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Abstract
The treatment recommendation based on a network meta-analysis (NMA) is usually the single treatment with the
highest expected value (EV) on an evaluative function. We explore approaches that recommend multiple treatments
and that penalise uncertainty, making them suitable for risk-averse decision-makers. We introduce loss-adjusted
EV (LaEV) and compare it to GRADE and three probability-based rankings. We define properties of a valid
ranking under uncertainty and other desirable properties of ranking systems. A two-stage process is proposed:
the first identifies treatments superior to the reference treatment; the second identifies those that are also within
a minimal clinically important difference (MCID) of the best treatment. Decision rules and ranking systems are
compared on stylised examples and 10 NMAs used in NICE (National Institute of Health and Care Excellence)
guidelines. Only LaEV reliably delivers valid rankings under uncertainty and has all the desirable properties. In 10
NMAs comparing between 5 and 41 treatments, an EV decision maker would recommend 4–14 treatments, and
LaEV 0–3 (median 2) fewer. GRADE rules give rise to anomalies, and, like the probability-based rankings, the
number of treatments recommended depends on arbitrary probability cutoffs. Among treatments that are superior
to the reference, GRADE privileges the more uncertain ones, and in 3/10 cases, GRADE failed to recommend
the treatment with the highest EV and LaEV. A two-stage approach based on MCID ensures that EV- and LaEV-
based rules recommend a clinically appropriate number of treatments. For a risk-averse decision maker, LaEV is
conservative, simple to implement, and has an independent theoretical foundation.

Highlights
What is already known

A risk-neutral decision-maker should make treatment decisions based on expected value (EV), meaning that
the single treatment with the highest expected efficacy from a NMA should be recommended, regardless
of uncertainty. In practice, decision-makers may recommend several treatments and take uncertainty into
account on an ad hoc basis.

What is new

We introduce LaEV as a mechanism for risk-averse decision-making, and set out desirable properties of
ranking systems. For a ranking to be valid under uncertainty a higher EV must be ranked above a lower one
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at the same uncertainty, and a lower uncertainty above a higher one at the same EV. We compare LaEV to
GRADE and probabilistic rankings. Of the methods examined, only LaEV provides a valid ranking under
uncertainty and has all the desirable properties.

Potential impact for RSM readers

For a risk-averse decision-maker, LaEV is a reliable, conservative, and easy-to-implement decision metric
with an independent theoretical foundation. Adoption of a risk-averse stance might focus attention on more
accurate quantification of uncertainty and encourage generation of better quality evidence.

1. Introduction

In decision theory a risk-neutral decision-maker bases their recommendations on the ‘expected value’
(EV) of a chosen evaluation function, without consideration of uncertainty. The evaluation function
could be:

(i) A measure of treatment efficacy, for example, probability of an event estimated from a NMA.
(ii) Net Benefit,1 which is monetised lifetime health gain minus lifetime costs.

(iii) Or any function of health improvements and adverse events, such as Multi-Criteria Decision
Analysis.2

The choice of EV as a decision metric is based on a substantial statistical literature3–6 going back to
the 17th century.7 In health economic evaluations, EV is regarded as optimal at a societal level8 as it
delivers a maximally efficient allocation of resources, known as Pareto-optimality.

Faced with multiple options, an EV decision maker should therefore recommend the single treatment
with the highest EV, regardless of uncertainty.9 In this sense, the EV decision maker is ‘risk-neutral’.
In practice, however, decision makers often recommend multiple treatments, and are influenced by the
degree of uncertainty in the evidence, suggesting that they are acting as risk-averse decision-makers
who have a preference for more certain outcomes. In the UK, for example, multiple treatments have
been recommended by NICE in both Multiple Technology Assessments,10,11 and more often in clinical
guidelines.12–14 This seems to be done on an ad hoc basis, usually when treatments have similar efficacy,
reflecting a desire to keep clinical options open in case of patient differences in efficacy or side effects,
factors that are seldom included in the formal decision model.

Uncertainty has also been treated in an ad hoc and even ambiguous manner in NICE’s official
documents. The 2022 NICE manual for health technology evaluation (Section 6.3.5) requires that
‘the degree of certainty or uncertainty around the ICER’ (Incremental Cost-Effectiveness Ratio) be
taken into account.15 The general intention is that less should be paid for an uncertain technology
(Section 6.2.34), representing a ‘risk-averse’ approach. However, if it is considered that better evidence
is unlikely to be forthcoming, NICE may set a higher willingness-to-pay threshold: this is regarded as
appropriate in Highly Specialised Technology evaluations for rare diseases (Section 7.1). In this case
decision-makers faced with an uncertain intervention are willing to pay above the standard tariff per
QALY gained, representing a risk-seeking stance. Thus, while the general decision-making position in
NICE guidance is risk-neutral EV, the behaviour of NICE committees and NICE’s own documentation
depart from EV in ad hoc and seemingly unprincipled ways.

Uncertainty in treatment rankings has also attracted the attention of NMA methodologists.16–19

Besides ranking by EV, properties of alternative ‘treatment hierarchies’, or treatment rankings have
been examined formally,20 including: the probability of having the highest value, Pr(Best); the
proportion of competitors that a treatment is superior to, also known as SUCRA (surface under
the cumulative ranking curve),21 or its equivalent, the P-Score.22 The probability that the value of
the evaluative function exceeds a certain threshold, abbreviated here as Pr(V > T), has also been
studied.23,24

https://doi.org/10.1017/rsm.2025.17 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.17


552 Ades et al.

It has been proposed that these and other25 probability-based metrics, which, unlike EV, take
uncertainty into account, could help guide NMA treatment decisions.20,26,27 However, by themselves,
ranking metrics do not define how many—or even if any—of the top-ranked treatments should be
recommended. In an EV context, this can be addressed by a two-stage approach, suggested in earlier
work on threshold analysis.28 The first stage identifies treatments that are superior to a standard
reference treatment; the second selects all those that are also within a MCID margin of the best
treatment. The GRADE Working Group adopted a similar multi-stage scheme: in Stage 1, it picks out
treatments where Pr(V > T) exceeds a standard probability criterion such as 0.975.29 Subsequent stages
identify a subset of these treatments none of which are better than any other on the same criterion.

