) more collinear groups.

line could be ignored in the n · A = 0 gauge. Therefore such a definition has the same form
as in a non-gauge theory.

But we still have a soft subgraph, unlike the case in a non-gauge theory. The resulting
leading regions are illustrated in Fig. 12.9. A further advantage of an axial gauge is that
Ward identities in a non-abelian theory are simple: they are essentially the same as in an
abelian theory, without the terms involving Faddeev-Popov ghosts.

On all of these points, the axial gauge is superior to the Feynman gauge. However,
one issue reverses the situation. This is that the necessary contour deformation out of the
Glauber region is often obstructed in axial gauge.

Recall that the Glauber region is where the longitudinal momentum of a gluon is
much less than its transverse momentum. The Ward-identity method to extract soft gluons
from a collinear subgraph uses an approximation of the Grammer-Yennie type. But the
approximation fails in the Glauber region. In Feynman gauge, the normal causal structure
of Feynman denominators allows a deformation out of the Glauber region; the argument
in Sec. 5.5.10 applies to the process we are considering, since all the partons are outgoing
from a single interaction point.

But in the axial gauge there are unphysical singularities 1/k · n in the gluon propagator,
and these have the potential to obstruct the contour deformation.

Consider, for example, the vertex graph Fig. 5.21 for the Sudakov form factor, which
also appears as a subgraph in hadron production in e+e− annihilation. In Feynman gauge,
we get out of the Glauber regions the gluon momentum k, by using any deformation of the
form

k+ �→ k+ + iC, k− �→ k− − iD, (12.48)

where both C and D are non-negative, and at least one is positive. In an axial gauge, we
have 1/k · n singularities, which are principal value, and therefore prevent any deformation
on k · n = k+n− + k−n+. The non-deformation can be satisfied by setting C/D = n+/n−,
which requires that n be time-like. If we use the center-of-mass frame, and choose n ∝ q,
then we need C = D, so that on the deformed contour the imaginary parts of k obey
�k0 = 0 and �k3 > 0. The gauge condition in use here is A0 = 0.

https://doi.org/10.1017/9781009401845.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.012


446 Fragmentation functions

More generally, as in Fig. 12.9, we can have extra collinear subgraphs, and multiple soft
gluon loops. Consider a soft momentum k routed out through one collinear subgraph and
back through another. Let the light-like directions for the collinear subgraphs be w1 and
w2. Then in the collinear subgraphs we have propagators like

1

(k1 − k)2 −m2 + i0
= 1

−2k · w1 × positive+ · · · + i0
, (12.49a)

1

(k2 + k)2 −m2 + i0
= 1

2k · w2 × positive+ · · · + i0
. (12.49b)

We avoid these singularities by deforming with imaginary parts such that �k · w1 < 0 and
�k · w2 > 0. In addition, we require �k0 = 0 to avoid the axial gauge singularities, and
then �k3 > 0. The Coulomb gauge, (10.156), is also compatible with such a deformation:
its unphysical singularities are not operative in the Glauber region, where k± � kT.

While this all appears to work for inclusive processes in e+e− annihilation, it does not
help in other processes we consider. For example, for SIDIS (Sec. 12.14) the avoidance
of poles in collinear propagators will restrict the deformations incompatibly with the axial
gauge. In an equivalent of (12.48), we will need D to be zero: k+, but not k−, is not to
be deformed. In the Drell-Yan and other reactions in hadron-hadron collisions (Ch. 14)
we will need more elaborate arguments. Different parts of the proof will need different
deformations, some on plus-components and some on minus-components of loop momenta;
such different deformations are prevented by an axial gauge.

The offending singularities for the axial gauge are in a gauge-dependent part of the
propagator, so their effects should cancel in the final result for a gauge-invariant amplitude.
What is not clear is how to make this demonstration while at the same time preserving the
rest of a factorization proof, and to the best of my knowledge has not been done.

So we conclude that for fully general and reliable proofs one should use Feynman gauge.
Even if we can avoid the problems of axial (or Coulomb) gauge for a subset of processes,
the methods of proof do not extend to other important cases.

In summary, here is a list of possible approaches, including some not mentioned
above:

• Time-like axial gauge. This gave the first good approximation to a proof (Collins and
Sterman, 1981) of factorization in e+e− annihilation. The leading regions and the Ward
identities are relatively simple, but the Glauber region cannot be handled for more general
processes.

• Coulomb gauge. The extra singularities in the gluon propagator are 1/k2 instead of
1/n · k, which improves the Glauber problem, but not sufficiently for a general process.
In addition, there are complications in setting up the Coulomb gauge in a non-abelian
theory.

• A non-covariant generalization of the Feynman-type gauges proposed by Sterman (1978,
Sec. V). The extra gluon connections between collinear and hard subgraphs are sup-
pressed, but the unphysical singularities are now off the real axis, so at a first approxi-
mation this allows a contour deformation out of the Glauber region. But the singularities
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are such as not to allow all the needed contour deformations, and definitely not in
semi-inclusive DIS.

• Light-cone gauge, where n is light-like. This suppresses extra connections from a
collinear to a hard subgraph, but only for one collinear direction. So this gauge is
of use in ordinary fully inclusive DIS, where the only direction of collinearity is that
of the target hadron. But the light-cone gauge does not help when there are multiple
directions of collinearity. This gauge also has problems with rapidity divergences, which
fail to cancel in transverse-momentum-dependent parton densities and fragmentation
functions (Ch. 13).

• Covariant gauge.
• A more recent and very popular approach is that of soft-collinear effective theory (Flem-

ing, 2009). See Sec. 15.9 below for my comments.

12.7 Unitarity sum over jets/sum over cuts

Before we go to the proof of factorization for the process (12.1), it is useful to examine in
its simplest setting a method that is repeatedly used in proofs of factorization. The method
is that of summing over cuts of a region subgraph (for a collinear or soft region) when
there are no detected final-state particles. The result is that momenta in the region subgraph
are not trapped in regions of low virtuality after the sum-over-cuts, whereas momentum
integrations are trapped for individual cut diagrams.

In this section, we examine the simplest case, which is for the collinear subgraphs
C(2), . . . , C(N) in the leading regions, Fig. 12.5, for a non-gauge theory. Once we have
proved the momentum integrals are not trapped in these subgraphs, we can absorb these
subgraphs in the hard subgraph, so that the effective leading regions are those in Fig. 12.2.
It has a single collinear subgraph, C(1), the one containing the detected hadron. Precisely
because the cut of C(1) is anchored to include the detected hadron, the sum-over-cuts
argument fails for this one subgraph.

We combine as a group the sum of region graphs that are related by moving the final-state
cut to cross different parts of the collinear subgraphs in Fig. 12.5. The cuts can be applied
independently to each collinear subgraph C(α). We use a version of the Cutkosky (1960)
rules to relate the sum-over-cuts of C(α) to corresponding uncut amplitudes:

(12.50)

In the overall center-of-mass frame, we write the momenta of the subgraph’s lines as
lαi = (Eαi, lαi), with the index i labeling the lines.

First we convert the Feynman graphs to time-ordered graphs (exactly as for x+ pertur-
bation theory in Sec. 7.2). The integrand in each term in time-ordered perturbation theory
corresponds to a sequence of intermediate states with energy denominators:

I (b) =
b−1∏
a=1

[
i

E − Ea + iε
(ig)

]
2πδ(E − Eb)

n∏
c=b+1

[
(−ig)

−i

E − Ec − iε

]
. (12.51)
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Here there is a set of n intermediate states, with state number b being cut. The part to the
right of the final-state cut is a complex-conjugated amplitude. The energy of state a is Ea

when all its lines are on-shell, and the external energy entering from the hard scattering
is E = k0

α . Multiplying the above formula is a common factor that depends only on the
3-momenta of the lines, and is independent of the position of the cut.

It is easily proved that the sum-over-cuts gives

n∑
b=1

I (b) = (ig)n−1
n∏

a=1

i

E − Ea + iε
+ (−ig)n−1

n∏
c=1

−i

E − Ec − iε
. (12.52)

The proof is made by using the identity

2πδ(E − Eb) = i

E − Eb + iε
+ −i

E − Eb − iε
, (12.53)

and showing that in the sum over b, there is a cancellation of all the resulting terms except
for the two on the r.h.s. of (12.52). Converting back to Feynman perturbation theory gives
(12.50).

We now use the same idea as with the e+e− total cross section in Sec. 4.4. This uses
the property that all the poles in E are on one side of the real axis in each uncut collinear
subgraph on the r.h.s. of (12.52). We arrange to deform the integration over E, so that the
contour no longer goes close to the poles. The propagators are now far off-shell, and we can
treat the collinear graphs C(2) to C(N) as part of the hard scattering. Effectively the leading
regions are of the form of Fig. 12.2, where the only collinear subgraph is the one containing
the detected hadron.

To implement the contour deformation, we use the averaged hadronic tensor defined in
Sec. 12.1.2. This enables us to route the total momentum kα of each collinear subgraph
through the hard scattering and out at the virtual photon vertex. The averaging function
is then f (

∑N
α=1 kα), and we do not have to route each kα back through another collinear

subgraph. The averaging function is slowly varying as a function of Q, and the hard
scattering involves dominantly highly virtual momenta, so neither obstructs the contour
deformation.

