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INVARIANT NEUTRAL SUBSPACES FOR SYMMETRIC 
AND SKEW REAL MATRIX PAIRS 

P. LANCASTER AND L. RODMAN 

ABSTRACT. Real matrix pairs (A,//) satisfying det// ^ 0, HT = £//, and HA -
r)ATH, where £, i] take the values +1 or —1, are considered. It is shown that maximal 
A-invariant //-neutral subspaces have the same dimension (depending on £ and r/), 
called the order of neutrality of the pair (A, / /) . The order of neutrality of definitizable 
pairs is investigated. In particular, this concept is used to obtain lower bounds for the 
number of pure imaginary eigenvalues of low rank perturbations of definitizable pairs 
when (4, r/) = (1, - 1 ) and when (£,77) = (—1,—1). 

1. Introduction. Consider a nonsingular hermitian H £ Cnxn, the space of complex 
n x n matrices, and the (generally) indefinite scalar product [., . ] defined on Cn by 

[x,y] = (Hx,y)=y*Hx 

for all x,y G Cn (and the star denotes conjugate transpose). If A G CnXn and satisfies 
(//A)* = HA, A is said to be H-selfadjoint. A subspace 5 of C" is A-invariant if AS Ç S 
and is said to be H-neutral if [JC, y] = 0 for all JC, v G 5. It has been shown in the recent 
paper [4] that all maximal A-invariant and //-neutral subspaces have the same dimension, 
say 7(A; / /) , called the order of neutrality of A with respect to //. This number is not less 
than the number of eigenvalues of A in the open upper half of the complex plane plus 
the number of distinct real eigenvalues, A, with an isotropic eigenvector JC {i.e. for which 
[JC,JC] = 0, in which case A is necessarily a multiple eigenvalue). When 7(A;//) = 0 
all eigenvalues of A are real and "definite", in the sense that they have no isotropic 
eigenvector, and A is said to be "definitizable with respect to //" (see also reference [5]). 

These ideas can be applied to find lower bounds for the number of real eigenvalues of 
an //-selfadjoint matrix A when A, H are low-rank perturbations of a pair AQ, HQ and AQ is 
definitizable with respect to //r> There are also applications to estimates for the degrees 
of factors in symmetric factorizations of polynomial and rational matrix functions. 

Now this discussion has counter-parts in the context of real spaces and matrices, and 
these counter-parts are the subject of the present paper. In the complex case analysis 
depends on the fine-structure of multiple eigenvalues and their spectral subspaces, and 

The first author was partially supported by a grant from the Natural Sciences and Engineering Research 
Council of Canada. 

The second author was partially supported by NSF grant DMS—9000839. 
Received by the editors September 23, 1992. 
AMS subject classification: 15A21, 15A57. 
Key words and phrases: indefinite scalar products, matrix pairs, definitizable pairs, invariant subspaces. 
© Canadian Mathematical Society, 1994. 

602 

https://doi.org/10.4153/CJM-1994-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-032-4


INVARIANT NEUTRAL SUBSPACES 603 

this information is crystallized in the canonical form for transformations of pairs: 

(1.1) (A,//) —>(S~lAS,S*HS). 

For real pairs there are significant differences in these canonical structures giving rise to 
different evaluations for 704; H) and different conclusions for some of the applications. 

The analysis over R is further complicated by the presence of four cases, which are all 
included in the present work. Thus, we have A, / / E Rnxn with H nonsingular and admit 

HT = ±H, HA = ±ATH. 

The two positive signs give the immediate restriction of the analysis over C described 
above. The two negative signs involve "symplectic" symmetries arising in the analysis 
of real Riccati equations, for example, and the ( , +), (+, ) pairs also have their 
applications (see [81, for example). 

The canonical forms under the transformation (1.1) for the four separate cases are 
significantly different and are collected under one heading as Theorem A.l of the ap
pendix to this paper. This uniform format facilitates comparisions between the four cases, 
although all of this information is available in the literature. In Section 2 the central result 
is formulated: that maximal A-invariant //-neutral subspaces have the same dimension. 
Then Sections 3-6 are devoted to proofs of this fact in the four cases described above, 
together with evaluation of the corresponding order of neutrality, 7(A; / /) . 

In Section 7 the relationship of the condition 7(A;//) = 0 with the definitizable 
property of A with respect to H is examined, and in Section 8 some spectral properties 
are outlined for low rank perturbations of A and H when A is definitizable with respect 
to/ / . 

Section 9 contains a brief description of some problems of applied analysis giving rise 
to real pairs discussed in this paper. Subsequent papers will deal with the relationship 
between the degrees of factors appearing in symmetric factorizations of polynomial and 
rational matrix functions, and the order of neutrality defined in terms of their realizations. 

