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Abstract

For each closed subtorus T of (R/Z)n, let D(T) denote the (infimal) L∞-distance from T
to the point (1/2, . . . , 1/2). The nth Lonely Runner spectrum S(n) is defined to be the set
of all values achieved by D(T) as T ranges over the 1-dimensional subtori of (R/Z)n that
are not contained in the coordinate hyperplanes. The Lonely Runner Conjecture predicts
that S(n) ⊆ [0, 1/2 − 1/(n + 1)]. Rather than attack this conjecture directly, we study the
qualitative structure of the sets S(n) via their accumulation points. This project brings into
the picture the analogues of S(n) where 1-dimensional subtori are replaced by k-dimensional
subtori or k-dimensional subgroups.

2020 Mathematics Subject Classification: 11K60 (Primary);
52C07, 11J13 (Secondary)

1. Introduction
1·1. Lonely runners

The Lonely Runner Problem of Wills [32] and Cusick [10] is based on the following
setup. Suppose n + 1 runners start at the same position on a unit-length circular track and
then begin running around the track at pairwise distinct constant speeds. We say that a runner
is lonely at a particular time if their distance from every other runner is at least 1/(n + 1). The
Lonely Runner Conjecture predicts that each runner will be lonely at some time (allowing
different times for different runners).

Consider the frame of reference of a single runner, and suppose that the n other runners
have speeds v1, . . . , vn relative to our fixed runner. Define the maximum loneliness for this
set of speeds to be

ML(v1, . . . , vn) := sup
t∈R

min
1≤i≤n

‖tvi‖R/Z,

where ‖x‖R/Z denotes the distance from x to the nearest integer. Reformulated in this
language, the Lonely Runner Conjecture asserts that

ML(v1, . . . , vn) ≥ 1/(n + 1)
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2 VIKRAM GIRI AND NOAH KRAVITZ

for all nonzero real numbers v1, . . . , vn. Using Kronecker’s Equidistribution Theorem,
Bohman, Holzman and Kleitman [8] showed that it suffices to prove the Lonely Runner
Conjecture for integer speeds; we will revisit this perspective below the fold.

The Lonely Runner Problem has attracted substantial attention since Wills first posed it in
1967. Due to the work of many authors [2, 5, 7, 8, 12, 25], the Lonely Runner Conjecture is
known to hold for n ≤ 6; unfortunately, none of the approaches to these small-n cases seem
to generalise to an arbitrary number of runners. The trivial bound ML(v1, . . . , vn) ≥ 1/(2n)
has also been improved slightly (see [31] and the references therein), and the conjecture has
been proven in the case where all of the runners have slow speeds (e.g., [9, 24, 26, 31]). For
other work on and around the Lonely Runner Problem, see the references in [21].

1·2. Maximum loneliness spectra

In this paper, we will be concerned with the perspective introduced in the second author’s
thesis [21]. The new motivating question was: what can we say about the set S̃(n) of all of
the possible values of ML(v1, . . . , vn)? For example, what is the second-smallest element
after (conjecturally) 1/(n + 1)? Can we describe all of S̃(n) explicitly? More qualitatively,
what do the accumulation points of S̃(n) look like? Notice that each S̃(n) is a subset of the
interval (0, 1/2]. We will see later that S̃(n) is a closed subset of the rationals.

The focus of the work [21] was the following conjecture about the “bottom” part of the
set S̃(n).

CONJECTURE 1·1 (Loneliness Spectrum Conjecture ([21, conjecture 1·2])). For every
natural number n ≥ 2, we have

S̃(n) ∩ (0, 1/n) = {s/(ns + 1) : s ∈N}.
One should think of the quantity s/(ns + 1) as the result of “rounding down” 1/n to the

nearest multiple of 1/(ns + 1). An explicit construction from [21] shows that all of the val-
ues s/(ns + 1) are contained in S̃(n). The conjecture has no content for n = 1 and is easily
verified for n = 2. One of the main results of [21] is a proof of the conjecture for n = 3.

Using computer experiments, Fan and Sun [16] discovered a family of examples that
disproves Conjecture 1·1 for n = 4. In particular, they showed that

ML(8, 4r + 3, 4r + 11, 4r + 19) = 2r + 7

4(2r + 7) + 2

for every integer r ≥ 0. This provides a second infinite family of maximum loneliness values
limiting to 1/n (at least for n = 4) in a structured way. Following the “1/n rounded down”
philosophy, Fan and Sun proposed the following natural weakening of Conjecture 1·1.

CONJECTURE 1·2 (Amended Loneliness Spectrum Conjecture ([16, conjecture 1·3]). For
every natural number n ≥ 2, we have

S̃(n) ∩ (0, 1/n) ⊆ {s/(ns + k) : s ∈N, 1 ≤ k ≤ n}.

1·3. Accumulation points

On a qualitative level, both Conjecture 1·1 and its weakening Conjecture 1·2 predict that
1/n is the smallest accumulation point of S̃(n). It is no coincidence that this number 1/n
coincides with the conjectural smallest value of S̃(n − 1). Recall that, for a subset S of R, the
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The structure of Lonely Runner spectra 3

number x ∈R is an upper accumulation point if S ∩ (x, x + ε) 
= ∅ for all ε > 0; we define
lower accumulation points analogously. We write acc(S) for the set of (all) accumulation
points of S . The following theorem forms the starting point for our investigations.

THEOREM 1·3 ([21, theorem 6·5]). Let n ≥ 2 be a natural number. Then the set of lower
accumulation points of S̃(n) contains S̃(n − 1).

Also in [21], the second author raised the questions of whether upper accumulation points
are impossible, and whether the set containment in Theorem 1·3 is actually an equality. The
aim of the present paper is to give an affirmative answer to the first part of this question and
make partial progress towards the second part. Along the way, our arguments will show that
the sets S̃(n) and some closely related sets have a “hierarchical” structure; this information
is potentially useful for inductive approaches to the Lonely Runner Conjecture, which so far
have seemed inaccessible because of a failure to relate the instances of the conjecture for
different numbers of runners. Before stating our results precisely, we need to introduce a
few geometric notions.

1·4. View-obstruction, subtori and subgroups

It will be convenient for us to work with the “view-obstruction” formulation of the Lonely
Runner Problem, as popularised by Cusick [10]. Associate each tuple (v1, . . . , vn) of nonzero
integers with the 1-dimensional subtorus

T := π(〈(v1, . . . , vn)〉R) = {t(v1, . . . , vn) : t ∈R}/Zn

of the torus (R/Z)n, where π : Rn → (R/Z)n is the standard quotient map. Notice that T
is not contained in any of the coordinate hyperplanes of (R/Z)n; in general, we say that a
subtorus is proper if it is not contained in the union of the coordinate hyperplanes. Let D(T)
denote the L∞-distance from T to the point (1/2, . . . , 1/2) in the “center” of (R/Z)n, so that

D(T) = 1/2 − ML(v1, . . . , vn).