It has been said that ‘each ranking metric . . . answer[s] a specific treatment hierarchy question,
and . . . every ranking metric provides a valid treatment hierarchy for the corresponding question’,20

a sentiment repeated in subsequent papers.24,27,30 However, any number of rankings and decision
schemes could be proposed: we therefore need to ask: what are the properties that would make a ranking
‘valid’ under uncertainty? And what is the ‘treatment hierarchy question’ that decision makers should
be trying to answer? After all, both Pr(Best) and SUCRA can have the perverse effect of privileging
treatments with more uncertain effects.18–20

In this article, we attempt to identify and evaluate an alternative to EV, which provides a rational
approach to multiple treatment recommendations and, at the same time, penalises uncertainty. We will
propose a metric based on Bayesian statistical decision theory,31,32 in which the expected loss arising
from taking a decision under uncertainty is subtracted from the EV: We call this the Loss-adjusted EV
(LaEV).

We begin by defining three ranking and three decision methodologies and illustrate their properties
through stylised examples. We define a key property required for a ranking system to be valid
under uncertainty and suggest other desirable properties. The methodologies are then applied to 10
NMAs conducted by NICE guideline developers and published in NICE guidelines and associated
publications.

2. Methods: Decision rules and ranking systems

In this section, we outline a range of existing decision rules and ranking systems and propose a new
metric, LaEV. We begin by defining the standard risk-neutral EV approach and a two-stage extension
that allows for multiple recommendations. We then define the GRADE method for a ‘minimally
contextualised framework’,29 followed by LaEV. Finally, we define three probability-based ranking
systems, all familiar from previous literature, and present them as decision rules, in a way that facilitates
comparison with the other methods.

2.1. The NMA model and its relation to decision outcomes

We assume a standard reference treatment 1, and ‘new’ treatments 2 . . . 𝑘 . . . 𝐾 . The NMA estimates a
joint probability distribution for 𝐾 − 1 relative treatment effect parameters {𝛿2 . . . 𝛿𝑘 . . . 𝛿𝐾 } on the
linear predictor scale. Given an estimate of the outcome on the reference treatment, 𝜇, we obtain
estimates of the absolute efficacy of all 𝐾 treatments on this scale as 𝜇 + 𝛿𝑘 . By definition 𝛿1 = 0. Via
an appropriate link function 𝐻 (· ), these parameters inform distributions for the absolute and relative
efficacy of treatments on the natural scale. We write λ𝑘 = 𝐻−1 (𝜇 + 𝛿𝑘 ) for the absolute efficacy of
treatment 𝑘 on the natural scale, and Δ 𝑘𝑘′ = λ𝑘′ − λ𝑘 for the relative effect of 𝑘 ′ compared to 𝑘 .

For a continuous outcome, the link function 𝐻 (· ) is the identity link, and the absolute and relative
effects on the natural scale are the same as those on the linear predictor scale. For a probability outcome,
a common choice is the logit link function, and the parameters λ𝑘 and Δ1𝑘 represent probabilities and
differences in probabilities respectively. We note that {λ𝑘 ,Δ1𝑘 } are not point estimates but instead
parameters with a joint probability distribution that encapsulates uncertainty, as informed by a Bayesian
or frequentist NMA along with a baseline model for the target population.37 For avoidance of doubt, it
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is assumed throughout that all references to variance refer to parameter uncertainty, not heterogeneity.
A more general interpretation is suggested in Section 6.

2.2. Risk-neutral expected value

2.2.1. Expected value decision rule
The EV decision rule is based on two criteria. We recommend treatments that (i) are at least as ‘good’
as the reference treatment and (ii) are within some threshold 𝑇 of the best treatment. Comparisons
are made based on the EV of the relative treatment effects, E [Δ 𝑘𝑘′ ]. This is a posterior expectation,
conditional on the data. We assume that the outcome of interest is ‘good’, such that Δ 𝑘𝑘′ > 0 indicates
that treatment 𝑘 ′ is more effective than treatment 𝑘 . Therefore, we define the best treatment, 𝑘∗, as the
treatment with the highest expected relative effect E (Δ1𝑘 ). The EV decision rule can then be expressed
as follows:

Recommend any treatment 𝑘 that satisfies both

E [Δ1𝑘 ] ≥ 0,
E [Δ 𝑘𝑘∗ ] ≤ 𝑇,

where 𝑘∗ = argmax𝑘 (E [Δ1𝑘 ]) and 𝑇 is some appropriate threshold on the natural scale. Since
Δ 𝑘𝑘∗ = Δ1𝑘∗ −Δ1𝑘 , the risk-neutral EV decision rule can be expressed equivalently as a single criterion,

E [Δ1𝑘 ] ≥ max (0,E [Δ1𝑘∗ ] − 𝑇) .

In practice it can be helpful to envisage the rule being applied in two stages. In Stage 1, the
evaluative function Δ1𝑘 identifies treatments that are non-inferior to reference treatment 1. In Stage 2,
the evaluative function Δ 𝑘𝑘∗ is used to identify treatments within T of the best treatment.

2.2.2. Defining a decision threshold
The threshold 𝑇 represents the maximum amount by which a treatment can be inferior to the best
treatment and still be recommended. As suggested in earlier work on threshold analysis28 and by the
GRADE Working Group,29 a natural choice for 𝑇 is the MCID, although any measure of clinical
importance or non-inferiority could be used as long as it can be expressed on the natural scale.