In reality, the hard subgraph can have collinear and soft singularities, but these
are suppressed by subtractions. When we deform the E integration for a collinear
subgraph, singularities in the hard scattering must be crossed. But the resulting con-
tributions are power-suppressed because of the subtractions, and we therefore ignore
them.

12.8 Factorization for e+e− → h(p)+X in gauge theory

The proof of factorization in Feynman gauge uses the methods of Ch. 10 supplemented by
the non-abelian Ward-identity results for K gluons in QCD given in Sec. 11.9. Given these
techniques and the associated graphical notation, the proof can be given quite quickly. Any
issues about the accuracy of the proof really concern the earlier work.
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Fig. 12.10. Momentum routing for Fig. 12.7. The gluon is treated as soft, and the quarks as
collinear in one of two directions.

A new feature relative to DIS is that the cancellation of the soft subgraphs occurs at a
late stage. Therefore much of the proof will apply equally to situations (Ch. 13) where the
soft cancellation does not happen because of more stringent conditions on the final state.

The proof starts from the leading regions symbolized diagrammatically in Fig. 12.4.

12.8.1 Definition of approximators

We now apply the principles for making the approximator for a region that we formulated
in Secs. 10.4 and 10.6.

Momentum routing

Soft loop momenta flow between the soft subgraph into collinear subgraphs. We define
them to flow outwards to the electromagnetic vertex. As illustrated in Fig. 12.10, to avoid
routing soft momenta back through the final state of a collinear graph, we route them out of
the electromagnetic vertex. This takes advantage of our definition (12.11) of averaging the
hadronic tensor with a test function. We label the collinear subgraphs by α: 1 ≤ α ≤ N ;
we let the momenta of the lines from H to Cα be kαi .

Light-like auxiliary vectors wα and w̃α for collinear subgraph C(α)

Auxiliary vectors wα and w̃α are defined as follows:

• For each collinear subgraph C(α), we define a characteristic momentum pα . For the
collinear subgraph C(1) that contains the detected hadron, we use p1 = p, the momentum
of the detected hadron. For the other collinear subgraphs, pα is the total final-state
momentum of the collinear subgraph, i.e., pα =

∑
i kαi .

• For each C(α), the corresponding light-like direction is

wμ
α =

Q√
2pα · q

[
pμ

α − qμpα · q/q2√
1− p2

αQ2/(pα · q)2
+ qμpα · q

q2

]
. (12.54)

In the center-of-mass frame, the direction of the 3-vector part is that of pα .
• The conjugate auxiliary vector is defined by

w̃μ
α =

qμ

wα · q −
wμ

α q2

2(wα · q)2
. (12.55)
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• For each collinear group, the auxiliary vectors can be regarded as defining light-front
coordinates in which (wμ

α )frame α = δ
μ
+ and (w̃μ

α )frame α = δ
μ
−. Note carefully that this is a

different frame for each collinear group.
• For use in the soft approximation, we generalize the definitions (10.15b) of n1 and n2.

For each α, we choose a rapidity parameter yα , and define a space-like vector by

nμ
α = wμ

α − e−2yα w̃μ
α . (12.56)

As in Sec. 10.4.2, the letter w denotes a light-like vector and n denotes a non-light-like
vector.

Approximators

We split the gluons connecting different subgraphs into K and G terms, as in Sec. 11.2.3:

• For a K gluon attaching collinear subgraph α to a hard subgraph H , we copy (11.32).

Hμ(kαi) C(α),μ(kαi) = Hμ(k̂αi)
k̂αi, μw̃ν

α

kαi · w̃α + i0
C(α),ν(kαi), (12.57a)

where

k̂
μ
αi =

wμ
α kαi · w̃α

wα · w̃α

. (12.57b)

This projects the gluon’s momentum onto direction wα .
• For G gluons and quarks, we project the momentum by (12.57b).
• For a quark exiting the hard scattering to collinear subgraph α, we project its Dirac spinor

onto a massless on-shell wave-function multiplying H by inserting a factor γ−γ+/2.
This is made relative to light-front coordinates defined by wα and w̃α . In covariant form,
the projector is /wα

/̃wα/(2wα · w̃α).
• For an antiquark exiting the hard scattering, we use the projector /̃wα /wα/(2wα · w̃α).
• At the coupling of a K gluon of S to collinear subgraph C(α), we denote the line’s

momentum (out of C(α)) by kSαi , and define the soft approximant by

C
μ
(α)(kSαi) Sμ(kSαi) = C

μ
(α)(k̂Sαi)

k̂Sαi, μnν
α

kSαi · nα + i0
Sν(kSαi), (12.58a)

where

k̂
μ
Sαi =

w̃μ
α kSαi · nα

w̃α · nα

. (12.58b)

This projects the soft momentum onto our defined conjugate direction for C(α), and uses
the non-light-like vector nα to cut off the rapidity divergence that would otherwise occur
at kSαi · wα = 0.

• The approximated momenta are also used in the test function f (q) = f (p + pX) in
(12.11). Thus the approximant changes f (p + pX) to f (

∑
α k̂α), where k̂α is the total

approximated momentum for collinear subgraph C(α).
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• Finally we redefine the hard-scattering factor by an extra factor:

H = basic definition of H ×
N∏

α=2

(
|k̂α|
|kα|

)n−2

. (12.59)

Here kα is the total final-state momentum of collinear subgraph C(α), and n is the space-
time dimension.

At this point (12.59) is a totally unobvious redefinition. Note that, in the collinear
limit, k̂α → kα , and the extra factor goes to unity. Hence the redefinition is one that is
allowed; it is a change of factorization scheme. Appropriate versions of the redefinition
will also appear, applied to smaller hard subgraphs, in the double-counting subtractions
defining the region terms CR�. The result is that the redefinition does affect the correct-
ness of the factorization formula, but only the precise definition of the factors. Notice
also that the redefinition involves only collinear but not soft momenta.

The rationale for the redefinition will appear in Sec. 12.8.5, where to get the most
desirable form of factorization we will change the variables from kα to k̂α . The redefinition
factor will cancel a part of the Jacobian for the change of variable. We will see that we
only apply the redefinition to collinear subgraphs without an observed hadron, i.e., the
case α = 1 is omitted from the product in (12.59).

For the Sudakov form factor, we also rescaled the external momenta of H ; see p. 329. We
do not need to do this at this point in our case.

With these definitions, the approximated hard subgraph does not depend on the soft
momenta, because a soft momentum in collinear subgraph α is approximated to be in
direction w̃α . This gives a zero contribution in the projection (12.57b) onto an approximated
momentum in H , because w̃ is light-like.

12.8.2 Extraction of collinear gluons from hard subgraph

We first extract the collinear gluons from the hard subgraphs.
The necessary result was given in Sec. 11.9.5, and stated graphically for the case of two

collinear groups in Fig. 11.15. We apply this result on both sides of the final-state cut in
Fig. 12.4, to obtain Fig. 12.11.

For example, suppose collinear subgraph C(1) has a quark entering it from the hard
subgraph. When the accompanying K gluons are extracted from H , they couple to a
Wilson line at the end of the quark line. On the left side of the final-state cut, the color
matrices in the Wilson line are those appropriate to make a gauge-invariant operator with
the ψ̄ field that creates the quark entering C(1). The Wilson line extends out to infinity in
the direction w̃1. It represents a source of the opposite color to the parton initiating the
collinear subgraph. Thus the Wilson line is an approximation to the rest of the event, seen
as recoiling against collinear system C(1). In the mathematics, we get the Wilson line from
graphs omitted from H because of the irreducibility requirements.

For a collinear subgraph initiated by an antiquark or a G gluon, the Wilson line has the
corresponding color representation, and similarly on the right of the cut.
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S

N

α=2

H...

p

C(1)

......
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w̃1

k1,1

C(α)

w̃α

...

q H

Fig. 12.11. Result of extraction of collinear K gluons from hard subgraphs in Fig. 12.4.
There are Wilson lines for each subgraph in the directions shown. The soft subgraph S
still couples to the collinear subgraphs. The little thick arcs on the hard subgraphs indicate
on-shell partonic lines.

In accordance with our definitions, soft subtractions are applied in each collinear sub-
graph, and these remove rapidity divergences.

12.8.3 Factorization of soft subgraph

Similarly, we apply the Ward-identity argument to the connections of the soft subgraph to
each collinear subgraph, to obtain Fig. 12.12.

Now in the extraction of collinear K gluons from a hard subgraph H , the external lines of
H are on-shell. So the Wilson lines in Fig. 12.11 arose from the lack of collinear-reducible
graphs in H . But for soft K gluons attaching to Cα , the irreducibility only concerns the
K gluons themselves. As we saw in Sec. 11.9.5, these by themselves give no contribution;
from the terms “missing” in the Ward identity due to irreducibility requirement we obtain
commutator terms that are themselves of the K-gluon form. The on-shell external lines of
C(α) in the final state give no contribution to the Ward identity.

On each side of the final-state cut, each C(α) has an external off-shell quark (or G gluon),
with a Wilson line to make a gauge-invariant operator. But graphs are missing where
external soft gluons directly couple to the Wilson line, since these did not come out of the
argument that derived the Wilson lines. However, an approximated soft gluon gives zero
when it attaches to the Wilson line, because the vertex for the Wilson line is proportional
to w̃α . The K gluon specified in (12.58) multiplies this by k̂Sαi , and gives zero since k̂Sαi is
in the light-like direction w̃α .
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Fig. 12.12. Result of extraction of soft K gluons from collinear subgraphs in Fig. 12.11.
The soft factor has a Wilson line for each external parton of the hard scattering, with
the appropriate color charge, e.g., (“3”, “8”). There is a non-trivial flow of color indices
between the hard subgraph, the soft subgraph, and the collinear subgraphs; see Fig. 12.13
below.