Now define the nth Lonely Runner spectrum to be the set S(n) of all values achieved by
D(T) as T ranges over the 1-dimensional proper subtori of (R/Z)n; we have

S(n) = 1/2 − S̃(n).

In this new language, yet another reformulation of the Lonely Runner Conjecture is the
assertion that S(n) ⊆ [0, 1/2 − 1/(n + 1)]. Notice that lower accumulation points for S̃(n)
correspond to upper accumulation points for S(n), and vice versa.

The more geometric line of inquiry arising from view-obstruction has been fruitfully
related to the study of polytopes, and the “zonotope” version of the Lonely Runner
Conjecture has received significant attention (see, e.g., [3, 4, 6, 18] and the references
therein).

The function D and the notion of properness also make sense for arbitrary closed sub-
sets X ⊆ (R/Z)n. In particular, define D(X) to be the L∞-distance from X to the point
(1/2, . . . , 1/2), and say that X is proper if is is not contained in the union of the coordinate
hyperplanes.

1
We will have occasion to study the values assumed by D(X) not only when

1 This condition is equivalent to D(X) < 1/2, and it is slightly stronger than saying that X is not contained
in any single coordinate hyperplane.
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4 VIKRAM GIRI AND NOAH KRAVITZ

X is a 1-dimensional proper subtorus but also when X is a higher-dimensional subtorus or a
closed subgroup.

For 1 ≤ k ≤ n, a k-dimensional subtorus of (R/Z)n is a subgroup of the form T = π(W)
for some k-dimensional subspace W of Rn that is “rational” in the sense that Zn ∩ W is a
lattice of rank k. Now, let Sk(n) be the set of all values achieved by D(T) as T ranges over the
k-dimensional proper subtori of (R/Z)n. Notice that S(n) = S1(n) in this notation. We will
also need to work with closed subgroups of (R/Z)n; in this paper, “subgroup” always means
“closed subgroup”. Every subgroup � ⊆ (R/Z)n is the direct product of a k-dimensional
subtorus of (R/Z)n and a finite subgroup of (R/Z)n, and we say that the dimension of � is
k. Now, for 0 ≤ k ≤ n, let S∗

k (n) denote the set of all values achieved by D(�) as � ranges
over the k-dimensional proper subgroups of (R/Z)n. We make the convention S∗

0 (0) := {0},
and we write S∗(n) for S∗

1 (n). Since every (proper) k-dimensional subtorus is also a (proper)
k-dimensional subgroup, we have the inclusion Sk(n) ⊆ S∗

k (n), which in general is strict (see
below).

Finally, we remark that one can think of Sk(n) as a multiset by keeping track of the values
of D(T) for all k-dimensional proper subtori T ⊆ (R/Z)n; we will denote this multiset by
Sk,mult(n). The multiset S∗

k,mult(n) is obtained from S∗
k (n) analogously. The density points

of a multiset S are defined to be the accumulation points of S together with the infinite-
multiplicity elements of S . We write den(S) for the set of density points of S .

1·5. Main result

We are finally ready to state our main result, which is summarised by the following
relationships among the sets Sk(n), S∗

k (n).

THEOREM 1·4. Let n ≥ 2 be a natural number, and let 1 ≤ k < n and 0 ≤ k′ < n. Then the
sets Sk(n), S∗

k′(n) have only upper accumulation points. On the level of sets we have the
inclusions

acc(Sk(n)) ⊆ Sk+1(n) ⊆ S∗
k+1(n) = S∗

0 (n − k − 1),

and on the level of multisets we have the equalities

den(Sk,mult(n)) = Sk+1(n) and den(S∗
k′,mult(n)) = S∗

k′+1(n) = S∗
k′(n − 1).

Moreover, when k = 1, we also have the inclusion S(n − 1) ⊆ acc(S(n)), which implies
that

S(n − 1) ⊆ acc(S(n)) ⊆ S2(n) ⊆ S∗
2 (n) = S∗(n − 1). (1)

The natural question, of course, is which of the inclusions (1) are actually equalities.
Equality holds in (1) for n = 2 trivially; it also holds for n = 3 because (see Section 8 below)
we can explicitly compute

S(2) = S∗(2) = {0} ∪ {1/(4s + 2) : s ∈N} .

Equality cannot hold in general, however; we will show in Proposition 8·1 that 7/50 ∈
S∗(3)\S(3). Nonetheless, we conjecture that equality holds in Theorem 1·3.

CONJECTURE 1·5. For any natural number n ≥ 2, we have acc(S(n)) = S(n − 1).
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The structure of Lonely Runner spectra 5

To prove this conjecture, it would suffice to show that S2(n) = S(n − 1), i.e, that the first
two inclusions in (1) are equalities. More generally, we pose the following problem, which
we suspect has an affirmative answer.

Problem 1·6. Is it the case that Sk(n) = Sk−�(n − �) for all natural numbers 1 ≤ � < k ≤ n?

Theorem 1·4 has a couple of nice consequences. One is that, due to the trivial con-
tainments Sk(n) ⊆ Sk−1(n) and S∗

k′(n) ⊆ S∗
k′−1(n), the sets S(n), S∗(n) are closed for all

n. Another consequence is that each of S(n), S∗(n) is a well-ordered set with order type
ωn−1 + 1.

1·6. Checking small speeds suffices

The maximum loneliness function is easy to compute, and it is natural to ask whether the
Lonely Runner Conjecture can be verified by checking that there are no counterexamples
with all speeds below some explicit threshold. Tao [31] showed that this question can be
answered in the affirmative, and that it suffices to check all speeds up to nCn2

for some
explicitly computable constant C. Recently, Malikiosis, Santos and Schymura [23] used
the zonotope formulation of the Lonely Runner Conjecture to improve this threshold to
(n(n + 1)/2)n−1 ≈ n2n. The new perspective afforded by Theorem 1·4 leads to a simple and
transparent proof of the same result with the slightly weaker bound n(5/2)n (see below for
our precise bound). It is interesting to note that Minkowski’s Theorem on successive minima
plays a role both for us and for Malikiosis, Santos, and Schymura.

1·7. Organisation of the paper

In Section 2, we put the Lonely Runner spectra in their proper context alongside other
“bass note spectra” such as the Markoff spectrum, and we sketch an interpretation in
terms of abelian Bloch wave theory; this perspective was suggested to us by Peter Sarnak.
We prove our main result Theorem 1·4 over the course of the following four sections:
Section 3 includes some geometric lemmas about cubes; Section 4 establishes a quantitative
Kronecker-type result about high-volume subtori; Section 5 shows how to produce accumu-
lation points in Lonely Runner spectra; and Section 6 assembles the pieces. In Section 7
we explain the computability result mentioned in Section 1·6, and in Section 8 we provide
several examples and characterisations in low-dimensional cases. Finally, we raise some
prospects for future work in Section 9.

