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The flow-induced oscillations of a clamped flexible ring in a uniform flow were explored
using the penalty immersed boundary method. Both inverted and conventional ring
configurations were examined, with systematic analysis focused on the effects of bending
rigidity and eccentricity. Four distinct oscillation modes were identified across parameter
variations: flapping (F), deflected oscillation (DO), transverse oscillation (TO) and
equilibrium (E) modes. Each mode exhibited a 2S wake pattern. The inverted ring
sustained the DO mode under low bending rigidity with a deflected shape, transitioning to
the TO mode at higher bending rigidity. In the TO mode, a lock-in phenomenon emerged,
enabling the inverted ring to achieve a high power coefficient due to a simultaneous
rise in both oscillation amplitude and frequency. By contrast, the conventional ring
exhibited the F mode at low bending rigidity and transitioned to the E mode as rigidity
increased, although its power coefficient remained lower because of reduced critical
bending rigidity. For the inverted ring, low eccentricity enhanced oscillation intensity
but limited the operational range of the TO mode. In contrast, for the conventional
ring, reducing eccentricity led to an increase in oscillation amplitude. Among the
investigated configurations, the inverted-clamped ring achieved the highest energy-
harvesting efficiency, surpassing those of the conventional clamped ring and a buckled
filament.

Key words: flow-structure interactions

1. Introduction
The increasing reliance on fossil fuels has led to significant environmental pollution
and climate change, prompting a shift toward clean energy sources. One promising
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Conventional
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Figure 1. Two energy harvesters based on flow-induced vibration: (a) a one-edge-clamped flag and
(b) a two-edge-clamped flag.

approach involves harnessing flow-induced oscillations in flexible structures to convert
flow energy into electricity using piezoelectric materials. These devices have diverse
applications, including self-powered sensor networks, structural health monitoring for
bridges and offshore platforms and supplementary energy sources for urban infrastructure.
Additionally, they offer potential for capturing wind and water flow energy in remote or
underwater environments where conventional power sources are impractical (Wang et al.
2020; Sezer & Koç 2021). Among these innovative designs, a flexible ring, which is
capable of storing elastic energy in its initial state, shows substantial potential for energy
harvesting. Thus, understanding the flow-induced oscillations of flexible rings is essential
for advancing flexible energy-harvesting technologies.

Flexible energy harvesters are commonly made from piezoelectric materials. Although
environmental factors can influence their properties, recent advancements have enhanced
their durability and performance, highlighting their significant potential for energy
harvesting. Traditional flexible energy harvesters that rely on flow-induced vibrations are
generally categorised based on their edge conditions into two types: conventional flags and
inverted flags (figure 1a). The energy-harvesting performance of these systems is closely
linked to factors such as critical bending rigidity, oscillation frequency and filament
deflection during motion (Doaré & Michelin 2011; Michelin & Doaré 2013; Shoele &
Mittal 2016). A conventional flag, characterised by a clamped leading edge and a free
trailing edge, exhibits different oscillation modes – stretched straight, limit-cycle flapping
and chaotic flapping – depending on its Reynolds number (Re), mass ratio, filament length
and bending rigidity (Zhang et al. 2000; Zhu & Peskin 2003; Shelley, Vandenberghe &
Zhang 2005; Alben & Shelley 2008; Michelin, Llewellyn Smith & Glover 2008; Banerjee,
Connell & Yue 2015; Cisonni et al. 2017). The flapping motion of a conventional flag
is considered flutter caused by structural instability, resulting in high-frequency, low-
amplitude oscillations (Connell & Yue 2007; Eloy et al. 2008; Uddin, Huang & Sung
2015). However, the low critical bending rigidity of conventional flags limits their energy-
harvesting performance (Michelin & Doaré 2013). By contrast, the inverted flag, which
has a clamped trailing edge and a free leading edge, was introduced by Kim et al. (2013)
to address this limitation by increasing the critical bending rigidity and enhancing the
oscillation amplitude. Inverted flags display three distinct modes – straight, flapping and
deflected – as the bending rigidity, flow velocity and filament length vary (Gurugubelli
& Jaiman 2015; Tang, Liu & Lu 2015; Sader et al. 2016; Orrego et al. 2017; Yu, Liu &
Chen 2017; Tavallaeinejad et al. 2020a,b). The inverted flag achieves greater deflection and
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higher critical bending rigidity than the conventional flag, thus offering superior energy-
harvesting performance (Ryu et al. 2015; Shoele & Mittal 2016). Despite these advantages,
both conventional and inverted flags share a common limitation: one end is clamped while
the other remains free. This configuration restricts the deflection of the flags, limiting their
potential for energy harvesting.