So we can add to Fig. 12.11 all graphs where the soft gluons attach to the Wilson lines
of C(α). After applying the usual Ward-identity argument, we find that the soft gluons are
moved to Wilson-line factors external to C(α), as in Fig. 12.12.

12.8.4 Color flow

The Wilson lines are matrices in color space, and their color representation and color flow
need attention. Each Wilson line of S has the color representation corresponding to the
color charge of the outgoing parton initiating the associated jet.

The Wilson line for the gluons attaching S to C(α) interposes itself between H and C(α),
as indicated in Fig. 12.13. We make a concrete illustration from the particular graph given
in Fig. 12.14(a), which shows an extract from a particular diagram for the process we are
analyzing. Diagram (b) shows one of the unapproximated graphs that are combined to give
diagram (a) (after the use of approximators and Ward identities). Corresponding to diagram
(a) is the formula

C(1)(k1,1, k1,2)μ
i

k1,2 · w̃1 + i0
(igw̃

μ
1 tα)(−ignν

1tβ)S(kS)ν
i

kS · n1 + i0
H (w̃ · (k1 + k2)).

(12.60)

https://doi.org/10.1017/9781009401845.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.012


454 Fragmentation functions

Fig. 12.13. Color flow between the hard subgraph, the soft subgraph S, and the collinear
subgraphs. The vertical dots near S indicate that it has multiple Wilson lines, one on each
side of the final-state cut for each C(α).

Fig. 12.14. (a) Specific example of Fig. 12.13. Each gluon is labeled with its momentum
and color index. (b) A graph that, after approximants and Ward identities are applied, would
contribute to (a).

The color charge (quark or antiquark) on a Wilson line is coded both in the ordering of the
color matrices and in the sign of the vertices.

Now that all soft gluon lines have been extracted from the collinear subgraphs C(α), each
C(α) becomes diagonal in color. This implies that we can rearrange the color flow as in
Fig. 12.15. After rearrangement, there is an average over the color of each C(α), i.e., a trace
over colors divided by Ncα , the number of colors for the parton initiating C(α). That is, Ncα

is 3 for the case of a quark or antiquark, but 8 for a gluon.
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Fig. 12.15. Color flow of Fig. 12.13 after use of color-singlet property of C1, with Nc1

being the number of colors for the primary parton initiating C1, which is a quark in the case
shown, with Nc1 = 3.

Then the color flow for the Wilson lines of S is direct from a Wilson line on the left of
the cut to the Wilson line on the right; the collinear subgraphs are completely factored out.
But the color flow remains entangled with the color structure of the hard scattering.

12.8.5 Factorization

We now have a factorized form for the hadronic tensor averaged with a function f (q):

Wμν([f ], p) =
∑
N≥2

N∏
α=1

⎡
⎣∑

jα

∫
dnkα

(2π )n
C(α),jα

(kα)

⎤
⎦∫ dnkS

(2π )n
Sj1,...jN

(kS)

×Hj1,...jα
(k̂1, . . . , k̂N ) f (k̂1 + . . .+ k̂N )

N∏
α=2

(
|k̂α|
|kα|

)n−2

. (12.61)

Here jα is the flavor of the parton initiating collinear subgraph C(α), kα is the total momentum
entering C(α), and kS is the total momentum entering the soft subgraph S; these momenta
are also the total final-state momenta of the subgraphs. The hard subgraph H depends on
the parton flavors and on the approximated momenta. Recall that the approximated k̂α is kα

projected by (12.57b) in a light-like direction appropriate for collinear subgraph C(α). The
dependence of S on parton flavors jα is only through the color of the partons (3 v. 3̄ v. 8).

In the final form of factorization, (12.13), we treat the hard scattering as behaving like
a cross section at the partonic level. For this purpose it is convenient to change variables in
(12.61) from kα to k̂α , and so we need to take account of the Jacobian of the transformation.

For the first collinear group, the axes w1 and w̃1 are determined by the detected hadron,
so we simply write

dnk1 = dk+1 dk−1 dn−2k1 T = dk̂+1 dk−1 dn−2k1 T . (12.62)
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Here we define light-front coordinates with respect to w1 and w̃1: k+1 = k1 · w̃1 and k−1 =
k1 · w1. Now the only dependence in (12.61) on k−1 and k1 T is in the collinear subgraph
C(1) itself. So we can short-circuit the integrals over these variables, restricting them to
C(1). This will enable us to convert C(1) to a fragmentation function defined with light-front
annihilation and creation operators, just as we did for parton densities. The integral over k̂1

gives the integral over z in the final factorization formulae, (12.13) and (12.21).
In contrast, the other collinear graphs have no fixed axes; the direction wα is determined

by the total final-state momentum kα itself, which is an integration variable. So we perform
a change of variable:

dnkα = dn−1 k̂α

2|k̂α|
2k+α dk−α

( |kα|
|k̂α|

)n−2

, (12.63)

where the light-front variables are now those local to C(α):

k̂+α = k+α = kα · w̃α = k0
α + |kα|√

2
=
√

2|k̂α|, (12.64a)

k−α = kα · wα = k0
α − |kα|√

2
. (12.64b)

The first factor on the r.h.s. of (12.63) is just the Lorentz-invariant phase space for a
massless parton out of the hard scattering. We will use the integral over k−α to convert
C(α) into a light-cone object, similarly to the fragmentation function. The hard scattering
is independent of k−α . However, the final factor in (12.63) arises from the Jacobian for the
change of variables, and it introduces extra dependence on k−α .

We now see the reason for introducing the extra factor in the definition (12.59) of the hard
factor. It is to cancel the inverse factor in (12.63). At this point we functionally differentiate
with respect to the test function f , to obtain a factorized form

Wμν(q, p) =
∫

dk̂+1
∑
j1

[∫
dk−1 dn−2k1 T

(2π )n
C(1),j1 (k1, p)

]

×
N∏

α=2

∑
jα

∫
dn−1 k̂α

2|k̂α|(2π )n−1

N∏
α=2

[
2k+α

∫
dk−α
2π

C(α),jα
(kα)

]

×
∫

dnkS

(2π )4
Sj1,...jα

(kS)(2π )nδ(n)

(
q −

N∑
α=1

k̂α

)
Hj1,...jα

(k̂1, . . . , k̂N ).

(12.65)

12.8.6 Soft cancellation

The soft factor in (12.65) and Fig. 12.12 has an unrestricted sum over cuts, and an
unweighted integral over its external momentum kS . I will now show that the result is
zero. One possible argument uses the methods of Sec. 12.7. But instead, we use a simpler
argument relying on properties of the Wilson lines in the soft factor’s operator definition.
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There is a slight complication because of UV divergences. As we know from Ch. 10,
there is a multiplicative renormalization to make finite virtual graphs for the soft factor.
Because of the integral over all kS , in (12.65), real-emission graphs for the soft factor also
acquire logarithmic UV divergences, which need to be renormalized. Our proof that the
soft factor is unity will initially apply to the bare soft factor. The result for the bare factor
implies that the UV divergences also cancel between real and virtual corrections.

On each side of the final-state cut we have a product of Wilson lines all going out from
the same point to infinity. Because of the integral over all kS the common point is the same
on both sides of the cut. Thus the integrated soft factor is

S0,integrated
def=
∫

dnkS S =
〈

0|M1T

(∏
α

WR(jα )(+∞, 0; nα)

)

× T̄

⎛
⎝∏

β

WR(jβ )(+∞, 0; nβ )†

⎞
⎠M2|0

〉
. (12.66)

Here M1 and M2 are the color matrices coupling the soft factor to the hard factor. The
Wilson line WR(jα )(+∞, 0; nα) goes from the origin towards infinity in direction nα and
has the color representation R(jα) corresponding to collinear subgraph C(α) with its parton
of flavor jα . The color index at its right-hand end (at infinity) couples to the corresponding
index of the conjugate Wilson line WR(jα )(+∞, 0; nα)†.

The Wilson lines are space-like, so the time-ordering and anti-time-ordering prescrip-
tions give the same results, since gluon fields commute at space-like separation. Then the
Wilson lines cancel: WR(jα )(+∞, 0; nα)WR(jα)(+∞, 0; nα)† = 1, and the bare soft factor
(12.66) is unity. Although there are UV divergences in individual cut Feynman graphs,
the divergences cancel in the sum over all graphs and cuts. Therefore no overall minimal-
subtraction counterterms are needed, and the renormalized soft factor is also unity.

As explained in a similar case in Ch. 10, the collinear factors are equipped with soft
subtractions, and the collinear factor is the product of an unsubtracted collinear factor
and a soft factor related to (12.66). Again the complete soft factor is integrated over all
momentum, so it gives unity; thus the collinear factors are effectively unsubtracted.