2. Relation to similar problems
2·1. Abelian covers

There is a natural generalisation of the setup described in Section 1·4. For any continuous
function f : (R/Z)n →R, we can define Df (T) to be the minimum value of f assumed on
the subtorus T ⊆ (R/Z)n. Our D(T) from above corresponds to the function f (x) = ‖x −
(1/2, . . . , 1/2)‖∞. One can further define Sf ,k(n) to be the set of all values assumed by
Df (T) where T is a k-dimensional proper subtorus of (R/Z)n, and it is interesting to study
the qualitative structure of such sets. (For some choices of f , it may make more sense to drop
the “properness” condition.)

Abelian Bloch wave theory provides a fertile source of functions f . Let M be a geometric
object such as a manifold or a graph, and let M̃ be its universal abelian cover. Denote by
π1(M) the fundamental group of M. The character torus of M is
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6 VIKRAM GIRI AND NOAH KRAVITZ

TM := {characters χ : π1(M) →C such that χ(γ ) = 1 for all γ ∈ π1(M̃)}
(which really is a torus in the usual sense of the term). Finite abelian covers of M corre-
spond to finite subgroups of TM , and infinite abelian covers correspond to closed subgroups
of TM of dimension at least 1. The universal abelian cover of M corresponds to the entire
character torus. The overarching principle of Bloch wave theory (or Floquet theory) is that
spectral properties of an operator on an abelian cover M′ of M can be understood in terms of
“twisted” versions of the operator on the base space M; the subgroup of TM corresponding
to M′ dictates which character twists to consider. In many cases of interest (such as when the
operator is the Laplacian), these twisted operators are perturbations of the original operator,
and Kato’s perturbation theory (see [22]) tells us that quantities of interest vary continuously
as we move along the character torus. We can then define the function f (χ) to be the value
of such a quantity for the twisted operator corresponding to the point χ . For example, taking
f (χ) to be the spectral gap of the χ-twisted Laplacian on M results in the “bass-note spec-
trum” of M. See [20, section 3] for an overview of how Bloch wave theory applies to the
study of graph spectra; see also [27] and the work [1] of Adve and the first author for appli-
cations to spinor spectra of closed Riemann surfaces; and see [17] for a standard treatment
of Bloch wave theory from a physics perspective.

Our results and techniques in the context of the Lonely Runner Problem may also provide
a path to understanding similar qualitative phenomena in spectra of differential operators on
abelian covers. Even if there turns out not to be a formal connection, it is helpful to situate
the Lonely Runner Problem in this broader context.

2·2. The Markoff spectrum

In Section 2·1 we described a question about (simple) geodesics in the flat torus (R/Z)n.
One can generalise this setup to geodesics in other locally symmetric spaces.

One particularly nice example comes from the locally symmetric space X =H2/	, where
H2 := {x + iy : y > 0} is the complex upper half-plane with the hyperbolic metric and 	

is a finite-index subgroup of the modular group PSL2(Z) (which acts on H2 by Möbius
transformations). Given a continuous function f on X, we can define the function DX,f (γ )
to be the minimum value of f achieved on the closed (simple) geodesic γ , and one can ask
about the set SX,f of values of DX,f (γ ).

The top part of the famous Markoff spectrum (which is related to the Lagrange spectrum
from Diophantine approximation) can be described in this language: It equals SX,f for a
certain choice of a congruence subgroup 	 and a function f for which DX,f (γ ) measures how
far γ travels into the “cusp” of X (i.e., the “distance from γ to the point at infinity”). The
structure of the Markoff spectrum is quite complicated (see Figure 1) and remains far from
understood. The top part of the spectrum is discrete and the bottom consists of a continuous
interval (the so-called Hall–Freiman ray); there is a “fractal” region in the middle. See [29]
and [11, chapter 7] for overviews.

One can also consider the locally symmetric spaces PGLn(R)/PGLn(Z) for n ≥ 3. In
many number-theoretic applications of this setup, it is natural to consider collections of
geodesics (so-called “packets”) or certain families of closed torus orbits rather than individ-
ual geodesics. The measure rigidity conjectures would imply that any infinite sequence of
distinct such packets must eventually go arbitrarily deep into the cusp, and this would imply
the rigidity of the corresponding spectra. See [13–15] for more in this direction.
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0

0

0 1/41/61/10...

1/
√
51/3µ0

Fig. 1. These three sketches illustrate the behaviour of various bass-note spectra. Top: The
Lonely Runner spectrum S(2) is a “rigid” spectrum which is infinite and discrete with the unique
accumulation point 0. Middle: The Markoff spectrum has a continuous (“flexible”) bottom part,
a discrete (“rigid”) top part, and a fractal transition part. Bottom: The Lonely Runner spectrum
S(3) looks complicated, but it exhibits the “hierarchical” structure that its set of accumulation
points is S(2).

3. Geometry of cubes

We begin with some short “combinatorial” lemmas about how subtori and subgroups of
(R/Z)n can intersect cubes centered at (1/2, . . . , 1/2).

LEMMA 3·1. Let n ≥ 2 and 0 ≤ k ≤ n be natural numbers. Then all elements of S∗
k (n) (and

a fortiori of Sk(n) for k ≥ 1) are rational numbers. Moreover, for each k-dimensional proper
subgroup � of (R/Z)n, there is a point q ∈ � with all rational coordinates such that D(�) =
‖q − (1/2, . . . , 1/2)‖∞.

Proof. Let � be a k-dimensional proper subgroup of (R/Z)n. Then there exist vectors
u1, . . . , uk ∈Zn and v1, . . . , v� ∈Qn such that

� =
⋃

1≤ j≤�

π(Ru1 + · · · +Ruk + vj) .

The point p = α1u1 + · · · + αkuk + vj has image π(p) = p − �p� (with �p� taken coordinate-
wise) in the fundamental domain [0, 1)n of (R/Z)n, and hence the L∞-distance from p to
(1/2, . . . , 1/2) in (R/Z)n is

‖p − �p� − (1/2, . . . , 1/2)‖L∞(Rn).

Since the expression inside the L∞-norm is unchanged if the αi’s are shifted by integers
(recall that the ui’s have all integer coordinates), we have

D(�) = min
1≤ j≤�

min
α1,...,αk∈[0,1]

∥∥∥∥∥∑
i

αiui + vj −
⌊∑

i

αiui + vj

⌋
− (1/2, . . . , 1/2)

∥∥∥∥∥
L∞(R)n

.

As j and α1, . . . , αk range, the quantity �∑i αiui + vj� ranges over finitely many vectors in
Zn, say, m1, . . . , mR ∈Zn. Then we can write

D(�) = min
1≤r≤R

min
1≤ j≤�

min
α1,...,αk∈[0,1]

∥∥∥∥∥∑
i

αiui + vj − mr − (1/2, . . . , 1/2)

∥∥∥∥∥
L∞(R)n

.
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The expression inside the L∞-norm is a rational affine-linear function of the αi’s for each
choice of r, j, so we conclude that the set of αi’s attaining the minimum is a finite union of
rational polytopes (i.e., polytopes defined by linear equalities and inequalities with rational
coefficients). Hence some minimizer has all rational coordinates, and it follows that D(�) is
also rational.