2. Maximal invariant neutral subspaces. For £ = ±1 and rj = ±1 , let L„(£, 77) be 
the class of all ordered pairs of n x n real matrices (A, //) with H invertible, HT = £//, 
and HA = r]ATH. When £ = — 1 we assume always that n is even; otherwise H fails to be 
invertible. 

If HT = H or HT = —//, and H is invertible, a subspace M Ç W1 is said to be //-neutral 
if xTHy = 0 for all J c , y G ^ . Note that, in the partial ordering on subspaces determined 
by inclusion, the following well-known result holds (see [3], for example, where the 
corresponding result for complex spaces is obtained). 

PROPOSITION 2.1. IfHT = H and det// ^ 0 then the maximal dimension of an H-
neutral subspace is 

i/(H) := min{# of positive eigenvalues ofH, # of negative eigenvalues ofH}. 

where the eigenvalues are counted with multiplicities. IfHT = —H and det// ^ 0 then 
the maximal dimension of an H neutral subspace is n/2. 
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604 P. LANCASTER AND L. RODMAN 

Now let IN(A, H) be the set of subspaces of W which are both A-invariant and H-
neutral. The first theorem is an important property for our investigations and applies for 
any of the four distinct pairs £,77. 

THEOREM 2.2. All maximal elements in IN (A, H) have the same dimension. 

The proof of Theorem 2.2 will be given in Sections 3-6 for the four different pairs 
(£, 77). Furthermore, the dimension of the maximal elements will be obtained and will be 
seen to depend on the choice of £ and 77. The proofs depend on the detailed structure of 
the four pairs of canonical forms for H and A which are presented in Appendix A. 

3. The case Lw(—1,1). We start with the case giving the least technical difficulty. 

THEOREM 3.1. Let (A,//) G Ln(— 1, 1). Then the dimension of every maximal A-
invariant H-neutral subspace is equal to | , i.e. 7(A; H) = | . 

PROOF. Let 94 be a maximal A-invariant //-neutral subspace. By Proposition 2.1, 
dim 94 < | . Assume d := dim 94 < | , and consider the subspace 

<M[1] = {x G Rn : xTHy = 0 for all y G 94} 

(the "//-orthogonal companion" of 94). As 94 is //-neutral, clearly we have 94 Ç 94^K 
Furthermore, dim 94[1] = n — d (because 94[1-] coincides with the (euclidean) orthogonal 
complement to the d-dimensional subspace H94). The subspace 94[1] is also A-invariant. 
Indeed, if x G 94[1~] then for every y G 94 we have 

(AxfHy = xTATHy = xTH(Ay) = 0 

because 94 is A-invariant. Hence Ay G 94. So, choosing a (euclidean) orthonormal basis 
{y\,..., yn} in W1, where y\,..., yd form a basis in 94, yd+\,..., yn-d form a basis in the 
euclidean orthogonal complement to 94 in 94[L\ and yn-d+\, • • • ? yn form a basis in the 
euclidean orthogonal complement to 94[1] in Rn, we represent A in the following form 

(3.1) A' = 
An A12 An 
0 A22 A23 

0 0 A33 

The corresponding representation for H is given by the matrix H' = [yjHyj]" .=1, which 
has the form 

0 0 //13" 
(3.2) //r = I 0 H22 H23 

«13 ^ ^ -H? -//I3 //33 

The matrix H22 is skew-symmetric and invertible (because H' has these properties), and 

H22A22 - AI2H22. 
We now apply the canonical form (Case 1 of Theorem A.l) to the pair (A22, #22) ^ 

Ln-2s(—1,1)- The canonical form clearly shows that there exists a one, or two-dimensional 
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A22-invariant H- neutral subspace, call it M'. Indeed, for A/, Ht in the form (A.2) one can 
take M' - span{e„,}, for A/, Ht in the form (A.3) one can take 

^ ^ s p a n j ^ n p ^ - i } . 

(Here and elsewhere e^ denotes the column vector whose &-th component is 1 and all 
other components are 0; the number of components is understood from the context.) 
Embed this subspace in W in the natural way to obtain a subspace 94." in W, (i.e. 
dilate the vectors of M' with zeros). Then the subspace M + M" is clearly A^invariant, 
//'-neutral and strictly bigger than M. This contradicts the maximality of M. m 

4. The case Ln( 1, 1 ). For a real eigenvalue i/j of a real matrix A, let ^(A; i/j) be the 
corresponding spectral subspace. For a non-real eigenvalue pair Xj ± i\ij of A we write 
^(A; Xj ± ifij) for the spectral subspace associated with the two eigenvalues Xj db ii/j. 
Then we may write 

where A, + ////, j = 1, 2, . . . , /?, are all the distinct eigenvalues of A in the open upper 
halfplane, and ei\, ei2,.. •, aq are all the distinct real eigenvalues of A. Note also that, 
for a real eigenvalue «,, rrij := dim ^(A; a7) is the algebraic multiplicity of aj and, for a 
non-real eigenvalue Xj + //// the algebraic multiplicity is 

nij - - dim %{A\ Xj ± //xy). 