12.8.7 Collinear cancellation

For each of the collinear factors C(2), . . . , C(N) without a measured hadron, we have an
unrestricted sum over cuts, and then an integral over k−α :

(12.67)

Here, k±α refers to components defined in local light-front coordinates, (12.64).
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We now show that there is a suppression of (12.67) in the collinear region it was designed
to treat. At first sight, it would be sufficient to appeal to the sum-over-cuts argument of
Sec. 12.7. Indeed this argument works in a non-gauge theory, where we just have cut graphs
for a full parton propagator, as in (12.50). We found that in each of the terms on the r.h.s. of
(12.50) the k−α contour is not trapped. Thus we could deform the integral over k−α to a
semicircle at infinity, to obtain a purely UV contribution.

This argument is broken by the Wilson lines in (12.67), for a somewhat non-trivial reason.
The Wilson lines on the left and right of the final-state cut carry any value of momentum;
loop momenta circulate freely through them. To make the sum-over-cuts argument work,
we must also include a double line to continue the Wilson line across the final-state cut:

(12.68)

But to agree with the calculation in (12.67), the cut Wilson line must carry exactly zero
4-momentum, i.e., a cut Wilson line with momentum k′ must be defined to have the
value (2π )nδ(n)(k′). In contrast, to apply the sum-over-cuts argument, the cut line needs to
obey

(12.69)

That is, although the delta function forces one component of k′, viz., k′ · w̃α , to be zero, the
other components can have any value.

We solve this problem in two stages. First we show that if the quantity defined in (12.67)
is integrated over kα T, then the cut Wilson line can be treated as being given by (12.69).
The resulting quantity, (12.68), is one to which the sum-over-cuts argument can be applied,
so that it gives no trap of the integration momentum in a non-UV region. The second
stage of the argument is to deduce that when the collinear quantity without the transverse-
momentum integral is inserted in the factorization formula, there is a power-suppression of
the collinear region.

When we use an integral over kα T as well as k−α applied to the cut graph in (12.67),
we can choose to route these momenta through the cut Wilson line. As we explained,
the cut Wilson line at this point is effectively replaced by (2π )nδ(n)(k′). We apply n− 1
dimensions of the delta functions to the integrations over kα T and k−α . The rest of the
Wilson line does not depend on these two variables. There remains in the cut Wilson line
the factor 2πδ(k′ · w̃α) = 2πδ

(
k′+

)
, which is just the rule (12.69) that we needed to use the

sum-over-cuts argument. What we have just shown is that the integral of (12.67) over kα T

is exactly the cut diagram (12.68) without any external integral at all. What was an external
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12.8 Factorization for e+e− → h(p)+X in gauge theory 459

integral over kα T and k−α is now an internal loop integral routed from the C(α) part of the
graph back across the cut Wilson line.

The resulting quantity, which we will call D(α), depends only on k+α , and the sum-over-
cuts argument, as in Sec. 12.7, converts it to a difference of uncut amplitudes,

(12.70)

and for each term there is no trapping of the momentum integration in the collinear region.
But this result is not sufficient for our purposes, since we defined coordinates for the

collinear subgraph with respect to its final-state momentum (without the Wilson line). Thus
kα T is actually fixed at zero in the factor C(α) in the factorization result (12.65). Now, at an
exact collinear limit, transverse momenta are zero. The cancellation of collinear singularities
in the integrated quantity (12.70) is between terms that have final states that differ by a shift
in transverse momentum, which vanishes in the collinear limit. In the factorization formula
(12.65) there is an integral over the center-of-mass angles of the collinear graphs C(2), . . . ,
C(N), and the remaining angular dependence is smooth dependence in the hard factor. This
is sufficient to get the desired collinear cancellation.

The overall result is that the only genuinely collinear factor is C(1), which contains the
detected hadron. The rest of the graph can be treated as making a hard subgraph. A more
direct proof would be desirable.

12.8.8 Definitions of fragmentation functions

From the approximant for attaching the subgraph C(1) to the hard subgraph, we obtain the
operator definitions of the fragmentation functions. The operators are the same as in parton
densities (Sec. 7.5), since the approximants are the same. The normalizations are the same
as in non-gauge theories, and therefore correspond to a number density interpretation.

We define the bare fragmentation function for a quark of flavor j by

d(0) h/j (z) = Trcolor

Nc, j

TrDirac

4

∑
X

zn−3
∫

dx−

2π
eik+x−

× γ+ 〈0| T̄ W (∞, x−/2; w̃1) ψ
(0)
j (x/2) |p,X, out〉

× 〈p,X, out| T ψ̄
(0)
j (−x/2) W (∞,−x−/2; w̃1)† |0〉

= Trcolor

Nc,j

TrDirac

4
zn−3

∫
dk− dn−2kT

(2π )n
γ+ (12.71)

where xμ = (0, x−, 0T). The Fourier transform implements the integral over k1 T and k−1 ,
and we now drop the subscript “1” on the external momentum of C(1).
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This definition differs from that in a non-gauge theory, (12.40), only by having a Wilson
line going out to future infinity in the light-like direction w̃1 from the quark field. In
principle, there are rapidity divergences associated with the light-like Wilson line and
these are to be canceled by appropriate subtractions, which amount to a soft factor in the
fragmentation function. But according to Sec. 12.8.6 this soft factor is unity, so that rapidity
divergences cancel. This happens since we integrated over all transverse momentum.

When we go to the physical dimension n = 4, there are UV divergences, which we define
to be renormalized away. Thus the final definition of the finite renormalized fragmentation
function is given by (12.15), with the QCD definitions of bare fragmentation functions.

The antiquark fragmentation function is defined similarly.
The bare gluon fragmentation function is

d(0) h/g(z) = zn−3

Nc, gluon(n− 2)k+
∑
X

∫
dx−

2π
eik+x−

× (−gλλ′) 〈0| G+λ
(0), b(−x/2)

[
WA(∞,−x−/2; w̃1)†

]
bc
|p,X, out〉

× 〈p,X, out| [WA(∞, x−/2; w̃1)
]
cd

G+λ′
(0), d (−x/2) |0〉 , (12.72)

with again renormalization to be applied by (12.15). The field strength tensor G+λ is
used for the same reason explained in Sec. 11.3 for the gluon density: it corresponds to a
collinear G gluon, (11.6), attaching to the hard scattering. Since G++ = 0, the only terms
in the Lorentz trace are for transverse indices. Then the overall factor 1/(n− 2) in (12.72)
gives an average over transverse gluon polarizations. The Wilson lines WA are of course in
the adjoint representation appropriate for gluons.

Feynman rules for the above definitions can be read off those for parton densities, with
minor obvious variations. Renormalization is applied, leading to DGLAP equations, as
stated in Sec. 12.2.2, with the derivations being like those for parton densities, Sec. 11.4.

12.8.9 Final state in fragmentation function

The final state |p,X, out〉 in the fragmentation functions has non-zero color, because the
field that creates it has color. This is obviously a wrong situation non-perturbatively in a
confining theory. A full resolution of the issue has not appeared in the literature. But the
following remarks suggest a possible approach.

The Wilson line represents a color source moving in the opposite direction to the parton
initiating the fragmentation function. The color source is non-dynamical, moving along a
fixed line, so let us call it a pseudo-parton. In the definition of a fragmentation function we
treat the operator on the right as creating a state consisting of a parton and a pseudo-parton
in an overall color singlet state. The pseudo-parton propagates to future infinity in the
opposite direction to the jet that we can consider as being initiated by the regular parton.
Then the final state consists of the ordinary hadrons in the jet, and at the opposite end a
pseudo-meson consisting of the pseudo-parton and a regular parton. There are in addition
some hadrons of intermediate rapidity. In some sense we consider the state space of QCD
to include states of pseudo-partons.
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12.10 One-loop renormalization of fragmentation function 461

12.8.10 Final result for factorization

Using these definitions of the renormalized fragmentation functions, together with the
cancellation in the soft factor, we convert the factorization formula (12.65) to the form
already stated in (12.13), (12.21), and (12.24). The factorization formula has the same form
as in a non-gauge theory. However, the derivation was much more complicated.

12.9 Use of perturbative calculations

To apply the factorization formalism phenomenologically, we need perturbative calcula-
tions of the hard-scattering coefficients and of the evolution kernels of the fragmentation
functions. These are independent of the choice of the detected particle. So, as explained in
Sec. 9.3.1 for DIS, a convenient method of calculation is to choose the detected particle to
be an on-shell quark or gluon, and then to perform low-order perturbative calculations of
the hadronic tensor Wμν and of the fragmentation functions. The factorization formula and
the evolution equations allow us to deduce the hard-scattering coefficients and the evolution
kernels.

We perform these calculations with masses set equal to zero, and with dimensional
regularization applied. There are soft and collinear divergences at the physical space-time
dimension, but the divergences cancel in the hard scattering and the evolution kernels.

12.10 One-loop renormalization of fragmentation function

In this section I summarize one-loop calculations of the fragmentation functions for mass-
less partons. We will deduce the renormalization of the fragmentation functions, from
which follows the DGLAP kernels. At one-loop order, these are in fact equal to those for
the parton densities. The calculations will also be used in the subtractions in calculations
of the hard-scattering coefficients, Sec. 12.11.