It is clear that S∗
k−�(n − �) ⊆ S∗

k (n) for all 1 ≤ � ≤ k ≤ n: If � is a (k − �)-dimensional
proper subgroup of (R/Z)n−� with D(�) = d, then �′ := � × (R/Z)� is a k-dimensional
proper subgroup of (R/Z)n with D(�′) = d. Somewhat surprisingly, this inclusion is an
equality. It is this “hierarchical” structure that makes the function D particularly nice (among
all of the possible functions Df described in Section 2·1). One should think of the equality
S∗

k (n) = S∗
k−�(n − �) as saying that the set of attainable values of D(�) depends on only the

codimension of the subgroups � under consideration.

LEMMA 3·2. For natural numbers 1 ≤ � ≤ k ≤ n, we have S∗
k (n) = S∗

k−�(n − �).

Proof. The result is trivial for k = n, so suppose that k < n. By the previous remark, it suf-
fices to show that S∗

k (n) ⊆ S∗
k−�(n − �). It is clear that 0 ∈ S∗

k−�(n − �), as witnessed by, for
instance, the subgroup

{( 0, . . . , 0︸ ︷︷ ︸
n−k

), ( 1/2, . . . , 1/2︸ ︷︷ ︸
n−k

)} × (R/Z)k−� ⊆ (R/Z)n−�.

Now let d ∈ S∗
k (n) with d > 0, and let � be a k-dimensional proper subgroup of (R/Z)n such

that D(�) = d. Let B denote the box in (R/Z)n consisting of the points whose L∞-distance
from (1/2, . . . , 1/2) is d. The properness of � ensures that d < 1/2, so B really is a “box”.
We claim that � intersects a face of B of dimension at most n − k − 1. Indeed, let F be a
lowest-dimensional face of B that intersects �. If dim (F) > n − k, then the intersection of
F and � contains a line segment by naive dimension-counting, and we can follow this line
segment to find an intersection of � with a lower-dimensional face of B. If dim (F) = n − k,
then again the intersection of F and � contains a line segment, since otherwise � would
intersect F transversely and pass into the interior of B, which is impossible. So we conclude
that dim (F) ≤ n − k − 1.

Let p be an intersection point of � with a face of B of dimension at most n − k − 1. Then
p has at least k + 1 coordinates with values in {1/2 + d, 1/2 − d}; without loss of generality,
we may assume that the first k + 1 ≥ � + 1 coordinates of p equal 1/2 + d. Recall from
Lemma 3·2 that d is rational and that the set of points x ∈ � with ‖x − (1/2, . . . , 1/2)‖∞ = d
is a finite union of rational polytopes. If we impose the additional constraint that the first
� + 1 coordinates all equal 1/2 + d, then we again obtain a finite union of rational polytopes,
and we know that it is nonempty since it contains p. Hence it also contains some point q with
all rational coordinates. Let �′ be the subgroup of � obtained by intersecting � with the
subspace

{(x1, . . . , xn) : x1 = · · · = x�+1}.
Notice that �′ is a subgroup of dimension at least k − �, and it is proper because it contains
the point q. Now, take any (k − �)-dimensional subgroup of �′ containing q, and let �′′ ⊆
(R/Z)n−� denote its the projection onto the last n − � coordinates of (R/Z)n. Then �′′ ⊆
(R/Z)n−� is a (k − �)-dimensional proper subgroup with D(�′′) = D(�′) = D(�) = d, so
d ∈ S∗

k−�(n − �), as desired.
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Let us now describe what happens when one works with subtori instead of subgroups. We
still have the trivial inclusion Sk−�(n − �) ⊆ Sk(n) for 1 ≤ � < k ≤ n, although one cannot
hope for any relationship when � = k since S0(n − �) = ∅, as there are no 0-dimensional
proper subtori.

Matters around the reverse inclusion are more complicated. For � < k, one can run the
first paragraph of the argument from the proof of Lemma 3·2 on a k-dimensional proper
subtorus U. The trouble comes in the second paragraph, where the intersection of U with
the subspace {(x1, . . . , xn) : x1 = · · · = x�+1} may be a disconnected subgroup rather than a
connected subtorus.

2
Since � < k, one could also consider the intersections of U with other

subspaces of the form

{(x1, . . . , xn) : xi1 = · · · = xi�+1}
for 1 ≤ i1 < · · · < i�+1 ≤ k + 1. Unfortunately, even this additional flexibility is insufficient
to guarantee that the intersection is connected; a concrete counterexample with � = 1, k =
2, n = 3 is given by the subtorus π(〈(0, 7, −5), (5, −93, 0)〉R) ⊆ (R/Z)3.

It is still possible to say a little bit. A special case of the following lemma appeared,
in somewhat different language, as Lemma 8 of the paper of Bohman, Holzman, and
Kleitman [8]. One should think of the lemma as as a characterisation of max Sk(n) by the
“codimension” n − k.

LEMMA 3·3. For natural numbers 1 ≤ � < k ≤ n, we have max Sk(n) = max Sk−�(n − �).

Proof. By induction, it suffices to establish the � = 1 case of the lemma. The trivial inclusion
Sk−1(n − 1) ⊆ Sk(n) gives max Sk(n) ≥ max Sk−1(n − 1). It remains to show the reverse
inequality.

Let d ∈ Sk(n), and let U ⊆ (R/Z)n be a k-dimensional proper subtorus with
D(U) = d. Write U = π(〈w1, . . . , wk−2, u, v〉R) for nonzero vectors w1, . . . , wk−2, u =
(u1, . . . , un), v = (v1, . . . , vn) ∈Zn. The properness of U guarantees that for each 1 ≤ i ≤ n,
at least one of the k generators of U has its i-th coordinate nonzero. Thus, by replacing u
with u plus suitable integer multiples of the other generators, we may assume that u has all
nonzero coordinates. Moreover, by changing coordinates xi �→ −xi for the i’s with ui < 0, we
may assume that u has all coordinates strictly positive. Finally, by permuting the coordinates
xi, we may assume that the quantities

v1/u1, v2/u2, . . . , vn/un

are non-decreasing. Since u, v are non-parallel, there is some index 1 ≤ i ≤ n − 1 such that
vi/ui < vi+1/ui+1.

Now, let T denote the identity component of the intersection U ∩ {xi = −xi+1}. Note that
T is a subtorus of dimension either k − 1 or k. We claim that T is proper. To this end, the key
observation is that T contains the 1-dimensional proper subtorus

π(〈(vi + vi+1)u − (ui + ui+1)v〉R).

Indeed, the i-th and (i + 1)-th coordinates of (vi + vi+1)u − (ui + ui+1)v sum to zero by direct
calculation, so this is indeed a subtorus of T . For properness, it suffices to show that (vi +
2 This subtlety was the cause of an error in an earlier version of this paper.
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vi+1)u − (ui + ui+1)v has all coordinates nonzero. To see this, notice that the j-th coordinate
is equal to

(vi + vi+1)uj − (ui + ui+1)vj,

which vanishes if and only if

vj

uj
= vi + vi+1

ui + ui+1
.