For probability outcomes, the MCID can be expressed in terms of relative risk. Suppose that 𝑅𝑅𝑘𝑘∗ =
λ𝑘∗
λ𝑘

is the minimal clinically important relative risk chosen by the decision-maker. To find the equivalent
threshold 𝑇 , we set 𝑅𝑅𝑘𝑘∗ equal to the maximum value at which treatment 𝑘 will still be recommended,
which by definition must satisfy Δ 𝑘𝑘∗ = 𝑇 . Substituting Δ 𝑘𝑘∗ = λ𝑘∗ − λ𝑘 and using λ𝑘 = λ𝑘∗

𝑅𝑅𝑘𝑘∗
,

we find

𝑇 = λ𝑘∗
(
1 −

1
𝑅𝑅𝑘𝑘∗

)
(1)

Values of 𝑅𝑅𝑘𝑘∗ such as 1.25 or 1.5 would be typical.33 Note that to evaluate Equation (1) for a
given relative risk MCID, we treat λ𝑘∗ as a constant, for example, by plugging in its EV. Equivalent
transformations will be required if the MCID is expressed as an odds ratio, log odds ratio, or probit
difference. For example, if the decision-maker chooses a log odds ratio of 𝐿𝑂𝑅𝑘𝑘∗ = logit (λ𝑘∗ ) −
logit (λ𝑘 ), then the threshold is given by

𝑇 = λ𝑘∗ − logit−1 (logit (λ𝑘∗ ) − 𝐿𝑂𝑅𝑘𝑘∗ ) .
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2.3. Loss-adjusted expected value

The risk-neutral decision rule in Section 2.2 is based on EV and does not account for the uncertainty
in the parameters Δ1𝑘 and Δ 𝑘𝑘∗ . We propose a risk-averse decision rule that accounts for the expected
loss associated with making decisions under uncertainty. The rule is based on two criteria, analogous to
those for the risk-neutral EV in Section 2.2. For each criterion, we adjust the EV by the expected loss
associated with that decision.

2.3.1. Expected loss of making decisions under uncertainty
The first criterion requires that a recommended treatment should be at least as effective as the reference
treatment. Over the distribution of Δ1𝑘 , positive values indicate treatment 𝑘 is more effective than the
reference so there is no loss in recommending 𝑘 over treatment 1. However, in the region that Δ1𝑘 is
negative we would obtain a higher payoff (equal to −Δ1𝑘 ) if we recommended the current standard
treatment. The expected loss from selecting treatment 𝑘 based on the first criterion (i.e., relative to the
reference treatment) is therefore

EL1 (Δ1𝑘 ) = E [max (0,−Δ1𝑘 )] . (2)

The second criterion ensures that we do not recommend treatments that are worse than the best
treatment 𝑘∗ by more than the threshold 𝑇 . Over the distribution of Δ 𝑘𝑘∗ , values less than 𝑇 indicate
that the efficacy of the best treatment 𝑘∗ does not exceed 𝑘 by more than the threshold, so there is no
loss associated with recommending treatment 𝑘 . For values of Δ 𝑘𝑘∗ greater than 𝑇 we would obtain a
higher payoff (equal to Δ 𝑘𝑘∗ − 𝑇) if we did not recommend treatment 𝑘 . Therefore, the expected loss
associated with this criterion is

EL2 (Δ 𝑘𝑘∗ , 𝑇) = E [max (0,Δ 𝑘𝑘∗ − 𝑇)] . (3)

The expected loss arising from making a decision under uncertainty, a decision based on the
imperfect evidence currently available, is equivalent to the expected gain if all uncertainty was removed
before making the decision. In Bayesian Decision Theory this is known as the expected value of perfect
information (EVPI).31 However, these concepts usually refer to the value of decisions between multiple
treatments, whereas here interest is focussed on pairwise decisions: first on the value of a decision to
recommend a single treatment when compared to the reference, and second to recommend a treatment
when compared to the ‘best’.

2.3.2. Loss-adjusted expected value decision rule
To construct our LaEV decision rule, we penalise the EV involved in each criterion by its associated
expected loss. For the first criterion, larger values of Δ1𝑘 indicate that treatment 𝑘 is more effective
than the reference. Therefore, to penalise the EV of Δ1𝑘 we subtract the expected loss in Equation (2).
For a treatment that fulfils the first EV criterion, we can interpret the LaEV as moving the EV towards
the null. For the second criterion, the smaller the value of Δ 𝑘𝑘∗ , the closer treatment 𝑘 is to the best
treatment. That is, smaller values of Δ 𝑘𝑘∗ indicate greater efficacy of treatment 𝑘 (i.e., closer to the best
treatment in efficacy). Therefore, to penalise the EV of Δ 𝑘𝑘∗ , we add the expected loss associated with
this criterion (Equation (3)). As the degree of uncertainty and therefore the expected loss increase, the
LaEV increases towards the threshold T. Once LaEV exceeds this threshold, a treatment that would be
recommended under EV is no longer recommended under LaEV. Our LaEV decision rule can then be
written as follows:

Recommend any treatment 𝑘 that satisfies both

E [Δ1𝑘 ] − EL1 (Δ1𝑘 ) ≥ 0,
E [Δ 𝑘𝑘∗ ] + EL2 (Δkk∗ , 𝑇) ≤ 𝑇,
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where 𝑘∗ = argmax𝑘 (E [Δ1𝑘 ] − EL1 (Δ1𝑘 )) and 𝑇 is some appropriate threshold on the natural scale.
We refer to the left-hand side of each expression as the LaEV. Once again, the two criteria would be
applied in a two-stage process.

For this decision rule, the best treatment 𝑘∗ is defined as the one that maximises the LaEV of Δ1𝑘 . It
is possible that this is different from the treatment with the highest EV used in Section 2.2. However,
this is not the case for any of the examples in this article, so for simplicity we use the same notation for
both.

Both EV and LaEV depend on the choice of reference treatment. However, both the EV and the
LaEV attaching to each treatment are independent of the EV and LaEV attaching to every other
treatment. This is an important property, as noted in discussions of value-based pricing.34

2.4. GRADE Working Group method

In the GRADE multi-stage process for drawing conclusions from an NMA, within what they term a
‘minimally contextualised framework’,29 treatments start in Category 0. The process then identifies the
set of treatments that are superior to the reference treatment by a threshold margin 𝑇 , with probability 𝑃.
In other words, all treatments 𝑘 conforming to 𝑃𝑟 (Δ1𝑘 > 𝑇) > 𝑃, for example, with 𝑃 set at the
standard benchmark 0.975, and 𝑇 set to the MCID. These treatments are promoted to Category 1. At the
second step, any Category 1 treatment 𝑘 is promoted to Category 2 if it is superior to at least one other
Category 1 treatment by the same criteria. The process continues to Category 3 or more, until we are
left with a set of treatments none of which are superior to any other by the margin 𝑇 with probability 𝑃.
Finally, the decision rule is to recommend all treatments in the highest category. (In practice, checks for
evidence inconsistency and certainty ratings may intervene before recommendations are made). The
values of 𝑇 and 𝑃 can be changed but are assumed to stay the same within each evaluation.