For a non-real eigenvalue we also define 

(4.1) 
YYIJ if m} is even 
nij — 1 if my is odd. 

Now let (A, //) G Ln ( 1,1 ). For a real eigenvalue en let r, be the dimension of a maximal 
//-neutral subspace in !^(A; «/). Using Proposition 2.1 this can be expressed as 

n = H[yjHyk]%=l) 

where y\,..., ym is an orthonormal basis for ^(A; a/). 
The number r/ can also be expressed in terms of the parameters defining the canonical 

blocks (A.4) associated with the real eigenvalue at. As these blocks are the same for 
hermitian pencils over C" the evaluation carried out in Theorem 3.1 of [4] applies. Let 
Pj be the number of blocks Jnj in (A.4) of size j \ and let pj = pj + pj where pj, pj 
are the numbers of corresponding e/s that equal +1 and —1, respectively. Also, define 
M/ = EJLi[|M-Then 

(4.2) n = in + min {JT p\T_ ^YLPir-x) 
\ r r J 

and is called the order of neutrality of a,-. 
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THEOREM 4.1. Let (A, / / ) E Ln(l, 1) and let the numbers CXJ, r, be defined as above 

(equations (4.1) and (4.2)). Then every maximal A- invariant H-neutral subspace has 

dimension 

(4.3) 7(A; #) = £>,•+ X > 

PROOF. Every A-invariant subspace is a direct sum of its intersections with 

%iA\ Xj ± ifij) and ^(A; 7/)- Indeed, it is easily seen from the canonical forms of (A.4) and 

(A.5) that these subspaces are //-orthogonal. Consequently, it may be assumed without 

loss of generality that either, (1) A has only one eigenvalue (possibly of high multiplicity) 

and it is real or, (2) A has only two eigenvalues and they form a non-real conjugate pair. 

For case (1) let v be the dimension of a maximal //-neutral subspace and <M. be a 

maximal A-invariant //-neutral subspace. Let d = dim!A/ < v. Suppose d < v and 

proceed as in the proof of Theorem 3.1 to obtain representations A' and H' as in (3.1), 

(3.2) with (A22, H22) E Ln__2j(l? !)• Clearly, d < v implies that Z/22 *s indefinite. But then 

the canonical forms of (A.4) for (A', H') show that there is a nonzero A22-invariant and 

//22-neutral vector and this would admit the dilation of M to a strictly bigger A'-invariant 

and //'-neutral subspace contradicting the maximality of M. Hence d = dim M = v. 

Now consider case (2) above. In this case every A-invariant subspace has even 

dimension. Let M be a maximal A-invariant and //-neutral subspace and suppose that 

d := dim M < mo where we define 

\\n if n is divisible by 4, 
m ° = \ 1 

\\n—\ otherwise. 
Thus, both d and mo are even. Again, proceed as in the proof of Theorem 3.1 to 

obtain representations (3.1) and (3.2). Now A22 and H22 have size n — 2d and, because 

d < mo < \n and d is even, n — 2d > 4. Now we obtain a contradiction, and prove the 

theorem, by applying the following lemma (note that otj of (4.1) and (4.3) is \n in this 

context). • 

LEMMA 4.2. Let (A, / / ) G Ln(l1 1) and assume that cr(A) = {A + ///, A — //1} where 

/1 > 0, À G H Assume also that n > 4. Then there exists a two-dimensional A-invariant 

H-neutral subspace. 

PROOF. Without loss of generality it may be assumed that A and H have the canonical 

forms of Case 2 in Theorem A. 1. Say, 

j=\ V V AJ j=\ 

If at least one nj exceeds one, say n\ > 1, define 

^ o = Span{^2n, ,^2n 1 - l} , 

and verify that (MQ has the desired properties. 

If, on the other hand, all nj are equal to one then n > 4 implies p>2. Now define 

9\4Q = span{^i + £4, £2 — £3}- • 
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5. The case L„(l, — 1). When (A, H) is in L„(l, — 1) the canonical forms of Case 3 
in Theorem A. 1 suggest that we first consider separately the zero eigenvalue (when it 
exists) and any pure imaginary (nonzero) eigenvalues. As before, i/(X) will denote the 
dimension of a maximal X-neutral subspace for a real symmetric or skew-symmetric 
matrix X. 