12.10.1 Quark in gluon

There is one graph, Fig. 12.16, for the fragmentation function of a gluon into a quark. From
the Feynman rules (cf. Fig. 7.12) for (12.72) we get

g2

16π2
d

[1]
q/g(z) = g2μ2εz1−2ε

Nc, g(2− 2ε) (2π )4−2ε

∫
dk− d2−2ε kT

(2π )δ
(
(k − p)2

)
(k2)2

× Tr tαtα Tr

[
−k+/pγ μ(/k − /p)γμ + /p/k(/k − /p)γ+

+ /pγ+(/k − /p)/k − k2

k+ /pγ+(/k − /p)γ+
]
+ UV counterterm

= g2TF (4πμ2/z2)ε

8π2�(1− ε)

[
1− 2z(1− z)

1− ε

] ∫ ∞
0

dk2
T(k2

T)−1−ε + UV c.t. (12.73)
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Fig. 12.16. One-loop Feynman graph for fragmentation function of quark in gluon.

Here the superscript “[1]” denotes “one-loop”, and the group-theory factor is TF = 1
2 in

QCD. The integral in the last line is zero. Being scale-free, it has a cancellation between
equal and opposite divergences at zero and infinite kT. The counterterm is computed from
the large kT part, giving

g2

16π2
L

[1]
q/g(z) = −g2TF [z2 + (1− z)2]

8π2

Sε

ε
, (12.74)

in the notation of (12.15), with Sε given in (A.41).
This is also the UV-renormalized value of the fragmentation function:

g2

16π2
d

[1]
q/g(z) = −g2TF [z2 + (1− z)2]

8π2

Sε

ε
. (12.75)

This exhibits the collinear divergence in the massless fragmentation function, and will be
used in a subtraction term for the hard-scattering coefficient C

μν
g .

12.10.2 Quark in quark

The one-loop graphs for the fragmentation function of a quark into a quark are shown in
Fig. 12.17. All are diagonal in quark flavor.

Graph (a)

This is

g2

16π2
d

[1,a]
q(j ′)/q(j )(z) = g2μ2ε δj ′j z1−2ε

4Nc,q (2π )4−2ε

∫
dk− d2−2ε kT (2π )δ

(
(k − p)2

)

× −Tr γ+/kγ μ/pγμ/k

(k2)2
Tr tαtα + UV counterterm

= g2CF δj ′j (4πμ2)ε

8π2

(1− ε)(1− z)z−2ε

�(1− ε)

×
∫ ∞

0
dk2

T(k2
T)−1−ε + UV c.t. (12.76)

The minus sign in the Dirac trace is from the numerator of the gluon propagator. Again,
the value of the integral is zero, while canceling its UV divergence gives the counterterm:

UV c.t. of (a) = −g2CF δj ′j (1− z)

8π2

Sε

ε
. (12.77)
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Fig. 12.17. One-loop Feynman graphs for fragmentation function of quark in quark; “h.c.”
means “hermitian conjugate”.

Graph (b)

To make the relation to the Feynman rules for the Wilson line explicit, I write graph (b) in
more detail, listing the individual propagators and vertices.

g2

16π2
d

[1,b]
q(j ′)/q(j )(z) = g2μ2ε δj ′j z1−2ε

4Nc,q (2π )4−2ε

∫
dk− d2−2ε kT

× Tr
Dirac

Tr
color

γ+
i

k+ − p+
(igtαgμ+) /p (−igtα)†γ ν −i/k

k2 − i0

× (−gμν)(2π )δ
(
(k − p)2

)+ UV counterterm

= g2CF δj ′j (4πμ2)εz−2ε

8π2�(1− ε)

z

1− z

∫ ∞
0

dk2
T(k2

T)−1−ε + UV c.t. (12.78)

Notice that the Wilson line has a vertex igtα rather than −igtα , because it corresponds to
an outgoing anti-triplet object. There are reversed i0s on the right of the final-state cut, as
usual. The rapidity divergence of this graph manifests itself in the 1/(1− z) singularity,
which gives a divergence when the graph is integrated with a test function f (z). The
hermitian-conjugate graph gives the same value. The UV counterterm for the two graphs is

UV c.t. of (b)+(b)† = −g2δj ′jCF

4π2

z

1− z

Sε

ε
, (12.79)

Remainder of calculation

The virtual graph (c) involving the Wilson line has the same expression as the corresponding
graph in the parton-density calculation (9.11). The value of the graph is again zero. In the
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UV counterterm there is an integral over the momentum fraction α of the quark, and the
integral has a divergence at α = 1.

Finally, also exactly as in the parton-density calculation, the self-energy graph gives
a zero contribution. But to get a correctly renormalized fragmentation function we add a
contribution from the wave-function renormalization factor.

To see the expected cancellation of the rapidity divergence between real and virtual
corrections, we use an integration with a test function, as in Sec. 9.4.4, after which the
1/(1− z) singularity becomes a plus distribution. The result for the counterterm is

g2

16π2
L

[1]
q/q(z) = − g2

16π2
CF

Sε

ε

[
− 4

(1− z)+
+ 2+ 2z− 3δ(z− 1)

]
. (12.80)

This is also the value of the graphs plus counterterms, to be used in subtractions in the hard
scattering.

12.10.3 Gluon in quark, and gluon in gluon

The one-loop fragmentation functions to a gluon, d
[1]
g/q(z) and d

[1]
g/g(z), can be computed

similarly. The calculation is left as an exercise.

12.10.4 DGLAP kernels

The one-loop renormalization counterterms are exactly the same for the fragmentation
functions as those we calculated in Sec. 9.4 for the parton densities. It follows that the
DGLAP evolution kernels are the same, so that the values in (9.6), (9.23), (9.24), and (9.25)
also apply to fragmentation functions.

This relation does not hold at higher order. For the two-loop values see Furmanski and
Petronzio (1980); Curci, Furmanski, and Petronzio (1980); Floratos, Kounnas, and Lacaze
(1981); Kalinowski, Konishi, and Taylor (1981); Kalinowski et al. (1981). Note that there
are misprints in the published version of Furmanski and Petronzio (1980).

12.11 One-loop coefficient functions

I now summarize a calculation of the one-loop coefficient functions for e+e− → hX. The
calculation is phenomenologically significant, and it will also illustrate the principles to be
applied.

Thus let Wμν
partonic j be defined like the hadronic tensor, but with the detected particle being

an (on-shell) massless parton of flavor j , so that the process is e+e− → jX. This object
exists if we restrict ourselves to perturbation theory and use dimensional regularization to
regulate the collinear and soft divergences. Factorization (12.21) gives

W
μν
partonic j (p, q) =

∑
j ′

∫ 1+

x−

dz

z2
dj/j ′ (z; μ) C

μν
j ′ (k̂, q; g(μ), μ). (12.81)
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Both W
μν
partonic j and the partonic fragmentation functions can be computed from Feynman

rules. From the expansion to one loop, we find

W
[1] μν
partonic j (p, q),=

∑
j ′

1

x
d

[1]
j/j ′ (x; μ) C̃

[0] μν
j ′ (p/x, q)+ C

[1] μν
j (p, q), (12.82)

where the superscripts “[0]” and “[1]” denote the order of perturbation theory, and C̃[0]

denotes the lowest-order coefficient function (12.26) without its δ(x/z− 1) factor. From
this we see that the one-loop coefficient function is its unsubtracted counterpart W

[1] μν
partonic j

minus a one-loop partonic fragmentation function, as calculated in Sec. 12.10. The formula
is easily converted to one for the structure functions F1 and F2.

For W
[1] μν
partonic j (p, q), the graphs are exactly the same as for the calculation of the e+e−

annihilation total cross section in Sec. 4.2. We simply have to remove the integral over the
momentum of the detected parton, adjusting the normalization to be that of Wμν .

Thus for the case of the inclusive production of a quark, consider the real-gluon-emission
graphs of Fig. 4.8(a) and (b), which previously gave (4.27). Now, we replace the 3-body
phase-space integral (A.44) by

1

4π

∫ 3∏
i=2

d3−2ε ki

(2π )3−2ε2|ki | (2π )4−2εδ(4−2ε)(q − p − k2 − k3)f ( p, k2, k3)

= (4π )εQ−2ε

32π2�(1− ε)
Ang. avg.

∫ 1

0
dα
[
(1− x)α(1− α)

]−ε
f ( p, k2, k3). (12.83)

Here the quark momentum k1 is replaced by p, and the scalar variables in (4.27) are written
as y1 = 1− x, y2 = xα, and y3 = x(1− α). There also appears the factor 1/(4π ) from the
definition (12.3) of Wμν .

One way of simplifying the calculation is to use scalar projections of the hadronic tensor,
−gμνW

μν and pμpνW
μν , from which can be deduced results for the structure functions

and for dσT / dx and dσL / dx. At the end of the calculation, the variable x will be replaced
by x/z for use in the factorization formulae.

The details of the calculation are left as an exercise. The results, in the MS scheme, are
given in Rijken and van Neerven (1997), where also the NNLO coefficients are calculated.
The NLO coefficients were first calculated by Baier and Fey (1979); Altarelli et al. (1979).

The variables in (12.83) were suitable for the quark coefficient function. The antiquark
coefficient function is equal. The gluonic coefficient function is obtained by applying the
variables α and x to a different permutation of partonic momenta: y1 = xα, y2 = x(1− α),
and y3 = 1− x. As in Fig. 4.8, the labels 1, 2, and 3 refer to the quark, antiquark, and gluon
respectively.