2.5. Probability-based ranking systems

To compare to the decision rules described above, we examine three probability-based ranking
approaches: the probability of being best, Pr(Best),35 the SUCRA,21 and the probability that the value
exceeds a threshold, Pr(V > T). In the latter case, the decision maker ranks treatments according to the
probability that their relative treatment effect exceeds a given threshold, 𝑇 .24 The three ranking metrics
are defined as follows:

𝑃𝑏(𝑘) = Pr(Δ1𝑘 > Δ1 𝑗 ;∀ 𝑗 ≠ 𝑘),

𝑆𝑢(𝑘) =
1

𝐾 − 1

∑
𝑗≠𝑘
𝐼
(
Δ1𝑘 − Δ1 𝑗

)
,where 𝐼 (𝑐) =

{
1, if 𝑐 > 0,
0, otherwise,

𝑃𝑣 (𝑘, 𝑇) = Pr (Δ1𝑘 > 𝑇) .

Note, that to implement Pr(V>T) where 𝑇 is a relative risk MCID, the RR is relative to reference
treatment 1.

The three probability-based ranking systems are not decision rules, but the rankings can be compared
to rankings generated by EV, LaEV, and GRADE. To help readers assess how they might perform as
decision rules, and to aid comparison with EV-based decisions, we report the 𝑁 most highly ranked
treatments in each NMA, where 𝑁 is the number recommended by the EV decision rule.

3. Illustration of properties of ranking methods in stylised examples

In the following, we present a set of four hypothetical scenarios to illustrate, compare and contrast the
properties of the alternative decision rules and ranking methods. The scenarios are explained alongside
the results. WinBUGS code for each illustration is available in the Supplementary Material.
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3.1. Illustration 1: Impact of uncertainty on EV, LaEV, and Pr(V>T)

Consider a one-stage two-choice decision involving the relative treatment effect of a single new
treatment 𝑘 against a standard, and an evaluation function with uncertainty distribution Δ1𝑘 ∼

𝑁
(
1, 𝜎2) . This represents the uncertainty around the relative effect estimate of a treatment k compared

to reference treatment 1 on the natural scale. As we vary the 𝜎 in the data, there is no effect on the
EV, but LaEV declines, slowly at first until 𝜎 is about 1, at which point it falls off in a roughly linear
fashion, reaching half its value at 𝜎 = 2.3, and turning negative at 𝜎 = 3.6. (Figure 1a). At this point
the decision-maker would choose the reference treatment.

Pr(V > T) also declines as 𝜎 increases, but only when T < EV. Otherwise, it rises if T > EV, or
remains constant at 0.50 if T = EV (Figure 1b). Pr(V > T) therefore does not generate a ranking suitable
for routine use. GRADE rules, which take the form: ‘select if Pr(V > T) > P’ are similarly limited.

Figure 1. Evaluative function with mean 1.0 and SD varying from 0.1 to 5. (a) Impact of uncertainty
on expected value with and without loss-adjustment. (b) Impact of uncertainty on Pr(V > T), the
Probability that the value exceeds a threshold, T.

3.2. Illustration 2: Counter-intuitive properties of Pr(V>T)

Even when EV > T, Pr(V > T) can deliver counter-intuitive rankings. Figure 2 portrays the value
distributions of three treatments, A, B, and C, with EVs 1.0, 2.0, 3.0. While A has the lowest EV, the

Figure 2. Forest plot showing expected value and 95% credible intervals of three treatments, A, B, C.
The probability that the value of A exceeds zero is virtually 1, while the probability that the value of B
and C exceed 1 is equal at 0.977. Pr(V > 0) would rank them A, B = C, with metrics (1, 0.977, 0.977).
An LaEV decision maker would rank them C, B, A with metrics (2.99, 1.99, 1.0), almost identical to an
EV decision maker (3.0, 2.0, 1.0).
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uncertainty in A is negligible, and the probability that V > 0 is virtually 1. However, B and C both have
an SD that is exactly one half of their EV, so the probability that V > 0 is equal at 0.977. Pr(V > 0)
therefore ranks them (best to worst) A, B = C. In this case, Pr(V > T) correctly privileges the least
uncertain treatment, but it fails to produce a rational decision because it does not reflect the extent of
gain or loss, only its probability. In contrast, a LaEV decision-maker, would rank them C, B, A with
metrics (2.99, 1.99, 1.0), the same ranking as an EV-based decision, and with almost identical metrics.

3.3. Illustration 3: Anomalies in GRADE decision rules

Figure 3 portrays three scenarios where GRADE rules are implemented with an MCID = 1 and a
probability threshold P = 0.975. In Scenario 1 the highly uncertain treatment B is recommended along
with A, while in Scenario 2, the much more certain treatment C is not recommended, although it has
the same EV as B. A treatment that reaches Stage 2 is therefore more likely to be recommended if it is
uncertain.

Figure 3. Forest plot showing expected value and 95% credible intervals of three treatments, A, B, C.
In Scenario 1, treatments A and B have reached GRADE Category 1 because Pr(V > 1) > 0.975, the
MCID being 1. Because A is not superior to B by 1 with Probability 0.975, both A and B remain in
Category 1 and are recommended. In Scenario 2, A is superior to C: A is promoted to Category 2 and
is recommended, but C is not. In Scenario 3, A is superior to C and is promoted, while B is not. Whether
or not B is recommended depends on the presence of C, even though C is never recommended.

In Scenario 3, all three treatments are compared. In contrast to Scenario 1, where both A and B are
recommended, in Scenario 3 only A is recommended, as it is superior to C and is therefore promoted
to Category 2. The recommendation of treatment B depends on the presence or absence of treatment C,
even though C would not be recommended in any of these scenarios.

3.4. Illustration 4: Properties of a valid ranking system in response to uncertainty

Here we consider a (one-stage) ranking of 25 treatments with evaluation functions distributed Δ1𝑘 ∼

𝑁
(
𝜇𝑘 , 𝜎

2
𝑘

)
arranged in a five-by-five grid with mean 𝜇 = 1.1, 1.2, 1.3, 1.4, 1.5 and 𝜎 = 1, 2, 3, 4, 5. The

rankings of the 25 treatments by EV, LaEV, SUCRA, Pr(Best), Pr(V > 0.6), Pr(V > 1.3), and Pr(V >
2.3) decision rules are presented in a series of grid plots (Figure 4), in which arrows point from highest
ranked treatment to the 2nd, then the 3rd, and so on. For a ranking system to be valid under uncertainty,
treatments with a higher EV must be ranked above those with a lower EV and the same SD; and those
with a lower SD must be ranked above treatments with a higher SD and the same EV. Thus, the arrows
must start at the lower right corner and end at the top left.