For a pair of pure imaginary eigenvalues ±ib of A (b > 0), let y\,..., yp be a real 
orthonormal basis in (RSA\ ±ib) and write 

H±ib) = H\yjHyki;jt=l). 

This number can be determined by careful examination of the formula for Hi in (A.8). It 
is found that, if / is the set of indices j for which rij is odd (in (A.8)), then 

(5.1) v(±ib) = - dim %£A\ ±ib) 5>! 

When 0 G a(A), let z\,. •., zp be a real orthonormal basis in %{A\ 0) and define 

H0) = HlzjHZk]lk=l). 

This number can be determined by examination of equation (A.6). It is found that, with 
e j , . . . , ep as in (A.6), 

(5.2) 
1 

z / ( 0 ) = - d i m ^ ( A ; 0 ) - -

where ^: = +1, or /«j; = — 1 according as 2rij + 1 is an odd integer of the form 4k + 1, 
or 4k — 1, respectively. Observe that, although dim ^(A; 0) can be odd, z/(0) is always a 
nonnegative integer. 

THEOREM 5.1. Let (A, H) e Ln(l, -1 ) owd v(±ibj), v(0) be defined as in (5.1) and 
(5.2). If S is the spectral subspace of A corresponding to all eigenvalues of A not lying on 
the imaginary axis, then the dimension of all maximal A-invariant H-neutral subspaces 
is 

(5.3) 
r 1 

7(A; H) = i/(0) + ]T v(±ibk) + - dim S. 
k=\ 2 

= ô"-£E ey 
*=i 

1 

Of course the term z/(0) does not appear in the formula if 0 ^ cr(A) and similarly 
for the other terms. Observe also that, from the canonical forms (A.6)-(A.9), a nonzero 
number a + ib G a(A) if and only if —(a + z7?) G a(A) and both eigenvalues have the same 
partial multiplicities. Consequently, dim S is even and formula (5.3) is well-defined. 
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PROOF. The line of argument is that of Theorem 4.1 in the context of an H- orthogonal 
decomposition W1 = So+S\+S where So, S\ are spectral subspaces associated with the 
zero eigenvalue of A, and the nonzero pure imaginary eigenvalues, respectively. It will 
be shown that a maximal A-invariant H- neutral subspace in 5o is, in fact, maximal 
//-neutral in So, and similarly for S\ and 5. 

In the case of subspace S equations (A.7) and (A.9) apply and our assertion is obvious. 
In the case of S\ it is sufficient to verify our assertion for just one pair of nonzero pure-
imaginary eigenvalues ±ib. 

The proof now follows the same line as the proof of Theorem 4.1 and is based on the 
following lemma. • 

LEMMA 5.2. Let (A,//) E L„(l, —1) and assume that either A has only the zero 
eigenvalue, or A has just one pair of eigenvalues ±ib where b > 0. If H is indefinite then 
there exists a nonzero A-invariant H-neutral subspace frfa. 

PROOF. Suppose a(A) = {0}. It is apparent from equation (A.6) that, if q > 1 or one 
of m , . . . , np is positive then such a subspace <MQ exists. Similarly, if a(A) = {±ib} and 
one of n i , . . . , np exceeds one in (A.8), such a subspace 9vfa can be constructed using 
(A.8). 

These observations leave only two cases to be considered. They derive from (A.6) 
and (A.8), respectively. 

with €j• = ±1 and not all equal. 

, H = e\h 0 • • • © ePh where b > 0, e, = ±1 and 

not all e/s are equal. 
In case (i) we may assume ei = —62 and choose 

(i) A = 0 and H = diag[ei, • • •, ep] 

(ii) A = 
' 0 b 
~b0 e - - - e 

' 0 b' 
-b 0 

Mo = span{<?i +^2}-

In case (ii) we may also assume e\ = —62 and then take 

f7% = span{ei + £4, e2 — £3}. • 

6. The case Ln(—1, — 1 ). Our argument follows the now familiar pattern, but using 
canonical forms (A.10)-(A.13) for a pair (A,//) G Ln(— 1,— 1). Consider equations 
(A. 12) first of all, and note that bk > 0, (it is convenient to replace / by k). Let the 
eigenvalue ibk have partial multiplicities {nj}. Let J be the set of all indices y for which 
nj is odd, and define the nonnegative integer 

(6.1) m(A; ±ibk) = - dim^(A; ±ibk) 
1
 J 

THEOREM 6.1. Let (A,//) e L n ( -1 , -1) , define m(A; ±ibk) as in (6.1) and let S be 
the spectral subspace of A corresponding to all eigenvalues of A except the nonzero 
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pure imaginary eigenvalues. Then every maximal A-invariant H-neutral subspace has 
dimension equal to 

(6.2) 7(A; //) : = ]T m(A; ±ibk) + - dim S 
k=\ 

= 2n 
fc=l ' Jk 

PROOF. It follows from the structure of the canonical forms (A.10)-(A.13) that we 
can consider each of the following four cases separately: (1) a(A) = {0}; (2) a(A) = 
{a, —a}, where a is real and positive; (3) a(A) = {±/Z?}, where b is real and positive; (4) 
a(A) = {a + ib, a — ib, —a + ib, —a — ib}, where a > 0, b > 0. 