12.12 Non-perturbative effects and factorization

Gupta and Quinn (1982) pointed out a problem with factorization in the case that QCD is
replaced by a theory in which all the quarks are heavy. Initially a quark-antiquark pair that
is produced in e+e− annihilation at large Q/M goes outward at almost the speed of light. If
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the quark and antiquark were to hadronize into a jet of color-singlet hadrons, there would
need to be production of quark-antiquark pairs in the color flux tube joining the pair. But
since all quarks are heavy, this is a slow weak-coupling process, governed by αs(M). At the
same, the gluonic non-perturbative interaction is still effective, and will tend to bring the
quark and antiquark back. In the language of Sec. 4.3.1, the elastic-spring picture would
likely be a better approximation than the breakable-string picture that appears to be valid
in real QCD with its light quarks. This would break factorization for the inclusive hadron
cross section; for example the direction of the jet and the hadrons in it would not correspond
to the direction of a parton produced at short distances.

Now our proof of factorization used the structure of momentum regions that is seen in per-
turbation theory. So an important issue of principle is to what extent non-perturbative effects
change the results. This is a far-from-completely understood subject. It would seem best to
consider the process in coordinate space. Then the breakable-string picture would appear
to be compatible with preserving the factorization structure seen in perturbation theory.

This led Gupta and Quinn to an interesting question. Suppose an experimental test were
made of a perturbatively calculated jet cross section or of a factorized hadron-production
process such as we treated in this chapter, and suppose that experiment and theory sub-
stantially disagreed. Would this count as evidence against QCD? Gupta and Quinn argued
cogently that it would not, by itself, falsify QCD. The reason is that they could show a
counterexample where the theoretical methods are violated non-perturbatively without any
problem with the perturbative calculations.

What would actually be falsified would be the combination of QCD and the (mostly
implicit) assumptions about non-perturbative physics used in deriving factorization etc.

In the time since Gupta and Quinn (1982), there have be many successful comparisons
of QCD predictions with data. So we should not count all of these successes as successful
predictions of QCD itself. An isolated single experiment in this area does not test QCD.
Some of the results should be counted as establishing the breakable-string picture. Then
the other experiments can be regarded as QCD tests.

At the present time, one must regard QCD as being very well established. Failure of
a comparison between QCD predictions and experiment is highly unlikely to impinge on
QCD itself. Depending on the situation, much more likely situations would involve any
or all of: (a) problems with the experiment itself, (b) problems with more exotic QCD
methods, and (c) physics beyond the Standard Model.

12.13 Generalizations

Although the last part of the proof in Sec. 12.8 was specific to the one-particle-inclusive
cross section, the bulk of it applies to much more general situations in e+e− annihilation.

12.13.1 Multiparticle cross sections

Consider an inclusive cross section differential in more than one hadron. We first sup-
pose the particles are all at wide angles with respect to each other. In that case, in the
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Fig. 12.18. Three-jet configuration with registered particles (thick lines) in two of the jets.
The line lengths indicate momenta.

leading-region analysis, each of the particles arises from a different collinear subgraph. An
example of such a final-state configuration is shown in Fig. 12.18.

We simply apply the same method of proof as for the single-particle-inclusive cross sec-
tion. For each measured particle its collinear subgraph becomes a fragmentation function,
and we have the factorization property

dσ∏Np

α=1(d3 pα /E pα
)
=

Np∏
α=1

⎡
⎣∑

jα

∫
dzα

z2
α

dhα/jα
(zα)

⎤
⎦ dσ̂ partonic, subtracted∏Np

α=1(d3kα /Ekα
)
, (12.84)

with hadron and parton 3-momenta related by pα = zαkα . We treat this as a partonic cross
section convoluted with a number density for the partons to make the measured hadrons.
As usual, the partonic cross section is subtracted.

Each of the fragmentation functions contains an integral over its parent parton’s minus
and transverse momentum (defined with respect to the hadron in the fragmentation func-
tion). As in the one-particle-inclusive cross section, we use approximated parton kinematics
for the hard scattering. That works when the hadrons are at wide angle, since it is equivalent
to a small shift in the hadronic momenta. For example a transverse momentum of order �

corresponds to an angular shift of order �/Q.
(The reader may point out that the integral over partonic momenta also extends to large

minus and transverse momenta, where the approximation is always bad. A reminder is
needed that within the subtraction method, all that is necessary is that the approximant be
accurate to order kT/Q and k−/Q for its design region. As the distance of momenta from
the skeleton of some region R increases, so does the error in the region’s approximant TR .
But, as illustrated in Sec. 10.2, the increasing errors are compensated by the terms for larger
regions together with their double-counting subtraction terms.)

12.13.2 Back-to-back region

But when the detected hadrons are almost back-to-back, as in Fig. 12.19, the neglect of
partonic transverse momentum in the hard scattering is no longer correct, even in the
collinear region. The situation therefore needs a somewhat different kind of factorization,
which we will treat in Ch. 13.

Alternatively, we can integrate over the angle between the measured particles, averaging
over the back-to-back region with a suitably broad function. At this point, the neglect of
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Fig. 12.19. Two-jet configuration with a registered particle (thick lines) in each jet.

partonic transverse momenta in the averaging function regains its accuracy in the collinear
region, so that we can continue to use integrated fragmentation functions.

12.13.3 Multiparticle fragmentation

Another simple generalization is when two (or more) measured hadrons are approximately
parallel. Then they come out of a single collinear subgraph.

This situation is dealt with by an elementary generalization (Konishi, Ukawa, and
Veneziano, 1978) of the definitions of fragmentation functions. For example, consider the
case of two measured hadrons of momenta p1 and p2. In the final state in a definition
like (12.35), we replace |p,X, out〉 〈p,X, out| by |p1, p2, X, out〉 〈p1, p2, X, out|. At
the partonic end of the fragmentation function, nothing changes. So all the issues about
renormalization, DGLAP evolution, and the construction of a hard-scattering coefficient
function are unchanged. The fragmentation function becomes a function of more variables,
representing the kinematics of p1 and p2 relative to the parton.

A significant use of this idea is in transverse-spin physics. With fragmentation to a
single pion, there is no polarization dependence of the fragmentation function; only the
unpolarized fragmentation functions are non-zero. But with two-particle fragmentation, a
transversely polarized quark can give an azimuthal dependence of the form

A+ B cos φ. (12.85)

Here φ is the angle in the transverse plane between the transverse-spin vector of the quark
and the normal to the plane of the two measured pions. The coefficient A is proportional
to the ordinary unpolarized fragmentation function, while B is proportional to a kind of
polarized fragmentation function that was proposed in Collins, Heppelmann, and Ladinsky
(1994). It can be probed in e+e− annihilation, because there is a correlation of the transverse
spins of the quark and antiquark in the lowest-order graph. Therefore the polarized dihadron
fragmentation function appears in the factorization theorem for e+e− annihilation to four
pions, with the pions grouped in two small-angle pairs (Artru and Collins, 1996). The
function also appears in factorization for DIS with two measured hadrons in the final state
when the target hadron is transversely polarized.

Data on the two-hadron fragmentation function have recently become available:
Airapetian et al. (2008); Vossen et al. (2009); Wollny (2009). Fits have been made by
Bacchetta et al. (2009).
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12.13.4 Jet cross sections

For the e+e− annihilation total cross section to hadrons, we used a sum over all final states to
get a perturbatively calculable IR-safe cross section. Similarly, in inclusive cross sections,
we used a similar sum to obtain cancellations of IR-sensitive parts of the soft factor and of
those collinear factors that did not couple to measured hadrons.

The cancellations involve collinear and soft interactions. In the exact collinear (or
soft) limit, these interactions cause transitions between different final states with the same
momentum. This suggests a general strategy to obtaining perturbatively calculability by
defining IR-safe jet cross sections. These are computed from the angular pattern of energy
flow, and do not depend on how the energy is split among particles.

A simple example is a calorimetric cross section (Sterman, 1996) in e+e− annihilation.
Here we use a cross section weighted by a suitable function S of the momenta of the
particles in the final state:

σS =
∑

n

∫
dτn

dσ

dτn

Sn(p1/Q, . . . , pn/Q), (12.86)

where n is the number of hadrons in the final state, and dτn represents the element of n-body
phase-space. The weight function Sn is defined for any n-body configuration.

The cancellations needed for IR safety of the cross section σS occur if (Sterman, 1996)
“the weight function does not distinguish between states in which one set of collinear parti-
cles is substituted for another set with the same total momentum, or when zero-momentum
particles are absorbed or emitted”. Mathematically this is formulated as follows:

• The weighting functions are smooth.
• They are symmetric functions of their arguments.
• For massless momenta, they obey

Sn(p1/Q, . . . , pi/Q, . . . , pn−1/Q, λpi/Q)

= Sn−1(p1/Q, . . . , pi(1+ λ)/Q, . . . , pn−1/Q), (12.87)

with λ being any real parameter λ ≥ 0.

The weighting functions are defined to be functions of momenta scaled by Q. This matches
the Libby-Sterman analysis, since the cancellations needed for IR safety occur in a fixed
region of the scaled momenta. Smoothness of the weighting functions is needed because
the necessary cancellations occur in a neighborhood of the massless PSS configurations.