Based on this simple test, EV, SUCRA, Pr(Best), Pr(V > 1.3) and Pr(V > 2.0) all generate invalid
rankings under uncertainty. Only LaEV and Pr(V > 0.6) generate exclusively valid rankings.
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Figure 4. Twenty-five treatments in a 5 × 5 grid with EVs 1.1, 1.2, 1.3, 1.4, 1, 5, and SDs 1, 2, 3,
4, 5. Rankings generated by seven metrics: EV, LaEV, SUCRA, Pr(Best), Pr(V > 0.6), Pr(B > 1.3),
Pr(V > 2.3). Arrows start from the highest ranked treatment, marked with a red blob, and point to the
2nd ranked, then the 3rd ranked, and so on. Every treatment must be ranked in order. Treatments linked
by a blue line are of equal rank. Valid rankings (coloured purple, see Panel 8) must start at the bottom
right and end at the top left. Further, they can only point leftwards, upwards, bottom-left to top-right,
or top-right to bottom-left. Arrows pointing downwards (red) are invalid because they imply a higher
ranking for a more uncertain treatment with the same EV. Likewise, arrows pointing Rightwards are
invalid as they imply a higher ranking for a treatment with a lower EV at the same SD. Arrows running
top-left to bottom-right imply higher ranking for treatments with both lower EV and higher SD. Arrows
pointing bottom-right to top-left are also invalid because they skip over treatments that either have
higher EV with the same uncertainty, or lower SD with the same EV, or both.
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4. Preferred properties and attributes of treatment rankings

Before turning to real examples, we summarise some preferred properties of decision rules and the
treatment rankings under uncertainty, based partly on the illustrative examples. The results are set out
in Table 1.

5. Results on NICE guidelines

In this section, we apply the six ranking systems, three with decision rules and three without, to 10
example NMAs from NICE guidelines. We used the original WinBUGS code, data, and initial val-
ues from the guidelines (available https://www.bristol.ac.uk/population-health-sciences/centres/beam-
centre/mpes/nice/reportsandpublications.html), discarding the same number of burn-in samples. Addi-
tional code, shown in the Supplementary Material, generated results for decision rules and rankings.
Results were based on 600,000 samples from the Bayesian posterior distribution.

5.1. Smoking cessation

The 2021 NICE Guidelines Tobacco: prevention of uptake, promoting quitting and treating depen-
dence14 included an NMA of 13 classes of treatments for smoking cessation against placebo. The trial
outcome was the probability of cessation. The results of both Stage 1 and Stage 2 calculations appear
in Table 2. Caterpillar plots (Figure 5) show the mean (EV) and uncertainty (95% CrI) in the Stage 1
and Stage 2 evaluation functions (Δ1𝑘 and Δ 𝑘𝑘∗). Also shown are the LaEV of each treatment. We have
applied the EV and LaEV to all treatments at both stages for illustrative purposes: in practice only
treatments satisfying the Stage 1 criteria would go on to Stage 2.

In Stage 1, all but one of the 13 active treatments are more effective than placebo based on EV. Note
that loss adjustment has virtually no impact on the Stage 1 valuations. This is because, although there
is considerable uncertainty in the expected treatment effects, there is very little decision uncertainty:
the EVs are so far from zero that the expected loss attaching to choosing each treatment over the
reference treatment is negligible. Accordingly, LaEV picks out the same treatments as EV (see Table 2
and Figure 3). In Stage 2, based on EV, the best treatment is joined by five other treatments that are not
worse than the best treatment by more than the MCID (RR = 1.50), while LaEV picks out four of these.

Application of the GRADE decision rules with the same MCID and a 0.975 cut-off results in 9
treatments reaching Category 1. GRADE attributes the highest ranks to treatments ranked 9, 6, 7, 3, 4 by
EV, because these have exceptionally low SD. Note that if a P = 0.50, ‘balance of evidence’ probability
had been employed, instead of 0.975, then the effect of GRADE would be identical to EV. This is what
would be expected unless the distributions of the evaluative functions are highly asymmetrical. As
none of the nine Category 1 treatments are significantly better than any others by an RR of 1.50, none
were promoted to Category 2, and all would therefore be recommended. However, while the ranking
by GRADE is quite different to the ranking by EV, the nine treatments recommended by GRADE are
among the 10 most highly ranked on EV.

SUCRA delivers a ranking that is very close to EV, while the Pr(Best) ranking departs from EV quite
markedly. However, if SUCRA and Pr(Best) decision makers were to recommend the same number of
treatments as an EV decision maker, they would choose the same six treatments. A Pr(V > T) decision
maker would recommend only four of the treatments recommended by EV.

5.2. Other NICE guidelines

Detailed results, references, and commentary for a further 9 NMAs from NICE guidelines are given in
the Supplementary Material, and all 10 are summarised in Table 3. The 10 NMAs compared between
4 and 40 treatments to the reference treatment. Some of the NMAs incorporate class models, and in
some the guideline developers decided between classes of treatments. To improve network connectivity,
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Table 1. Performance of alternative ranking methods regarding preferred properties. Properties marked with an asterisk are considered essential.