In cases (1), (2) and (4) one argues as in the proof of Theorem 4.1, using the fact 
(easily observed from the canonical form) that if H is indefinite and one of (1), (2) or (4) 
holds, then there exists a nontrivial A-invariant //-neutral subspace. 

Assume now that the case (3) holds. Observe that (A, HA) G Ln(\,—1) and that 
(because A is invertible) a subspace is H-neutral if and only if it is //A-neutral. So, 
applying Theorem 5.1 to the pair (A, HA) the dimension of a maximal A-invariant H-
neutral subspace coincides with 

V(\y]{HA)yj}1j=l), 

where y\,..., yn is an orthonormal basis in IRn. Using equation (A. 12) it is found that the 
matrix HA is congruent to Q := Q\ 0 • 0 Qpy where 

(6.3) Qj = tj 

o 
0 

0 

(-\)n~lbF^+l 0 

•+i 

0 F"{ bf{ 
0 -F"J -bff 0 

0 0 0 
0 0 0 

+11 

It is clear from (6.3) that for even nj the matrix Qj has «/ positive and nj negative 
eigenvalues (counted with multiplicities). Also, when nj is odd the matrix Qj has rij — Cj 

positive and n}+tj negative eigenvalues (because of the 2 x 2 block ey 0 -b present 

in the middle of Qj). Consequently, the dimension of a maximal Q-neutral subspace is 
min{# of positive eigenvalues of Q, # of negative eigenvalues of Q} = £?=1 nj — | £y e/|, 
where / is the set of indices y for which nj is odd. This proves Theorem 6.1. • 

We can use equations (6.1) and (6.2) to describe those situations in which 7(A; H) is 
maximal, i.e. in which 7(A;//) = \n. First, equation (6.1) shows that m(A; ±ibk) = m^, 
the algebraic multiplicity of ibk if and only if Ey e7 = 0. If this is the case for all nonzero 
pure imaginary eigenvalues then it follows that 7(A;//) = \n. In particular, this result 
holds if all nonzero pure imaginary eigenvalues have only even partial multiplicities for 
then J is empty. 

https://doi.org/10.4153/CJM-1994-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-032-4


610 P. LANCASTER AND L. RODMAN 

COROLLARY 6.2. If (A, H) E Ln(— 1, —1) am/ a// //z<? nonzero pure imaginary eigen
values of A have only even partial multiplicities then 7 (A; H) = ^n. 

EXAMPLE. This example illustrates that the converse of Corollary 6.2 is not true. Let 

0 1 0 01 
- 1 0 0 0 

0 0 0 1 
0 0 - 1 0J 

then (A, //) E /^(—1, —1). The two-dimensional subspace 

" a' 

< X | X = 
a , a, pern 

3. 

is maximal A-invariant and //-neutral, but the eigenvalues +/ and —/ of A each have partial 
multiplicities equal to one. For the sign characteristic we have e i = +1, e2 = — 1. • 

7. Definitizable pairs. If (A, //) G Lw(£, rj) we say that A is definitizable with respect 
to H if there is a real scalar polynomial p such that Hp(A) > 0, i.e. Hp(A) is symmetric 
and positive definite. In this section relationships between the condition 7(A, //) = 0, 
the definitizable property, and properties of the spectrum of A are established. Note first 
of all that if (A, //) have (A, //) as a canonical pair under the transformation (A.l) then, 
clearly, Hp(A) > 0 if and only if Hp(A) > 0. Thus the definitizable property can be 
examined in terms of the appropriate canonical pairs appearing in Theorem A.l. 

The case (£, n) = (— 1, 1) is quickly disposed of because equations (A.2) and (A.3) 
show that Hip(Ai) > 0 is impossible. Thus, if HT = —H and HA = ATH, A cannot be 
definitizable with respect to H. 

The case (£, n) = (1, 1) offers an interesting contrast with the corresponding case of 
complex matrices. Thus, we compare the case A, H G Rnxn, HT = //, HA = ATH, with 
the case A,// G Cnxn, H* = //, HA = A*//. The latter case has been examined in [5] 
and [4] and it is known that then 7(A, //) = 0 and "A definitizable with respect to //" 
are equivalent and, in turn, these are equivalent to the condition that A have only real 
eigenvalues and that they have definite type (i.e. the eigenspace of each eigenvalue is 
either //-positive or //-negative). For real (1,1) pairs these equivalent statements are 
lost. 