Since ui, ui+1 > 0 and vi/ui < vi+1/ui+1, the quantity (vi + vi+1)/(ui + ui+1) lies strictly
between vi/ui and vi+1/ui+1, and in particular it is not equal to vj/uj for any 1 ≤ j ≤ n.

Take T ′ to be a (k − 1)-dimensional proper subtorus of T , and let T ′′ denote the projection
of T ′ onto all but the i-th coordinate. Then T ′′ is a (k − 1)-dimensional proper subtorus of
(R/Z)n−1, and D(U) ≤ D(T) ≤ D(T ′) = D(T ′′) ≤ max Sk−1(n − 1), as desired.

We remark that we could have intersected U with the subspace where x1 = xn instead of
the subspace where xi = −xi+1; there is some (limited) flexibility in this choice.

It is instructive to compare what the proofs of Lemmas 3·2 and 3·3 tell us about the inter-
sections U′ := U ∩ {xi = xj} where U ⊆ (R/Z)n is a fixed 2-dimensional proper subtorus
and 1 ≤ i < j ≤ n range. The proof of Lemma 3·2 provides indices i < j such that U′ satisfies
D(U′) = D(U) but may be disconnected. The proof of Lemma 3·3 provides indices i < j such
that U is connected but may satisfy D(U′) > D(U). The example described between the two
lemmas shows that for some choices of U it is impossible to find indices i < j such that U′
both is connected and satisfies D(U′) = D(U).

4. Quantitative Kronecker Theorem

We will require some technical results on the distribution of subtori of (R/Z)n. Recall that
every k-dimensional subtorus (1 ≤ k ≤ n) is of the form T = π(W) for some k-dimensional
subspace W of Rn such that � := Zn ∩ W is a lattice of rank k. We write volk(T) for the
k-dimensional volume of a k-dimensional subtorus T . Note that the volume of the torus
T = π(W) is simply the covolume of its associated lattice �.

We will require a simple lemma showing that there are only finitely many subtori with
volume smaller than any constant. Schmidt obtained this result with a sharp bound in [28],
but we will also include a short proof here (with a worse bound) to keep the paper self-
contained. We first recall a standard fact from reduction theory.

THEOREM 4·1 ([30, sections X.5–6]) Let � ⊂Rk be a lattice of full rank. Then there is a
basis b1, . . . , bk of � such that

‖b1‖2 · · · ‖bk‖2 ≤ 2k(3/2)k(k−1)/2covolk(�)/ωk,

where ωk := πk/2/	(k/2 + 1) is the volume of the L2-unit ball in Rk.

This theorem is a variation of Minkowski’s Second Theorem from the geometry of num-
bers. We cannot apply Minkowski’s Second Theorem directly because the elements of �

achieving the successive minima need not form a Z-basis (as discussed in [30, section X.5]).

LEMMA 4·2. Let 0 ≤ k ≤ n be nonnegative integers, and let V > 0 be a positive real number.
Then there are only finitely many k-dimensional subtori of (R/Z)n with volume at most V.
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Proof. Every k-dimensional subtorus T of (R/Z)n with volume at most V is of the form
π(W) for some k-dimensional subspace W of Rn that is “rational” in the sense that � :=
Zn ∩ W is a rank-k lattice in W; identifying W with Rk, we see that T is isomorphic to
Rk/�. Theorem 4·1 provides a basis b1, . . . , bk of � such that

‖b1‖2 · · · ‖bk‖2 ≤ 2k(3/2)k(k−1)/2volk(T)/ωk.

Since every nonzero element of Zn has length at least 1, we see that each

‖bi‖2 ≤ 2k(3/2)k(k−1)/2V/ωk := �(k, V).

Since Zn has only finitely many elements of length at most �(k, V), we conclude that there
are only finitely many choices for the bi’s and hence (since T is determined by W, which is
determined by �) only finitely many choices for T .

We also need the analogous result for subgroups.

LEMMA 4·3. Let 0 ≤ k ≤ n be nonnegative integers, and let V > 0 be a positive real number.
Then there are only finitely many k-dimensional subgroups of (R/Z)n of volume at most V.

Proof. Every subgroup � of (R/Z)n with volume at most V can be written as a direct sum
� = T ⊕ H, where T is the identity component of � and H is a finite subgroup of (R/Z)n;
note that T is a k-dimensional subtorus and H ⊆ (Q/Z)n. From volk(T) ≥ 1 and

volk(T) · |H| = volk(�) ≤ V ,

we see that volk(T), |H| ≤ V . Lemma 4·3 tells us that there are only finitely many choices
for T . To see that there are only finitely many choice for H, note that H is contained in the
set of elements of (R/Z)n of order at most V and this set is finite. Since � is determined by
T , H, we conclude that there are only finitely many choices for �.

We can now prove our Kronecker-type result. The classical version of Kronecker’s
Equidistribution Theorem says that every irrational orbit in (R/Z)n equidistributes in some
subtorus of dimension at least 2. Our version can be understood as a quantitative, finitary
analogue for closed subtori and subgroups. Recall that a subset X of Y ⊆ (R/Z)n is said to
be ε-dense with respect to the L2-norm if for each element y ∈ Y , there is some x ∈ X such
that ‖x − y‖L2((R/Z)n) ≤ ε.

LEMMA 4·4. Let 0 ≤ k ≤ n be nonnegative integers, and let ε > 0 be a positive real number.
Then there exist a constant C∗ = C∗(n, k, ε) > 0 and a finite list L∗ = L∗(n, k, ε) of subgroups
of (R/Z)n such that for each k-dimensional subgroup � of (R/Z)n, one of the following
holds:

(i) � has volume at most C;

(ii) � is contained in one of the subgroups 	 ∈ L∗ and is ε-dense (with respect to the
L2-norm) in 	. If � is a subtorus, then 	 can also be taken to be subtorus.

Moreover, each subgroup in L∗ has dimension at least k + 1 if k < n.
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Notice that (R/Z)n will always be one of the elements of our list L∗; this corresponds to
the situation where � is dense in (R/Z)n.

Proof. We fix n and proceed by downward induction on k. For the base case k = n, the only
subgroup � is � = (R/Z)n; take L∗(n, n, ε) = {(R/Z)n} and C∗(n, n, ε) = 1 (say), and there
is nothing to prove.