Property or attribute EV GRADE Pr(Best) SUCRA Pr(V > T) LaEV Comments

Valid ranking in the face of uncertainty* N N N N N Y Illustration 4
Method should generate

recommendations, not just rankings*
Y Y N N N Y The probabilistic rankings by themselves do

not specify how many, or even if any,
treatments should be recommended

Methods that penalise uncertainty should
only recommend as many, or fewer
treatments, than EV, never more

n/a N N N N Y The probabilistic rankings do not specify
upper or lower limits on how many
treatments would be recommended

Methods should not depend on arbitrary
probability cutoffs

Y N N N N Y Pr(Best), SUCRA, and Pr(V > T) would
require arbitrary probability cutoffs if
they were to be used as decision rules

Metric should be in same units as
evaluation function

Y N N N N Y This facilitates the use of clinically
interpretable benchmarks, such as MCID

Must reflect extent of loss, not just its
probability*

N N N N N Y Illustration 2. Also see Ref. 34

Metric for each treatment should be
independent of the number of
alternative treatments, and the value of
metrics for other treatments *

Y ? N N Y Y The Pr(V > T) metric underlying GRADE is
independent, but its decision rule makes
GRADE decisions dependent on the
presence or absence of treatments that
would not be recommended (Illustration
3). See Ref. 34 for a similar argument for
independence

Methods should have independent
theoretical support*

Y N N N N Y Only EV and LaEV have independent
theoretical justifications, in the contexts
of risk-neutral and -averse decision
making, respectively.34,50

Note: GRADE Working Group minimally contextualised framework; Pr(Best), probability best; SUCRA, surface under the cumulative ranking curve; Pr(V > T), probability that evaluative function exceeds threshold T;
LaEV, loss-adjusted expected value.
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Table 2. NICE guideline smoking cessation.14 Outcome is risk of cessation. MCID based on RR = 1.50, or T = 0.139 on the probability scale. All the
ranks are those generated by an EV ranking. For example, the five treatments ranked highest by GRADE and Pr(V > T) are the treatments ranked 9, 6,
7, 3, 4 by EV: the five ranked highest by SUCRA are ranked 1, 2, 3, 4, 6 by EV. The EV columns show the posterior means and standard deviations of the
evaluative functions in Stages 1 and 2, (Δ1𝑘 and Δ 𝑘𝑘∗ ). Treatments meeting the Stage 1 and Stage 2 decision criteria are shaded. For the ranking systems
in Stage 2, we have highlighted the six highest-rank treatments, because six treatments are recommended by EV. Note that in Stage 1 treatment effects are
relative to placebo (treatment 1), which is therefore excluded from the ranking; it is however included in Stage 2.

Stage 1 Stage 2
Decision rules Decision rules

Treatment GRADE Final GRADE
(numbering as in (0.975) (0.975)
NICE guidelines) EV LaEV Category 1 Ranking systems EV LaEV category 1

Rk EV sd Rk LaEV Rk Pr(V > T) P(Best) SUCRA Pr(V > T) Rk EV sd Rk LaEV

Buproprion + NRT L&S, 11 1 0.30 0.12 1 0.30 9 1.000 1 1 9 1 0.00 0.00 1 0.00 9
E-cigarette + NRT L/S, 14 2 0.23 0.10 2 0.23 6 1.000 2 2 6 2 0.07 0.15 2 0.10 6
E-cigarette, 9 3 0.21 0.07 3 0.21 7 1.000 4 3 7 3 0.09 0.13 3 0.12 7
Varenicline + Buproprion, 13 4 0.21 0.07 4 0.21 3 0.997 3 4 3 4 0.09 0.14 4 0.13 3
Vareniciline + NRT L/S, 12 5 0.19 0.06 5 0.19 4 0.992 5 6 4 5 0.11 0.13 6 0.15 4
NRT long and short, 6 6 0.19 0.04 6 0.19 5 0.991 6 5 5 6 0.11 0.12 5 0.15 5
Varencline, 8 7 0.15 0.02 7 0.15 1 0.991 12 7 1 7 0.15 0.12 7 0.21 1
Buproprion + NRT L/S, 10 8 0.11 0.03 8 0.11 10 0.987 7 8 10 8 0.19 0.12 8 0.27 10
NRT long/short, 5 9 0.10 0.01 9 0.10 2 0.976 8 9 2 9 0.20 0.12 9 0.29 2
Buprioprion, 7 10 0.09 0.01 10 0.09 8 0.963 11 10 8 10 0.21 0.12 10 0.31
No drug treatment, 2 11 0.05 0.02 11 0.05 12 0.251 13 11 12 11 0.25 0.12 11 0.38
Wait list, 3 12 0.03 0.05 12 0.02 11 0.227 9 12 11 12 0.27 0.13 12 0.41
Placebo, 1 – – – – 0 (R) – – – – – 13 0.30 0.12 13 0.46
Usual care, 4 13 −0.04 0.01 13 −0.07 13 0.000 10 13 13 14 0.34 0.12 14 0.53
Abbreviations: NRT, nicotine replacement therapy; L&S, long and short acting; L/S, long/short acting; Rk, Rank; R, reference treatment.
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Figure 5. Smoking cessation. Caterpillar plots of the EV (blue dots) and its 95% CrI, and LaEV (red
circles) of the Stage 1 and Stage 2 evaluation functions, (𝛥1𝑘 and 𝛥𝑘𝑘∗). Also shown: the coding
of treatments in the NICE guidelines; the MCID at Stage 2 (dashed line to the right). Treatments
recommended are those with EV, or LaEV, less than the MCID threshold in Stage 2. GRADE
recommended treatments are those in bold and marked with asterisks.

NMA datasets sometimes include treatments that are excluded from the decision set. In these cases, we
have applied rankings and decision rules only to the decision set.

EV decision-makers would recommend between 2 and 14 interventions (median 5), while LaEV
would recommend between 3 and 11 (median 3), between zero and 3 (median 2) fewer than EV.
GRADE rules with a 0.975 probability cut-off recommend between zero and 24 treatments (median
2.5), between 9 fewer and 17 more than EV. In 3/10 cases the treatment which was ranked best by EV
(and LaEV) was not among the treatments recommended by GRADE. At Stage 1, GRADE privileges
more certain treatments at the expense of better EV, as seen in illustration 2. However, at Stage 2, the
more uncertain treatments are recommended as they are less likely to be ‘significantly’ different from
the best treatment.

The rankings produced by Pr(Best) and Pr(V > T) tend to differ from the EV and LaEV rankings,
while SUCRA rankings are closer to EV. If we look at the N top-ranked treatments, where N is the
number recommended by EV, SUCRA decision makers would recommend the same treatments in all
10 cases, Pr(Best) decision makers in 6, and Pr(V > T) decision makers 5.