The essential difference is that for complex matrices the (generic) simple non-real 
eigenvalues contribute to 7(A;//) while for real matrices they do not do so (see equa
tions (4.1) and (4.3)). 

THEOREM 7.1. If (A,//) e L„(l,l) then 7(A,//) = 0 if and only if all non-real 
eigenvalues of A (if any) are simple and all real eigenvalues have definite type. 

0 1 0 01 
- 1 0 0 0 

0 0 0 - 1 
0 0 1 Oj 
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PROOF. This is a direct consequence of equations (4.1) and (4.3). • 

Note the conditions on <r(A) described here are stable under small perturbations of 
A and H which retain their symmetries. Thus, 7(A, H) = 0 ensures a "strongly stable" 
system in this sense. Note also that the definitizable property implies 7 (A, H) = 0 but not 
conversely. Indeed, it may be said that, in the (1, 1) case, 7 (A, H) - 0 is "generically" 
satisfied, as it is satisfied if all the eigenvalues of A are simple. Conversely, if A is 
definitizable with respect to H, then a(A) C R and all eigenvalues have definite type. 
This follows from equation (4.2). Thus, when (£, 77) = (1,1), A definitizable with respect 
to H implies 7(A, H) = 0, but not conversely. 

For the cases (£, 77) = (1,-1) and (£7 77) = (—1, —1) we need a notion of "definite 
type" for pure imaginary eigenvalues. Define this in terms of real quantities by saying 
that an eigenvalue ib of A (b G IR) has definite type if any elementary divisor of A (over 
R) of the form (A2 + b2)k has k = 1 and, if there are several such divisors (with the same 
/?), then the corresponding numbers e; (of equations (A.8) or (A. 12)) are all equal. 

THEOREM 7.2. If (A, H) E Lw(l, —1) the following are equivalent: 

(i) 7(A,//) = 0. 
(ii) A is definitizable with respect to H using a polynomial which is an even function. 

(Hi) All eigenvalues of A are on the imaginary axis and have definite type. 

PROOF. The equivalence of (i) and (iii) follows from Theorem 5.1. Let us verify that 
(ii) and (iii) are equivalent: Given (ii) there is a real polynomial p such that Hip{Ai) > 0 
for all basic canonical pairs (A,, Hi) of (A, H) in (A.6)-(A.9). We see immediately that 
cases (A.7) and (A.9) cannot occur, so a(A) is on the imaginary axis. The remaining 
properties follow from examination of (A.6) and (A.8). So (ii) => (iii). 

Conversely, given (iii), let A = iA and consider the pair (A,/f) in the context of 
complex matrices, noting that H* = H and HA = A*//. Using the main result of [51 the 
spectral properties of A imply that A is definitizable with respect to H. Thus, there is a real 
polynomial/? such that Hp(A) > Oon Cn. If p(X) = Zf^PjX definep(A) = EjP2j(-iy^2j 

and it is easily seen that 

Hp(A) = Re(Hp(A)) > 0 

on IRn. This gives condition (ii). • 

Similar arguments apply in the (—1, — 1) case and yield the following result: 

THEOREM 7.3. If (A, H) G Ln(— 1, —1) the following are equivalent: 

(i) 7(A,//) = 0, 
(ii) A is definitizable with respect to H by a polynomial which is an odd function, 

(iii) A is nonsingulary all eigenvalues are on the imaginary axis, and all eigenvalues 
have definite type. 
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8. Low rank perturbations of definitizable pairs. In the light of the results of 
Section 7, let us now examine some properties of pairs (A, H) G Ln(£, 77) which are low 
rank perturbations of pairs (Ao, i/o) and for which Ao is definitizable with respect to Ho. 
The arguments used to prove Theorem 5.2 of [4] apply verbatim in the context of real 
matrix pairs and yield the next theorem. Note first that Ao is said to be d-definitizable with 
respect to HQ if AQ is definitizable with respect to Ho and, among all real polynomials p 
for which Hop(A0) > 0, the least degree is d — 1. 

THEOREM 8.1. Let (A, H), (A0, HQ) £ Ln(^ 77) andAo be d-definitizable with respect 
to Ho. If a = rank(A — A0) and h = rank(7/ — //0), then 

(8.1) 7(A,//) <(d- \)a + h. 

Observe first of all that the case (£, 77) = (— 1,1) is excluded from this statement as 
there are no definitizable pairs (A0, Ho) in this case. The significance of the bound (8.1) 
is different in the three remaining cases. 