We proceed to the induction step. For visualising the argument, the reader may find it
helpful to keep the k = n − 1 case in mind. Let � be a k-dimensional subgroup of volume V ,
and let T be the identity component of �. Note that T is itself a k-dimensional subtorus, and
write T = π(W) with W a k-dimensional rational subspace of Rn. Moreover, we can write
� = T ⊕ H for some finite group H ⊆ (R/Z)n, and there is a unique finite set R ⊆ [0, 1)n

such that π(R) = H bijectively; note that in fact R ⊆Qn. Let X denote the tubular neighbour
of � of radius ε/2. If

Vωn−k(ε/2)n−k > 1,

then the (n − k)-dimensional “orthogonal slices” of X around the points of � cannot all be
disjoint. Lifting this picture to Rn gives us some x ∈ (Zn + R) \ W such that the ε/2-tubular
neighbours around W and W + x intersect. In particular, the orthogonal complement of W
intersects W + x at some (necessarily nonzero) point p of length at most ε. The point p
has all rational coordinates since it is determined by a rational system of linear equations
(involving W and x). Let W ′ be the R-subspace of Rn spanned by W and p, and let T ′ :=
π(W ′). Notice that T ′ is a (k + 1)-dimensional subtorus (because of the rationality of p) and
that the ε/2-neighbour of � contains T ′. It follows that � is ε/2-dense in the subgroup
�′ := T ′ + H.

We now have a dichotomy depending on whether the volume of �′ is small or
large. Set

L∗(n, k, ε) := L∗(n, k + 1, ε/2) ∪ {(k + 1) − dim’l subgroups of volume at most

C∗(n, k + 1, ε/2)}.
If the volume of �′ is at most C∗(n, k + 1, ε/2), then �′ ∈ L∗(n, k, ε) and we are done since
� is ε-dense in �′. If instead the volume of �′ is larger than C∗(n, k + 1, ε/2), then there is
some �′′ ∈ L∗(n, k + 1, ε/2) ⊆ L∗(n, k, ε) such that �′ is ε/2-dense in �′′, and again we are
done since � is ε-dense in �′′ by the Triangle Inequality. This proves the lemma with the
choice

C∗(n, k, ε) := 1

ωn−k(ε/2)n−k
.

Lemma 4·3 implies that L∗(n, k, ε) is a finite set. The second part of (ii) is clear from tracing
through the proof with only subtori under consideration.

5. Producing accumulation points

Our next task is showing how elements of certain spectra lead to accumulation points in
other spectra. We begin by producing density points in multiset spectra.

PROPOSITION 5·1. For natural numbers 1 ≤ k < n, we have Sk+1(n) ⊆ den(Sk,mult(n)). For
nonnegative integers 0 ≤ k < n, we have S∗

k+1(n) ⊆ den(S∗
k,mult(n)).
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Proof. For the first statement, we must show that for every (k + 1)-dimensional proper
subtorus U ⊆ (R/Z)n, the value D(U) is a density point of the multiset Sk,mult(n). Fix such a
U. Notice that every k-dimensional subtorus T ⊆ U has D(T) ≥ D(U) by the definition of D.
If moreover T is ε-dense in U with respect to the L∞-norm, then the Triangle Inequality also
gives D(T) ≤ D(U) + ε. Hence, it suffices to exhibit an infinite sequence of k-dimensional
proper subtori T1, T2, . . . that are contained in U and become o(1)-dense in U. Notice that the
properness condition comes for free if T1, T2, . . . become o(1)-dense in U, since non-proper
subtori all have D-value 1/2.

Now, in fact, any infinite sequence of k-dimensional subtori of U becomes o(1)-dense in U
(by the codimension-1 cases of lemmas 4·2 and 4·4). We can also produce such a sequence
explicitly by writing U = π(〈u1, . . . , uk+1〉R) for some nonzero vectors u1, . . . , uk+1 ∈Zn

and setting

Tj := π(〈u1, u2, . . . , uk−1, uk + juk+1〉R) ⊆ U

for each j ∈N. The o(1)-denseness of the Tj’s in U follows from the o(1)-denseness of the
subtori π(〈(1, j)〉R) in (R/Z)2, which is geometrically obvious.

The second statement goes in the same way. Let � ⊆ (R/Z)n be a (k + 1)-dimensional
proper subgroup. As in the previous paragraph, it suffices to find an infinite sequence
	1, 	2, . . . of k-dimensional subgroups of � that become o(1)-dense in 	. We can write
� as a direct sum � = U ⊕ G, where U is a (k + 1)-dimensional subtorus (not necessar-
ily proper) and G is a finite subgroup (also not necessarily proper). It suffices to produce
a sequence of k-dimensional subgroups H1, H2, . . . of U that become o(1)-dense in U,
since then 	1 := H1 ⊕ G, 	2 := H2 ⊕ G, . . . will be o(1)-dense in �. If k = 0, then U is a
1-dimensional subtorus and we can take Hj to be the unique subgroup of U of order j. If
k ≥ 1, then we can take Hj to be the subtorus Tj constructed in the previous paragraph.

The situation becomes more subtle when we work with set spectra instead of multiset
spectra. The proof strategy for Proposition 5·1 completely breaks down. In the context of
the first statement (about subtori), it is possible that D(T) = D(U) for all but finitely many
k-dimensional proper subtori T of U; in this case, the D-values of the k-dimensional proper
subtori of U witness D(U) as a density point of Sk,mult(n) but do not witness D(U) as a
genuine accumulation point of Sk(n). Jain and the second author [19] have given a simple
geometric criterion for when a 2-dimensional proper subtorus U ⊆ (R/Z)n has infinitely
many 1-dimensional proper subtori T with D(T) > D(U): This occurs if and only if the locus
where U attains its D-value is contained in a finite union of parallel line segments.

3
Using

this criterion, they showed that, for example, the 2-dimensional proper subtorus

U = π(〈(1, 2, 3, 2, 0, 0, 0), (0, 0, 0, 2, 1, 2, 3)〉R) ⊆ (R/Z)7

has only finitely many 1-dimensional proper subtori T with D(T) > D(U). It is even easier
to construct such examples in the context of the second statement of Proposition 5·1 (about
subgroups). For instance, the 1-dimensional proper subgroup

� =R/Z× {0, 1/3, 2/3} ⊆ (R/Z)2

has only finitely many discrete subgroups 	 with D(	) > D(�).

3 The same argument shows that a (k + 1)-dimensional proper subtorus U has infinitely many k-dimensional
proper subtori T with D(T) > D(U) if and only if the locus where U attains its D-value is contained in a
finite union of parallel k-dimensional disks.
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An important special case occurs when U is of the form U = U′ ×R/Z for U′ a 1-
dimensional proper subtorus. Since U′ achieves its D-value at only finitely many points,
we see that U achieves its D-value on only finitely many “vertical” line segements. The cri-
terion of Jain and second author guarantees that U contains infinitely many 1-dimensional
proper subtori T with D(T) > D(U) = D(U′). In particular, there exist such T’s with volume
tending to infinity, in which case D(T) approaches D(U) from above due to the codimension-
1 cases of Lemmas 4·2 and 4·4. We conclude that, as observed more directly in [21], we have
the inclusion

S(n − 1) ⊆ acc(S(n))

for every natural number n ≥ 2. It is an interesting open problem to determine whether or
not

Sk(n − 1) ⊆ acc(Sk(n))

for all 1 ≤ k < n; we suspect that this is likely the case, and that in fact equality holds.