6. Discussion

This article attempts to define a rational basis for recommending more than one treatment on the basis
of NMA evidence while penalising uncertainty. This represents a risk-averse decision-making position,
in contrast to the standard EV approach. Using stylised illustrations and real examples from NICE
Guidelines, we have compared EV, LaEV, and GRADE decision rules. The performance of ranking
systems based on Pr(Best), SUCRA, and Pr(V > T) has also been documented in view of the growing
literature proposing that probabilistic rankings can help inform recommendations.20,23–27,36

For a ranking to be valid under uncertainty a treatment with a higher EV must always be ranked
above a treatment with a lower EV and the same uncertainty, and a treatment with less uncertainty must
always be ranked above a treatment with more uncertainty at the same EV. Of the methods examined
only LaEV provides a valid ranking by this criterion. Pr(V > T) is valid only if EV > T for all treatments,
a property which blocks its use in routine applications, and which is inherited by the GRADE Working
Group rules for a minimally contextualised framework. Although SUCRA usually generates a ranking
close to EV in real examples, except when treatments differ substantially in uncertainty, it cannot
be relied on to produce valid rankings under uncertainty, and it possesses none of the preferred
properties. The probabilistic ranking systems and GRADE all take uncertainty into account, sometimes
in irrational ways, but they do not always penalise it. They may register the probability of loss, but not
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Table 3. Summary results on 10 NMAs from NICE guidelines. Treatment recommendations from decision rules (EV, LaEV) at Stages 1 and 2; GRADE
Category 1 and final category treatments; and results from ranking systems, Pr(Best), SUCRA, Pr(V > T). The numbers listed are the treatment rankings
under EV. For ranking systems, the N highest ranked treatments are listed, where N is the number recommended by EV. The summary statistics for GRADE
assume a 0.975 probability cutoff throughout.

Guideline MCID Max Treatments recommended (number recommended) Ranking systems: N top-ranked treatments

(N) EV LaEV GRADE (P) Pr(Best) SUCRA Pr(V > T)

Smoking cessation RR 1.5 14 (6) 1–6 (4) 1–4 (9) 1–7, 9, 10 (0.975) 1–6 1–6 3–7, 9
Moderate to severe acne CfB 25% 27 (14) 1–14 (11) 1–11 (5) 1, 6–9 (0.975) 1–7, 10, 11, 14,

15, 18, 23,
26

1–14 1–14

Mild to moderate acne CfB 25% 41 (3) 1–3 (2) 1–2 (1) 2 (0.975) 1–3 1–3 2–4
More severe depression SMD 0.5 27 (5) 1–5 (3) 1,3,2 (6) 1, 3, 6, 7,

9, 10
(0.85) 1–5 1–5 1, 3, 6, 9, 10

Joint replacement RR 1.5 5 (2) 1–2 (2) 1–2 (1) 2 (0.975) 1–2 1–2 1–2
Headache Days 0.5 7 (3) 1–3 (3) 1–3 (1) 3 (0.975) 1, 2, 5 1–3 1–3
Social anxiety (treatment) SMD 0.5 41 (7) 1–7 (5) 1–5 (24) 1–16,

19–22, 24,
25, 27, 29

(0.975) 1–4, 6, 8, 28 1–7 1, 2, 5, 7, 11,
19, 22

Social anxiety (class) SMD 0.5 17 (9) 1–9 (6) 1–6 (4) 1, 2, 5, 6 (0.975) 1–5, 7, 8, 10,
13

1–9 1–9

Urinary incontinence RR 1.25 14 (5) 1–5 (2) 1–2 (8) 1, 3, 6–8,
10–11, 13

(0.975) 1–4, 9 1–5 6–8, 11, 13

Tocolytics Weeks 1 7 (3) 1–3 (3) 1–3 (1) 1 (0.975) 1–3 1–3 1–3

Summary statistics
Number recommended

Mean 20.1 5.7 4.1 5.4
Range (median) 5–41 (15.5) 2–14 (5) 2–11 (3) 0–24 (2.5)
% of max: Range

(median)
7–53 (39) 5–43 (32) 0–64 (19)

Abbreviations: MCID, minimal clinically important difference; Max, maximum number of treatments that could be recommended; N, number of treatments recommended by EV; P, GRADE probability cutoff; RR,
relative risk; CfB, change from baseline; SMD, standardised mean difference.
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its extent. Their fundamental drawback is that they do not distinguish between uncertainty in treatment
effects from and uncertainty in decision. Possibly, SUCRAs could be modified or weighted to improve
their response to uncertainty, but it is not clear that this would change their rating on the Table 1
criteria.

Because the EV and LaEV decision metrics are on the same scale as the evaluative function, they
can access the MCID. This provides a natural basis for deciding how many treatments besides the best
treatment should be recommended. MCID has been used in this way in NMA threshold analyses28

and has had a similar role in Bayesian sensitivity analyses more generally.37 Because expected loss
is always positive (for treatments better than the reference), LaEV decision rules cannot recommend
more treatments than EV, and any approach that penalises uncertainty should have this property. The
number of treatments recommended by GRADE sometimes exceeds EV, and is effectively arbitrary,
subject only to the choice of probability cutoff. SUCRA delivers rankings close to the EV ranking in
real examples, Pr(Best) and Pr(V > T) less so, but arbitrary cutoffs would again be required to control
the number of treatments recommended by all three probabilistic ranking methods.

A further property of the GRADE rules is that it is not possible to recommend the standard reference
treatment alongside any other treatments. This is because treatments that are better than treatment 1 by
the stated criterion are promoted to Category 1, leaving treatment 1 behind in Category 0. It therefore
seems that reference treatment 1 can therefore only be recommended by default if no other treatment
betters it (on the stated criterion).

Adoption of any risk-averse decision rule would put a new spotlight on uncertainty and its sources.
Much of the uncertainty in model parameters originates in sampling error in their estimation, but
variation arising from random effects models also contributes, representing, perhaps, the uncertain
relevance38 of evidence from trials with widely dispersed treatment effects. These sources of
uncertainty are ‘within’ the decision model and can therefore engage risk-averse methods for decision-
making. On the other hand, the use of GRADE certainty ratings39 and Risk of Bias tools40 identifies
further sources of uncertainty which tend to be treated as external or contextual factors that are ‘taken
into account’ alongside the results of formal modelling. Model structure and choice of data sources
represent further sources of uncertainty outside the decision model, often addressed by sensitivity
analyses. Adopting decision rules that penalise uncertainty would encourage investigators to bring all
such sources of uncertainty into the decision model and would place a premium on statistical methods
that reduce between-study heterogeneity, including: informative priors on variance parameters41; bias
modelling42; and methods that increase precision such as multi-level network meta-regression.43 Bias
models are already in common use in NICE guidelines.