If A G RnXn has r real eigenvalues and 2c non-real eigenvalues then r = n — 2c. In the 
(1,1) case over C considered in [4] it is shown that 7(A; H) > c and hence n — 27(A; H) 
provides a lower bound for r. In the (1,1) case over R, 7(A;//) > c no longer obtains 
and, for the purpose of estimating r from below, the result obtained for complex pairs, 
i.e. 

r>n-2{(d- \)a + h} 

cannot be improved. However, in the (1, —1) and (—1,-1) cases over R the same idea 
gives lower bounds for the number of eigenvalues on the imaginary axis. 

COROLLARY 8.2. For the cases (£,77) = (1, —1) and (£,77) = (—1, — 1), and under the 
hypotheses of Theorem 8.1, the number of eigenvalues of A on the imaginary axis is not 
less than n — 2{(d — \)a + h}. 

9. Examples. The following four examples demonstrate that there are significant 
problems of applied analysis in which the classes of matrix pairs Ln(£, 77) have a role 
to play. Significant new results are not obtained, although fresh light may be cast on 
familiar problems. The first three examples concern quadratic eigenvalue problems and 
admit extensions to higher order systems. However, for the sake of brevity and clarity 
only the second order systems are presented. 

1). Pairs (A,//) G Ln(l, 1) arise naturally in the theory of vibrations. The time-
invariant matrix equation 

My(t) + By(t) + Ky(t) = 0 

in which M, B, K G Rnxn and M > 0, B > 0 and K > 0 is a classical model for externally 
damped vibrating systems. The corresponding eigenvalue problem 

(9.1) L(X)x := (A2M + A£ + K)x = 0 
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has the linearization 

A = 
0 7 

-MlK -MlB 

and if 7/:= 
B M 
M 0 then it is easily verified that (A, 77) G 7^(1,1). 

Systems of this kind are known to be 2-definitizable if B > kM + k~lK for some 
k > 0. They are treated in reference [4] in the context of complex hermitian matrices 
M, 7?, K. For the perturbation problems of Section 8, for example, the real formulation 
yields no sharper results. For example, if M, B and K in (9.1) are obtained by rank ra, b, 
and k perturbations of a 2-definitizable system Lo(A) = A2Mo + A7?o +^o then the number 
of real eigenvalues of (9.1), say r, satisfies 

r >2n-2(m + b + k). 

This follows from Theorem (8.1) and is consistent with a result of the paper [4]. 

2). Gyroscopic systems of the form 

(9.2) My{t) + Gy(t) - Ky(t) = 0 

G ^ 0, K > 0 are discussed in the paper [1]. where M,G,Ke RnXn and M > 0, GT 

Defining 
G M' 

77 = -M 0 7 A = 
0 7 

M~lK -MlG 

it is found that A provides a linearization of (9.2) and (A, 77) G 7.2„(—1, — 1). 
Stability of the system (9.2) is ensured when \G\ > kM+k~{ K for some k > 0 and the 

pair (A, 77) is then 4-definitizable. As in the first example the conclusions obtained from 
Corollary 8.2 (for low rank perturbations of G and K) do not improve on those obtained 
by analysis over C (and reported in the paper [4]). 

3). Suppose now that R, B, S G Rnxn with RT = -R and nonsingular, BT = B, 
ST = —S. Consider the system 

(9.3) 

Defining 

Ry(t) + By(t) + Sy(t) = 0. 

77 = 
B R 

-R 0 
A = 

0 7 
-R~lS -RlB 

it is found that A is a linearization for (9.3) and the pair (A, 77) G L2n(l, —1). 

4). Let A, D, C G Rnxn with D > 0 and CT = C. Consider the Riccati equation for 
the unknown* G r x n : 
(9.4) XDX 

The pair (A, 77) defined by 

XA-AJX-C = 0. 

77 = 
0 7 

-7 0 
A = 

-A D 
C A r 
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is found to be in L2n(—1, —1). It is known from analysis over C (see [3], for example) 
that (9.4) has a hermitian solution if and only if 7(A, H) = n. Our Corollary 6.2 confirms 
that this is the case when the nonzero pure imaginary eigenvalues of A have only even 
partial multiplicities {cf. Theorems 1.3.21 and II.4.3 of [3]). 

Notice also that (from the latter theorem), when (A, D) is a controllable pair and 
7(A; //) < n (in particular, when (A, H) is a definitizable pair, as in Theorem 7.3 above) 
then (9.4) has no real symmetric solutions. 

5). Consider equation (9.4) once more. Define A as above and let 

H = 
C AT 

A -D 

Then HT = H and HA = —ATH. Thus, there is also a pair from Lin(\, —1) associated 
with (9.4). Note also that H = HÂ. 

Appendix. In this appendix we list the canonical forms for pairs of matrices in 
Ln(£,,,n) (see Section 2 for the definition) under the transformations (A,//) —> 
(S~ 1 AS, STHS) for invertible real matrices S. The derivation of these forms can be 
found in a variety of sources and are collected here for easy reference. See [2], [9], [6], 
[8] and [3]. 