In practice, two rather different approaches are used instead, which more directly probe
the jet structure of final states. One is to define global measures of the jet structure of a final
state. A classic example is thrust,1 defined on an n-particle state by

T
def= 1∑

i | pi |
max

n̂

n∑
i=1

| pi · n̂|, (12.88)

1 The definition given here is the current standard one, and is based on a slightly different definition by Farhi (1977).
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470 Fragmentation functions

with the maximum being over unit 3-vectors n̂ in the overall center-of-mass frame. The
direction that gives the maximum is called the thrust axis. Thrust has a maximum value
of unity, when a final state has a perfect 2-jet configuration, i.e., some of the momenta are
exactly aligned in one direction and the others are exactly aligned in the opposite direction.
A spherically uniform distribution of momenta gives T = 1

2 .
Applying this definition of thrust as a weight function gives the average value of thrust, a

measure of the average 2-jet-likeness of final states. Commonly a cross section differential in
thrust is measured, e.g., Bethke et al. (2009). Showing that the differential thrust distribution
is IR safe requires a generalization of the previous discussion.

Perhaps the most common approach is to define jets directly by grouping measured
hadrons into clusters by some “jet algorithm”. The clusters are labeled as jets, and cross
sections differential in jet momenta are measured. In a leading-order approximation, a jet’s
momentum is close to its parent parton’s momentum as in Fig. 2.3. It is quite non-trivial to
determine whether a particular jet algorithm is IR safe. An important practical constraint
is that the algorithm should be suitable for implementation both in experimental analyses
and in theoretical calculations. See Salam (2010) for a recent review.

12.14 Semi-inclusive deeply inelastic scattering

Another classic process where fragmentation functions appear is semi-inclusive deeply
inelastic scattering (SIDIS), i.e., DIS differential in one (or more) hadrons in the final state,
e.g., e(l)+ P → e(l′)+ π (ph)+X, Fig. 12.20.

12.14.1 Kinematics and structure functions

For the kinematics, we need to supplement the variables for DIS by a specification of the
momentum of the outgoing hadron. In the Breit frame, we write

q =
(
−xP+,

Q2

2xP+
, 0T

)
, (12.89a)

P =
(

P+,
M2

2P+
, 0T

)
, (12.89b)

ph =
(

p2
h T +m2

h

2p−h
, p−h , ph T

)
. (12.89c)

For the independent scalar variables of the hadronic part of the cross section, we use x and
Q as usual, together with

z = P · ph

P · q �
p−h
q−

, | ph T|2 � z2Q2 + 2zq · ph, (12.90)

and the azimuthal angle φh of ph T. The approximations in (12.90) are valid when masses
can be neglected. The standard specification of the angle is given by the Trento convention
(Bacchetta et al., 2004); the angle is relative to the lepton plane: Fig. 12.21.
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12.14 Semi-inclusive deeply inelastic scattering 471

Fig. 12.20. SIDIS cross section.

Fig. 12.21. SIDIS kinematics, from Bacchetta et al. (2004). This diagram is given in the
target rest frame, and gives the Trento convention for defining the azimuthal angles of
the measured outgoing hadron and of the target’s spin vector. (Copyright (2004) by The
American Physical Society.)

The significance of the z variable is given in the parton-model approximation applied to
Fig. 12.22. Viewed in the Breit frame, the outgoing quark is approximately light-like, k + q

� (0, q−, 0T). Thus the experimentally measured variable z approximates the fractional
momentum of the detected hadron relative to its parent quark, just as x approximates the
fractional momentum of the struck quark k relative to the target hadron.

Given the basic meaning of a fragmentation function as a number density for a hadron in
a parton-induced jet, we immediately deduce a parton-model formula for the cross section
integrated over the transverse momentum ph T of the detected hadron:

dσ

dx dy dz
� 4πα2

yQ2
(1− y + y2/2)

∑
j

e2
j fj (x)dh/j (z). (Parton model) (12.91)

This is obtained by appending fragmentation functions to the parton model for inclusive
DIS, from (2.22) and (2.29), with neglect of masses. As usual y = q · P/l · P � Q2/(xs).
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Fig. 12.22. Parton model for SIDIS.

A general structure function analysis is more complicated than for ordinary DIS, because
of the extra vector. The details can be found in Bacchetta et al. (2007), which includes the
important case of a polarized target. For experiments, the importance of the structure
function analysis is that in the full differential cross section,

dσ

dx dy dz dph T dφh

, (12.92)

the azimuthal dependence is restricted to certain trigonometric functions. The simplest case
is the unpolarized cross section, where the azimuthal dependence is of the form

A+ B cos φh + C cos 2φh, (12.93)

with the coefficients being functions of the other variables. The situation is more compli-
cated for the polarized case, generalizing the same idea. The extra terms are each associated
with certain polarized parton densities and fragmentation functions.

12.14.2 Leading regions

To derive factorization, we use the same sequence of steps as for e+e− annihilation. An
important difference is in how a contour deformation is made to get out of the Glauber
region; this will have particularly notable consequences when we treat situations needing
transverse-momentum-dependent parton densities and fragmentation functions in Ch. 13.

The leading regions have a hard scattering on each side of the final-state cut, and the
virtual photon is attached to the hard scattering. There are at least two collinear graphs, one
of which includes the target. There may be a soft subgraph connecting by gluons to any of
the collinear subgraphs. Each of the collinear subgraphs connects to each hard-subgraph
amplitude by a primary parton line plus any number of Grammer-Yennie K-gluons. All
this follows from the usual power-counting.

There are two classes of collinear subgraph: the target subgraph and what we will call
hard-jet subgraphs. The “hard-jet” terminology associates them with the final state of a hard
scattering. In the laboratory frame the associated regions have large transverse momentum,
of order Q. In the brick-wall frame the associated regions either have large transverse
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12.14 Semi-inclusive deeply inelastic scattering 473

Fig. 12.23. Typical leading region for SIDIS, when the measured final-state hadron is in
the “current fragmentation region”. Three collinear subgraphs are shown; the minimum is
two.

Fig. 12.24. Like Fig. 12.23, but when the measured final-state hadron is in the “target
fragmentation region”. Two collinear subgraphs are shown, but extra hard-jet subgraphs
are also possible.

momentum or they have large minus momentum (appropriate for the parton model with a
single hard jet).

Depending on its kinematics, the measured hadron either comes from a hard-jet subgraph,
the target subgraph, or the soft subgraph.

When the hadron is from a hard jet, it is said to be in the “current fragmentation region”,
as shown in Fig. 12.23. When it is from the target subgraph, it is said to be in the “target
fragmentation region”, as shown in Fig. 12.24. The hadron comes from the target or soft
subgraphs only when z is small, so that p−h is small. We can characterize a canonical
situation for a target-collinear hadron by z ∼ m2/Q2 and a soft hadron by z ∼ m/Q.

For the rest of this section we will only be concerned with the current fragmentation
region, z� m/Q. Target-collinear hadrons will be briefly discussed in Sec. 12.15. We will
not treat soft measured hadrons at all.
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Fig. 12.25. Illustrating Glauber region for (SI)DIS.

12.14.3 Glauber region and (SI)DIS

The Ward-identity argument needed to factor the soft subgraph requires that the contour
of integration over soft momenta avoid the Glauber region, i.e., that there be no pinch in
the Glauber region. The general conditions for a pinch in a Glauber region were given in
Sec. 5.6. They concern a pinch of the smallest components of soft momenta when they flow
through collinear subgraphs.

The ability to do a suitable contour deformation is completely determined by examining
low-order graphs. In e+e− annihilation, the collinear subgraphs are all in the final state
relative to the hard scattering. So, as we saw in Sec. 10.6.4, we could deform exchanged
Glauber momenta away from all the collinear singularities. For example, in an exchange
between two collinear groups, the deformation would avoid the final-state singularities of
both collinear groups.

In DIS, the situation is typified by Fig. 12.25, which represents a graph in a model for
SIDIS. In contrast with e+e− annihilation, only a one-sided deformation works, to deform
l+ away from final-state singularities in the upper jet, but l− is trapped in the target-collinear
subgraph. Consider the region where the lower lines are target-collinear, with momenta of
order (Q,λ2/Q, λ), the upper lines are the opposite collinear: (λ2/Q,Q, λ), while the gluon
is Glauber: l ∼ (λ2/Q, λ2/Q, λ). The target lines trap l− between initial- and final-state
poles:

1

[(kA − l)2 −m2 + i0] [(P − kA + l)2 −m2 + i0]

� 1

[−2k+A l− + · · · + i0] [2(P+ − k+A )l− + · · · + i0]
. (12.94)

The approximation is valid when kA is target collinear and l is soft or Glauber. The dots
indicate terms that do not depend on l−. The trapping of the l− contour at values of order
λ2/Q is because on one line the direction of l is with the flow of plus momentum and on the
other the line it is against. As to l+, in the Glauber region the only significant dependence
is in the upper two lines, where it always is in the opposite direction relative to the large
outgoing collinear minus momentum. Thus l+ is not trapped; we can deform the contour
to much larger values of l+. The deformation only stops when we get out of the Glauber
region.
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In order to make the region approximators, we must choose the auxiliary vectors
(Sec. 10.6.4) for the K gluons so as not to obstruct the deformation. The space-like
future-pointing vectors chosen in that section continue to work here.

12.14.4 Factorization for SIDIS

Once the contours are out of the Glauber region, we can copy the factorization proof for
e+e− annihilation. We have applied approximants and subtractions for the contributions of
each region of each graph, and sum over possibilities.