Variation due to between-study heterogeneity has been a major feature in the evidence synthesis and
NMA landscape and it is useful to clarify how this relates to the 𝛥𝑘𝑘∗, in which the only variation is
parameter uncertainty (Section 2.1). In the case of synthesis of aggregated heterogeneous trials using
a random effects model, we assume that the decision maker considers the relation between the target
population for decision and the trial populations in the synthesised studies. Based on this, the most
relevant output from the meta-analysis is selected to serve as a basis for the decision, such as the random
effects mean, the predictive distribution of effects in a new study, or the shrunken estimate from the
most relevant study or studies.44–46 This summary effect measure, 𝛥𝑘𝑘∗, is therefore a single parameter
that already captures heterogeneity appropriately for the decision-maker, and the variance in 𝛥𝑘𝑘∗ is
interpreted as purely parameter uncertainty.

In light of the increasing interest in the precise definition of estimands,47 we should also consider
how between-individual variation ties in. Assume that an individual patient data NMA results in a
model on a linear predictor scale including coefficients for a treatment effect and for both prognostic and
effect-modifying variables. Where there is between-individual variation, 𝛥𝑘𝑘∗ is a population-average
marginal treatment effect on the natural scale (i.e., a marginal risk difference for a binary outcome).48

This is derived by an integration over the joint covariate distribution, which is typically known, but
could include uncertainty. The expectation of this 𝛥𝑘𝑘∗ includes more parameters, and has different
uncertainty characteristics,43,49 but remains an expectation over uncertain parameters.
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The circumstances under which a risk-averse posture is appropriate remain a matter of debate and
beyond the scope of this article. Briefly, an EV (risk-neutral) position is considered appropriate for
a decision maker making large numbers of decisions under uncertainty,50 for example, a national
reimbursement agency. Put simply, the risks ‘average out’. However, for individual patients making
a one-time decision, a risk-averse stance—penalising uncertainty—would be justified. Risk aversion is
also appropriate for institutional decision-makers if costs or benefits are born by individuals and cannot
be transferred,50 or where payers have limited budgets.34,50 Although clinical guidelines may apply
to large numbers of patients, guideline development groups typically take one-time decisions. There
is empirical evidence that both patients51–53 and clinicians54 are risk-averse when facing health care
decisions. How and whether this is relevant to the present article is, however, debatable. Our objective
here is to develop a basis for rational decision-making under uncertainty, for application in a policy
context. Its relevance to the individual decision-maker, or to theories of human choice behaviour, is
beyond the scope of the article.

A limitation of this article is that we have not discussed other approaches to risk aversion in the
literature, including: mean-variance trade-offs, methods setting a maximum probability of a poor
outcome, and methods where risk aversion is a parameter input. These alternatives have seen limited
uptake34 and none have been considered in the NMA literature. In most cases, fair comparisons
would be difficult to contrive, as additional parameters are required whose values are to some extent
arbitrary. A possibly more serious shortcoming is our focus on risk aversion, excluding the potential
role of a risk-seeking stance. Prospect Theory asserts that risk posture depends on baseline risk,55

and there is evidence that, in health care decisions, individuals are risk-seeking at low levels of
baseline health.52,56–59 In the context of Net Benefit analysis this has been addressed by Generalised
Risk-Adjusted Cost-Effectiveness (GRACE), in which willingness-to-pay varies with baseline risk.60,61

It may be, therefore, that LaEV as elaborated here is not suited to life-threatening conditions or where
the baseline life expectancy or quality-adjusted life expectancy is low. Whether our proposals can be
extended to allow risk posture to depend on baseline health status and, more generally, to evaluations
based on Net Benefit, are topics of on-going research.

LaEV appears to constitute a relatively conservative methodology for risk-averse decision-makers.
In the 10 examples, it recommended only 0–3 fewer (median 2) treatments than EV. It requires
an SD of 2.3 units to halve a single unit of EV and an SD of 3.6 units to entirely neutralise it
(Illustration 1). We can therefore anticipate that if LaEV was to replace EV-based decision-making,
the impact would be no more than moderate. A more substantial impact would be expected where
highly uncertain evidence is used, for example, evaluations based on non-randomised evidence, or
‘unanchored’ comparisons.62 This underscores the importance of properly representing uncertainty
within the decision model: if this were implemented, routine use of risk-averse decision-making
methods might incentivise the production of better quality data,63 reversing the trend towards accepting
evidence from non-randomised and one-arm studies.64

Methods used by guideline developers need to be acceptable to key stakeholders, including
professional colleges, manufacturers, health care workers, and patients. Stakeholders require a degree
of certainty regarding which methods for health technology assessment are acceptable and how they
are to be applied. To achieve this, methods have to meet criteria for transparency and consistency
across conditions.65 This weighs against methods where parameters can be set in arbitrary ways,
therefore against GRADE and against decision rules based on SUCRA or Pr(V > T) rankings, if
they were to be proposed. Also problematic are ranking methods that combine efficacy with other
outcomes such as adverse effects, costs, or GRADE certainty ratings, using arbitrary, condition-
dependent weightings,23 even if they were able to reliably produce valid rankings under uncertainty.
More fundamentally, GRADE and the probabilistic ranking systems, and indeed other novel ranking
approaches,25,36 stand outside the standard theory and practice of health evaluation. Indeed, no
theoretical basis has been proposed in which any of these methods would represent an optimal basis for
decision-making.
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In 2001, the Institute of Medicine identified ‘patient centred medicine’ as an objective for improved
health in the 21st century,66 and this was widely endorsed by research funders and organisations
delivering health care. Patient-centric decision-making was seen as an essential component. Given that
individuals are generally risk-averse when facing health care decisions, a risk-averse methodology by
guideline developers would be a step towards patient-centred medicine. For this purpose, the two-stage
LaEV method can be recommended as reliable, conservative, theoretically well-motivated, and simple
to implement.
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