To address limitations in flow energy harvesting, researchers used buckled filaments
clamped at both ends (figure 1b), storing substantial elastic energy in their initial shape
(Chen, Liu & Sung 2024). Kim et al. (2020) examined the snap-through oscillation
(STO) of such filaments for energy-harvesting applications. Mao, Liu & Sung (2023)
applied the immersed boundary (IB) method to examine how filament length, bending
rigidity and Reynolds number influence the snap-through dynamics, identifying three
modes: STO, streamwise oscillation and equilibrium. The STO mode in buckled filaments
shows substantial deformation but requires high external energy for initiation, leading to
low critical bending rigidity (Kim et al. 2021). Moreover, the STO mode’s oscillation
frequency is lower than that of conventional and inverted flags, limiting the energy-
harvesting capacity of buckled filaments. To enhance critical bending rigidity and increase
oscillation frequency, recent studies (Chen et al. 2023, 2024) investigated the effects of
edge conditions and walls on STO performance. Although these modifications adjust the
initiation conditions, they still yield insufficient critical bending rigidity and oscillation
frequency, constraining the utility of buckled filaments for effective energy harvesting.
To address these limitations, we propose using a transversely clamped filament, where
the clamped edges are rotated 90◦ to align perpendicular to the flow direction (Chen,
Liu & Sung 2025). This configuration creates two types of transversely clamped buckled
filaments – inverted and conventional – depending on the orientation. When the bending
rigidity, filament length and Reynolds number are varied, several oscillation modes
emerge: conventional transverse oscillation (TO), deflected oscillation, inverted TO and
equilibrium. The TO mode, in particular, is driven by periodic vortex shedding from the
filament’s bluff body, making it easier to initiate. The TO mode is also associated with
a higher critical bending rigidity and synchronises with vortex shedding, resulting in a
higher oscillation frequency than the STO mode, thereby improving energy-harvesting
efficiency.

Although the larger deflection and higher frequency of the TO mode enhance the
energy-harvesting potential compared with that of single-end-clamped filaments, the
fixed distance between the clamped edges limits the motion of transversely clamped
filaments. This constraint reduces the oscillation amplitude, thereby limiting overall
energy generation in the TO mode. To overcome this challenge, we propose a flexible ring
configuration in which the clamped edges of the buckled filament are positioned closer
together. This design eliminates the fixed-edge constraint, enabling greater oscillation
amplitude and improved energy-harvesting performance. In addition, the ring shape, as
a classic bluff body, inherently generates vortices that induce TOs, similar to vortex-
induced vibrations observed in elastically mounted cylinders (Bearman 1984; Williamson
& Govardhan 2004; Prasanth & Mittal 2008; Navrose & Mittal 2016; Fan et al. 2019).

Previous research has examined flow-induced oscillations in flexible rings with one side
pinned (Jung et al. 2006; Shoele & Zhu 2010; Kim et al. 2012), whereas studies on clamped
flexible rings remain limited. Understanding the fluid dynamics governing the oscillations
of clamped flexible rings is crucial for advancing flexible energy-harvesting technology.
Bending rigidity is a key factor influencing energy-harvesting efficiency. However, the
experimental manipulation of bending rigidity is often constrained by material limitations.
As a result, numerical approaches, such as the IB method, offer a practical and effective
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Figure 2. Schematics of (a) inverted and (b) conventional clamped flexible rings in a uniform flow.

alternative for analysing these complex fluid–structure interactions (Huang, Shin & Sung
2007; Huang & Sung 2010; Huang, Chang & Sung 2011; Ryu et al. 2015).

The objective of the present study is to explore the flow-induced oscillations in clamped
flexible rings using the penalty IB method. Two configurations – conventional and inverted
rings – are analysed to assess the effects of bending rigidity (γ ) and ring eccentricity
(ε) on mode transitions and energy-harvesting performance. The motion of the rings
and their corresponding wake patterns are analysed across different modes, with the
lock-in phenomenon identified through oscillation amplitude and frequency analysis. We
compare the behaviour and underlying mechanisms of the flexible ring with other flexible
energy harvesters. Additionally, we assess the contributions of each component to energy
harvesting in both configurations and derive an estimate of the power coefficient using
dimensional analysis. Lastly, we compare the energy-harvesting performance of clamped
rings with those of streamwise and transversely buckled filaments.

2. Computational model

2.1. Problem formulation
Clamped flexible rings can be classified into two configurations on the basis of their
clamping orientation: conventional and inverted. Figure 2 illustrates these configurations,
where L denotes a ring’s length and a and b represent its major and minor axes,
respectively. The ring’s eccentricity is defined by ε. Blue boxes at both ends indicate
clamped boundary conditions. Fluid motion is analysed in a fixed Eulerian coordinate
system, with the domain spanning −10L0 ≤ x ≤ 22L0 in the streamwise direction and
−8L0 ≤ y ≤ 8L0 in the transverse direction. Here, L0 represents the equivalent diameter
of an elliptic ring, which corresponds to the diameter of a circular ring when ε = 1.
Dirichlet boundary conditions (u = U0, v = 0) are applied at the inlet, top and bottom
boundaries, whereas a Neumann boundary condition (∂u/∂x = 0) is set at the outlet
(Huang & Sung 2007). The filament’s motion is described in a moving curvilinear
coordinate system, where s denotes the filament’s arc length.