6. Putting everything together

We have nearly all of the pieces that comprise Theorem 1·4. Before we can complete the
proof, we need to use our Kronecker-type result to relate acc(Sk(n)) to Sk+1(n).

LEMMA 6·1. Let 1 ≤ k < n be natural numbers. Then the accumulation points of Sk(n) are
all accumulation points only from above, and den(Sk,mult(n)) ⊆ Sk+1(n).

Proof. We first claim that if 1 ≤ � ≤ n − 1 and T1, T2, . . . is a sequence of distinct
�-dimensional proper subtori of (R/Z)n, then there exist a subtorus T of dimension at least
� + 1 and a subsequence Ti1 , Ti2 , . . . such that each Tij is contained in T and the Tij’s become
o(1)-dense in T as j → ∞. We proceed by downward induction on �. Notice that the volume
of the Ti’s tends to infinity as i grows. The base case � = n − 1 now follows immediately
from Lemma 4·4, which tells us that the Ti’s are o(1)-dense in (R/Z)n. For the induction
step, suppose that the Ti’s are �-dimensional with � < n − 1. Lemma 4·4 tells us that there
are subtori T ′

i , each of dimension at least � + 1, such that each Ti is contained in T ′
i and

the Ti’s are o(1)-dense in their respective T ′
i ’s as i → ∞. By passing to a subsequence, we

may assume that all of the T ′
i ’s have the same dimension, say, �′ ≥ � + 1. If there are only

finitely many distinct T ′
i ’s, then one of them appears infinitely often and we can conclude by

letting T be such a T ′
i . If instead there are infinitely many distinct T ′

i ’s, then (by the induc-
tion hypothesis) there exist a subtorus T of dimension at least �′ + 1 and a subsequence
T ′

i1
, T ′

i2
, . . . such that each T ′

ij
is contained in T and the T ′

ij
’s are o(1)-dense in T . Then we

also see that each Tij is contained in T and the Tij’s are o(1)-dense in T (by the Triangle
Inequality), as desired.

We now prove the lemma by (upward) induction on k. Let T1, T2, . . . be a sequence of k-
dimensional proper subtori with limi→∞ D(Ti) = d. The claim from the previous paragraph
tells us that, after passing to a subsequence, we may assume that all of the Ti’s are contained
in a single subtorus T of dimension at least k + 1 and that the Ti’s are o(1)-dense in T . It
follows that every D(Ti) ≥ D(T) and that limi→∞ D(Ti) = D(T), so D(T) = d. In particular,
D(Ti) cannot limit to d from below. This establishes the first statement of the lemma, namely,
that Sk(n) has only upper accumulation points.
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We know that T has dimension at least k + 1. We can find a (k + 1)-dimensional subtorus
T ′ such that d = D(T) = D(T ′) ∈ Sk+1(n): Just take any (k + 1)-dimensional subtorus T ′ of
T that passes through a rational point of T with L∞-distance d from the point (1/2, . . . , 1/2)
(using lemma 3·1). This establishes the second statement of the lemma, namely, that
acc(Sk(n)) ⊆ Sk+1(n).

The following subgroup-version of this lemma can be proven by an identical argument.

LEMMA 6·2. Let 0 ≤ k < n be nonnegative integers. Then the accumulation points of S∗
k (n)

are all accumulation points only from above, and den(S∗
k,mult(n)) ⊆ S∗

k+1(n).

We remark that Lemmas 6·1 and 6·2 do not use anything special about the fact that D(T)
measures the L∞ distance from T to (1/2, . . . , 1/2): We would get the same “qualitative”
result for any Df (T).

Combining all of our results so far yields Theorem 1·4, as follows.

(i) Lemmas 6·1 and 6·2 tell us that Sk(n), S∗
k′(n) have only upper accumulation points.

(ii) For the long string of set inclusions in Theorem 1·4: We obtain acc(Sk(n)) ⊆
Sk+1(n) from Lemma 6·1. The inclusion Sk+1(n) ⊆ S∗

k+1(n) is trivial. And we obtain
S∗

k+1(n) = S∗
0 (n − k − 1) from Lemma 3·2.

(iii) For the multiset equalities: we can obtain Sk+1(n) ⊆ den(Sk,mult(n)) and S∗
k′+1(n) ⊆

den(S∗
k′,mult(n)) from Proposition 5·1. And we obtain den(Sk,mult(n)) ⊆ Sk+1(n) and

den(S∗
k′,mult(n)) ⊆ S∗

k′+1(n) from Lemmas 6·1 and 6·2. The final equality S∗
k′+1(n) =

S∗
k′(n − 1) follows from Lemma 3·2.

(iv) For the final assertion, we obtain S(n − 1) ⊆ acc(S(n)) from Theorem 1·3, and
Lemma 3·2 gives us S∗

2 (n) = S∗(n − 1).

7. Checking small speeds suffices

In this short section, we explain how to deduce the computability result described in
Section 1·6. The argument is a straightforward modification of the approach taken in the
proof of Lemma 4·4. Suppose we already know that the Lonely Runner Conjecture holds
for n − 1 runners and we want to determine whether or not it holds for n runners, simply by
checking the maximum loneliness for all n-tuples of small natural-number speeds. It would
suffice to show that if there exists a counterexample to the Lonely Runner Conjecture with
n runners, then there exists such a counterexample with all slow runners. We will show a
stronger statement, namely, that every n-tuple with large sum of squares of speeds must
satisfy the Lonely Runner Conjecture. Recall that the tuple of speeds (v1, . . . , vn) cor-
responds to the 1-dimensional proper subtorus T := π(〈(v1, . . . , vn)〉R) ⊆ (R/Z)n, which

has length vol1(T) =
√

v2
1 + · · · + v2

n if gcd (v1, . . . , vn) = 1 (which of course we may
assume).

Let ε := 1/n − 1/(n + 1) = 1/(n(n + 1)), and let T be a 1-dimensional proper subtorus of
(R/Z)n with volume V . The argument from the proof of Lemma 4·4 shows that if

Vωn−1ε
n−1 > 1,

then there is some 2-dimensional proper subtorus T ′ such that T is ε-dense in T ′. In partic-
ular, D(T) ≤ D(T ′) + ε, and Lemma 3·3 (together with our “induction” hypothesis) ensures
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that the latter quantity is at most 1/2 − 1/(n + 1). Hence T satisfies the Lonely Runner
Conjecture once

V >
1

ωn−1εn−1
= 	((n + 1)/2)(n(n + 1))n−1

π (n−1)/2
,

and Stirling’s Approximation shows that this threshold is smaller than n(5/2)n.
We remark that we can run the same argument if the Lonely Runner Conjecture for n − 1

runners fails but we still have max S(n − 1) = max S2(n) ≤ 1/2 − 1/(n + 1) − δ for some
δ > 0; the threshold for V will just be corresponding larger.