We first use Ward identities to extract collinear K gluons from the hard scattering,
converting them to Wilson lines. Similarly we extract the soft gluons from the collinear
subgraphs.

The sum-over-cuts argument applies to all the collinear subgraphs except for the target
subgraph and the one to which the measured hadron attaches. Provided we average over a
broad range of transverse momentum ph T for the measured hadron, we can also apply the
sum-over-cuts argument to the soft subgraph. We are left with a hard subgraph convoluted
with a parton density and a fragmentation function, which arise for the same reasons as in
our factorization arguments separately for DIS and e+e− annihilation.

The resulting factorization theorem is conveniently stated in terms of a cross section
differential in Lorentz-invariant phase-space, in a form generalizing (12.13):

E
dσ (e + P → e + ph +X)

d3 ph

=
∑
jj ′

∫ 1+

x−

dξ

ξ

∫ 1+

z−

dζ

ζ 2
Ek

dσ̂jj ′

d3k
dh/j ′ (ζ ; μ)fj/P (ξ ; μ).

(12.95)

The hard scattering is for a parton of flavor j and massless momentum ξP̂ to scatter
inclusively to a parton of flavor j ′ and massless momentum p̂h/ζ . Here the hatted momenta
have the same 3-momenta as the unhatted momenta in the brick-wall frame, and have their
energies set to make the momenta massless.

One can convert the above to a formula for the structure functions.

12.15 Target fragmentation region: fracture functions

When the detected final-state hadron is in the target-collinear region, the leading regions
have the form shown in Fig. 12.24. There is a hard subgraph H , a target-collinear subgraph
C(1), one or more hard-jet subgraphs C(2), . . . , C(N) and a soft subgraph S. These are
exactly like those for ordinary DIS, except that the target-collinear subgraph now contains
the detected hadron. To specify the longitudinal kinematics of ph, it is convenient not to
use z, but instead a target-relative variable

xh
def= p+h

P+
� ph · q

P · q . (12.96)

Factorization can be derived by the same arguments we have already described. First,
the soft subgraph can be factored out and then shown to cancel. The K gluons from the
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Fig. 12.26. Diagrammatic representation of gauge-invariant fracture functions. The partonic
part, with its Wilson line, is the same as for parton densities in Fig. 7.9.

collinear subgraphs can be extracted from the hard subgraph, to give Wilson lines, after
which the hard-jet subgraphs are of the form in which the integrations can be taken out of
their collinear regions. We end up with exactly the same structure as in DIS. We have a
hard scattering of identically the same form as in DIS, and it is convoluted with a target-
collinear quantity whose definition is the same as a parton density, except that the final state
is required to contain the detected hadron. These quantities are called “extended fracture
functions” (Grazzini, Trentadue, and Veneziano, 1998). For the case of a bare quark fracture
function, the definition, generalized from the quark density defined in (7.40), is (Berera and
Soper, 1996)

M(0) jh/P (x, xh, ph T) =
∫

dw−

2π
e−ixP+w−

∑
X

〈P |ψ (0)
j (0, w−, 0T)W (∞, w−)†|ph,X, out〉

× 〈ph,X, out|γ
+

2
W (∞, 0)ψ (0)

j (0)|P 〉c, (12.97)

where the Wilson line (in the minus direction) was defined in (7.41). A similar modification
to the definition of the gluon density gives the gluon fracture function. These definitions
are shown diagrammatically in Fig. 12.26. In the unpolarized case, there is no preferred
axis in the transverse plane, so the dependence on the transverse momentum of the detected
hadron is only through its size.

Since the parton kinematics are treated identically to those of parton densities, the
Feynman rules at the parton end are the same as for parton densities. Hence renormalization
of extended fracture functions has the same form (8.11) as for parton densities. The DGLAP
equations therefore have the same form as (8.30) for parton densities:

d

d ln μ
Mjh/P (x, xh, ph T; μ) = 2

∑
j ′

∫
dz

z
Pjj ′ (z; g)Mj ′h/P (x/z, xh, ph T; μ). (12.98)

There is a kinematic constraint x + xh ≤ 1, given by energy positivity for the unobserved
part |X〉 of the hadronic final state.

The above functions are officially called “extended fracture functions”, even though
the term “fracture functions” would be more natural. However the latter term was already
defined (Trentadue and Veneziano, 1994) to refer to similar quantities defined with an
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integral over all ph T. Because of the integral, these quantities also include contributions
from the current fragmentation region and have more complicated evolution equations. It
seems better to use only extended fracture functions.

The extended fracture functions can be notated as parton densities differential in ph:

Mjh/P (x, xh, ph T) = (2π )32E ph

dfjh/P

d3 ph

. (12.99)

One way of stating the factorization theorem is to project the SIDIS cross section onto
structure functions. These are like F2 etc. for DIS, but now differential in xh and ph T:

dF2(x,Q2; xh, ph T)

dxh d2 ph T
. (12.100)

Then factorization is a simple generalization of the version (8.83) for DIS:

dF1(x,Q2; xh, ph T)

dxh d2 ph T
=
∑

j

∫ 1+

x−

dξ

ξ
F̂1j (Q/μ, x/ξ ; αs)

Mjh/P (ξ, xh, ph T)

16π3xh

, (12.101a)

dF1(x,Q2; xh, ph T)

dxh d2 ph T
=
∑

j

∫ 1+

x−
dξ F̂2j (Q/μ, x/ξ ; αs)

Mjh/P (ξ, xh, ph T)

16π3xh

, (12.101b)

valid up to power-suppressed corrections. The hard-scattering coefficients are the same as
in ordinary DIS.

The primary phenomenological applications are to diffractive DIS on protons. This
concerns the case that xh is close to unity (with, necessarily, x � 1), and that the detected
hadron is also a proton. See Chekanov et al. (2010) for recent results. In this case the
extended fragmentation functions are commonly referred to as “diffractive parton densities”.

Quite elementary extensions of these ideas can be applied to cross sections differential
in more final-state hadrons. One example is the dijet cross section in diffractive DIS (Aktas
et al., 2007a), which is differential in one proton in the target fragmentation region and in
two hard jets. Diffractive parton densities can be obtained from a fit to ordinary diffractive
DIS, without the dijet condition. Then the cross section for diffractive dijet DIS is predicted
with the aid of standard perturbative calculations for the hard scattering. The success of the
prediction confirms the experimental validity of the factorization approach.

Exercises

12.1 (**) Find and prove any extensions to the Ward-identity arguments of Ch. 11 that are
needed to apply them to the processes treated in this chapter.

12.2 (*****) Construct a good formalism for the evolution of states in space-time from
a quark state to a hadronic state. Ideally, this should be a rigorous formalism from
which you can derive from first principles that partonic states evolve to jet-like
configurations. Publish your results.

Undoubtedly I have stated this (very difficult) problem quite badly, and part of
the answer should be to formulate this problem more appropriately. A good solution
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to this problem should answer the issues raised, for example, by Gupta and Quinn
(1982). See problem 5.1 for some results that may be of use.

12.3 (**) In Sec. 12.12, I discussed whether non-perturbative effects can ruin factorization
in inclusive cross sections in e+e− annihilation. Give a more detailed and explicit
account of these issues by critically using the methods and results of Einhorn (1976,
1977).

In these papers Einhorn made approximate calculations in the model of large-Nc

QCD in two space-time dimensions. The final states given by this model, both in
e+e− annihilation and in DIS, are a series of closely spaced narrow resonances.
Thus the model consistently realizes an approximately unbreakable elastic-spring
picture. Einhorn found contrasting results relative to the parton model for different
kinds of cross section: DIS, the total cross section for e+e− annihilation, and the
single-hadron-inclusive process e+e− → π +X.

Use these results to illustrate the non-perturbative properties that either preserve
or violate factorization in the different reactions.

12.4 (**) Investigate the soft gluon cancellation in Figs. 12.7 and 12.8. Assume that the
quark is approximately parallel to the modeled pion, that the antiquark moves in
approximately the opposite direction, and that the gluon is soft. Show that there
is a cancellation between all the graphs in Figs. 12.7 and 12.8. But show that the
cancellation does not work if it is restricted to subsets of graphs related by sums-
over-cuts, i.e.,
• between Fig. 12.7(a) and (b),
• between Fig. 12.7(c) and (d),
• between the graphs of Fig. 12.8 alone.
For sufficiently soft gluons, internal emission will be suppressed, and there will
be a cancellation in Fig. 12.8 alone. But when the gluon momentum l becomes
comparable to or larger than M2/Q, internal line emission is important. Here M

denotes the invariant mass of the upper jet.

12.5 (**) Complete the proofs sketched in Sec. 12.8. Deal properly and explicitly with
the issues of subtractions and of the necessary Ward identities in non-abelian gauge
theories.

12.6 Obtain explicit factorization formulae for the differential cross sections for more
complicated inclusive cross sections, e.g., e+ + e− → H1 +H2 +X, e+ + e− →
H1 +H2 +H3 +X. Assume here that the observed hadrons are at wide angles with
respect to each other (and are not close to back-to-back in the two-hadron case).
More general situations can be considered, of course. But that will lead you into other
topics, such as those in Ch. 13.

12.7 Check and complete the one-loop calculations in Sec. 12.10.

12.8 Complete the one-loop calculations in Sec. 12.11. Verify that your results agree with
Rijken and van Neerven (1997).
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