The following notations are used: 

Z = Zi ^ = ©Zi 
i=\ 

denotes the block-diagonal matrix with blocks Z\,..., Zq on the main diagonal. Jordan 
blocks are defined as follows: 

(a 

1 
Jn{a) = 

\ 

0 a 
1 a) 

Jn 
ab\ _ 

-b a)~ 
h 

\ 

0 

where Z stands for the matrix 
a b 

-b a 

\ 0 hZj 

. Here a, b are real numbers with b > 0. The size 

a b 
of Jn(a) is n x n and the size of Jn\ , is 2/2 x 2n. 

y-b a J 
Several special matrices will be used. Define 

0 - 1 
0 

\(-iy-' / 
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Thus, Fj is ay xy matrix which is symmetric if y is odd and skew-symmetric if y is even. 
Then write 

Gj = 
0 -P~l 

0 
y(_iy-i^-> / 

so that Gj is a 2y x 2y matrix which is symmetric for all y. Also, define real symmetric 
y x y matrices 

0 ••• 0 1 

Kj = 

: 1 0 

0 1 
1 0 ••• 0 

Finally, recall that Fi = 
0 1 

- 1 0 

** = 

and let 

0 

0 
(-iy-lK o 

-#, o 

0 

Thus, Lj is a 2y x 2y skew-symmetric matrix for each y. 
The canonical forms are now presented in the order in which they are used in the 

main text (Section 3-6, respectively). 

THEOREM A.l. Let (A,//) E Ln(^ rj). Then there exists a real invertible matrix S 
such that 

(A.l) S~lAS = 0A„ STHS = 0 / / / . 

The matrices of a canonical pair (A/, ///) have the same size and take the following forms 
(depending on the four possible choices of(^ rj)): 

CASE 1 : £ = — 1,77 = 1. There are two types, either 

p 

(A.2) 

where a, is real, or 

7=1 

"; = © 
7=1 

0 /„, 
-/«, 0 

(A.3) * = 0KI ??'W "'*' -6/ a,- -&,- a, *« > 0, 

https://doi.org/10.4153/CJM-1994-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-032-4


616 P. LANCASTER AND L. RODMAN 

7=1 

0 I2nj 

-hn, 0 

CASE 2: £ = 1,77 = 1. r/?ere are two types, either 

(A.4) 
; = i 7=1 

vv/iere a, « rea/ awd e,• = +1 or — 1; or 

04-5) 
a, fr, 

7=1 V °i ai J j=\ 

where at, b[ are real and b[ > 0. 

CASE 3: £ = 1,77 = — 1. There are four types, either 

p q 

(A.6) Ai = © ^ 1 ( 0 ) e 0(/„w.(O) e - ^ ( 0 ) r ) , 
7=1 7=1 

7=1 ; = i 

0 In 
np+j 

In 0 
nn+i 

where np+\,. . . , ftp+4 <?re ^v^n integers and e i , . . . , ep ta/:£ ^ values +1, or — 1, or 

(A.7) 

where at > 0, or 

(A.8) 

Al-=©(j„/a,)e-y„;(a,-)r) 
J=I 

».- = © 
;=i 

A,- - ef=1y„, I . 0' 

0 /„. 
In, 0 

i=i 

where bj > 0 a n J e i , . . . , ep take the values +1 or —I, or 

p 

(A.9) A/~§M A-«]]e_7n-*.•*• 

;=i 

0 /2„ , 
/2„ , 0 

CASE 4: £ = — 1, JJ = — 1. 77zere are four types, either 

(A.10) A, = ©7^(0) 0 0 { ( j 2 w l ( O ) ) 0 ( - / 2 w l ( 0 ) ) r } ? 
7=1 7=1 

7=1 7=1 

0 ^ y + l 

"^n^+l 0 

https://doi.org/10.4153/CJM-1994-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-032-4


INVARIANT NEUTRAL SUBSPACES 

where Cj is I or —I (forj = 1,...,p), or 

617 

(A.ll) 

0 In, 
-In, 0 

where a, > 0, or 

(A. 12) 

where bi > 0 and Cj is +1 or — 1, or 

(A.13) 4 = 0 K (_?*'' 

Ai - ® /W; I _£ Q J , //i: - 0 ^ « p 

•^ i ÛI ^(-22))' 
Hi=ê 

0 /2„. 

- /2n , 0 

where «/ > 0 and bi > 0. 
/« each of the cases 1, 2, 3 and 4, the canonical form (A.l) is uniquely determined by 

A and H up to simultaneous permutations of pairs of blocks Ai and ///. 
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