The ideas in this section also bear on the problem of characterising tight instances of the
Lonely Runner Problem, i.e., 1-dimensional proper subtori T ⊆ (R/Z)n with the (conjec-
turally) largest possible value D(T) = 1/2 − 1/(n + 1). The above proof shows that if the
Lonely Runner Conjecture holds for n − 1 runners, then there are only finitely many tight
instances for n runners, and one could easily extract an explicit upper bound on their volume
(and, by extension, their number).

8. Calculations for small (co)dimension

When the number of runners is small, we can provide some more precise information
about the relation between Lonely Runner spectra and subgroup Lonely Runner spectra;
this leads to more general observations about (subgroup) Lonely Runner spectra of small
codimension.

We start with S1(1) = {0}. It is also easy to compute (see, e.g., [21, theorem 4·1] or [7,
remark on p.5]) that

S1(2) = {0} ∪ {1/(4s + 2) : s ∈N}.
In particular,

acc(S1(2)) = {0} = S1(1),

which provides an affirmative answer to the k = n (“codimension-0”) case of Problem 1·6.
Next, we calculate that

S∗
0 (1) = {0} ∪ {1/(4s + 2) : s ∈N} = S1(2).

Indeed, each proper discrete subgroup of R/Z is equal to π(〈1/q〉Z) for some natural number
q ≥ 2. If q is even, then 1/2 ∈ π(〈1/q〉Z) and D(π(〈1/q〉Z)) = 0. If instead q = 2s + 1 is odd,
then the closest points in π(〈1/q〉Z) to 1/2 are ±s/q, so

D(π(〈1/q〉Z)) = 1/2 − s/q = 1/(4s + 2).

Notice that the degenerate Lonely Runner spectrum S0(1) = ∅ is emphatically not equal to
S∗

0 (1).
For each n ≥ 2 we have the chain of inclusions

S1(2) ⊆ Sn−1(n) ⊆ S∗
n−1(n) = S∗

0 (1) = S1(2),

so equality must hold. This proves the k = n − 1 (“codimension-1”) case of Problem 1·6 and
implies that acc(S1(3)) = S1(2), as expected.
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Fig. 2. The black dots show elements of the discrete subgroup π (〈(12/25, 9/25)〉Z) ⊆ (R/Z)2,
which witnesses the value 7/50 ∈ S∗

0 (2), and the blue square shows the L∞-ball of radius 7/50
centered at the point (1/2, 1/2). Notice that there are black dots on all four edges of the shaded
square; this is a necessary feature of any such example.

The subgroup Lonely Runner spectrum S∗
0 (2) is more complicated since there are many

discrete subgroups of (R/Z)2. Of course, we have the inclusion

S1(3) ⊆ S∗
1 (3) = S∗

0 (2).

This inclusion, however, is strict.

PROPOSITION 8·1. We have 7/50 ∈ S∗
0 (2) \ S1(3).

Proof. A direct calculation shows that D(π(〈(12/25, 9/25)〉Z)) = 7/50 ∈ S∗
0 (2); see

Figure 2. It remains to show that 7/50 /∈ S1(3). Let T ⊆ (R/Z)3 be a 1-dimensional proper
subtorus. We will show that D(T) 
= 7/50. First, suppose that vol(T) > 199; note that
199 · ((1/25 − ε)2π) > 1 for some ε > 0. Then the tubular neighbour argument from the
proof of Lemma 4·4, with a tube of radius 1/25 − ε, shows that T is (1/25 − ε)-dense in
some proper subtorus U ⊆ (R/Z)3 of dimension at least 2. Thus

D(U) ≤ D(T) ≤ D(U) + 1/25 − ε.

We know from the characterisation of S2(3) that either D(U) = 1/6 or D(U) ≤ 1/10. In the
former case, the inequality D(T) ≥ D(U) = 1/6 implies that D(T) 
= 7/50. In the latter case,
the inequality

D(T) ≤ D(U) + 1/25 − ε ≤ 1/10 + 1/25 − ε = 7/50 − ε

implies that D(T) 
= 7/50. Finally, an exhaustive computer search (taking about an hour on
a standard laptop) shows that D(T) 
= 7/50 when vol(T) ≤ 199.

We believe that 7/50 /∈ S2(4), but we do not have the computing power to carry out
an exhaustive computer search analogous to what we did in Proposition 8·1. In any case,
the example in Proposition 8·1 shows that proving S2(4) = S1(3) will necessarily be more
difficult than proving S2(3) = S1(2). In particular, one would have to show that not all 1-
dimensional proper subgroups of (R/Z)3 can arise when one applies the slicing argument of
Lemma 3·2 to 2-dimensional proper subtori in (R/Z)4.
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9. Remarks and open problems

We conclude with a few comments and questions.

(1) The main open problem, of course, is determining whether or not acc(S(n)) =
S(n − 1) for all n ≥ 2. Two other appealing problems are showing that Sk(n − 1) ⊆
acc(Sk(n)) and showing that Sk+1(n) = Sk(n − 1) for all 1 ≤ k < n.

(2) Our proof of Theorem 1·4 shows that each element of S1(n) \ S2(n) appears
with finite multiplicity (but not uniformly bounded multiplicity, even for n = 2)
in S1,mult(n). In particular, as we mentioned in Section 7, if the Lonely Runner
Conjecture is true for n and n − 1 runners, then there are only finitely many tight
instances of the Lonely Runner Conjecture for n runners, and all such instances are
low-volume. It would feasible (and very useful) to carry out numerical calculations in
this direction.

(3) For a proper subtorus U ⊆ (R/Z)n of dimension at least 2, one can define the Lonely
Runner spectrum relative to U to be the set S(U) of all values of D(T) as T ranges
over 1-dimensional proper subtori contained in U. Our proof of Theorem 1·4 shows
that all accumulation points of S(n) are “due” to relative Lonely Runner spectra,
in the sense that for each d ∈ acc(S(n)) there are some small ε > 0 and a finite list
U1, . . . , Ut with D(U1) = · · · = D(Ut) = d such that

S(n) ∩ (d, d + ε) =
⎛⎝ t⋃

j=1

S(Uj)

⎞⎠ ∩ (d, d + ε).

Jain and the second author [19] have studied such relative Lonely Runner spectra for
2-dimensional subtori U and have shown that the sets S(U) have surprisingly rigid
arithmetical properties.

(4) Our results show that

acc(S(3)) = S(2) = {1/(4s + 2) : s ∈N} ∪ {0}.
The main result of [21] explicitly determines S(3) ∩ [1/6, 1/2], i.e., the set S(3) “up
to the first accumulation point 1/6” (see Conjecture 1·1). The follow-up work of
Jain and the second author [19] has yielded a description of S(3) up to the second
accumulation point 1/10 as well as chunks of some other Lonely Runner spectra. It
would be interesting to obtain more such characterisations.

(5) Is the set ∪n≥1S(n) dense in the interval [0, 1/2]? If not, does ∪n≥1S(n) have any
“nice” self-similarity properties?
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