The fluid motion is governed by the Navier–Stokes equations and the continuity
equation, which are expressed in their non-dimensional forms as

∂u
∂t

+ u · ∇u = −∇ p + 1
Re

∇2u + f , (2.1)

∇ · u = 0, (2.2)

where u = (u, v) represents the fluid velocity vector, p is the pressure and f = ( fx , fy)

denotes the momentum forcing used to enforce the no-slip boundary condition along
the IB. The Reynolds number is defined as Re = ρ0U0 D/μ, where ρ0 and μ are the
fluid density and the dynamic viscosity, respectively. Equations (2.1) and (2.2) are non-
dimensionalised using the following characteristic scales: L0 for length, U0 for velocity,
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L0/U0 for time, ρ0U0
2 for pressure and ρ0U0

2/L0 for the momentum forcing f . For
simplicity, the dimensionless variables are expressed in the same form as their dimensional
counterparts.

The motion of the flexible structure is governed by the nonlinear structural equation and
the inextensibility condition, which are expressed in their non-dimensional forms as

∂2 X
∂t2 = ∂

∂s

(
T

∂ X
∂s

)
− γ

∂

∂s

(
∂K

∂s
n
)

− F f , (2.3)

∂ X
∂s

· ∂ X
∂s

= 1, (2.4)

where X = (X (s, t), Y (s, t)) denotes the displacement vector of the filament, s is the
arclength, T and γ represent the tension coefficient and bending rigidity along the
filament, respectively, K is the curvature of the filament, n denotes the normal direction
and F f represents the Lagrangian momentum forcing exerted by the surrounding fluid on
the filament. These equations are non-dimensionalised using the following characteristic
scales: D for length, L0/U0 for time, ρ1U 2

0 for the tension coefficient T ρ1U 2
0 L2

0 for
the bending rigidity γ and ρ1U 2

0 /L0 for the Lagrangian forcing F f , where ρ1 denotes the
density difference between the filament and the surrounding fluid. Given that the filament’s
cross-sectional length is negligible, ρ1 is considered the density of the filament. The elastic
force of the filament is given by Fs = (∂/∂s)(T (∂ X/∂s)) − γ (∂/∂s)((∂K/∂s)n). In the
present study, the value of γ is constant during filament motion, whereas T is a function of
both s and t , determined by the inextensibility condition. A Poisson equation is constructed
to solve the value of T (Huang et al. 2007). Clamped boundary conditions are applied at
the two fixed edges of the filament, which are

∂ X/∂s = (0, 1) at s = 0, L . (2.5)

The penalty IB method is used to calculate the interaction between the filament
and the fluid. In this method, the IB is divided into a ‘massive boundary’ and a
‘massless boundary,’ which are connected by a stiff spring to simulate the interaction. The
Lagrangian force F f exerted by the fluid on the filament is computed using the equation
(Goldstein, Handler & Sirovich 1993)

F f = α

∫ t

0
(U ib − U) dt ′ + β (U ib − U) , (2.6)

where α = −3 × 106 and β = −100 are large negative constants chosen to enforce the
no-slip boundary condition (Huang et al. 2007; Shin, Huang & Sung 2008). Here, U ib
represents the velocity of the massless boundary, as obtained by interpolation at the IB,
and U is the velocity of the massive boundary obtained by U = dX/dt . The transformation
between Eulerian (fluid) and Lagrangian (filament) variables is achieved using the Dirac
delta function. The parameters U ib and f are calculated using the equations

U ib (s, t) =
∫

Ω

u (x, t) δ (X (s, t) − x) dx, (2.7)

f (x, t) = ρ

∫
Γ

F f (s, t)δ(x − X(s, t))ds, (2.8)

where the density ratio (ρ) is derived from the non-dimensionalisation process (ρ =
ρ1/ρ0 D = 1). In this context, ρ1 refers to the line density, whereas ρ0 represents the area
density.
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To address the issue of volume conservation in simulations involving incompressible
fluids enclosed by a flexible ring, we used a penalty IB method incorporating fluid
compressibility (Peng, Asaro & Zhu 2010; Kim et al. 2012). This method compensates for
the volume leakage caused by the smoothed Dirac delta function in traditional IB methods.
The compressibility of the fluid is defined as

β = − 1
V

∂V

∂p
, (2.9)

where V is the volume enclosed by the ring and p represents the pressure. On the basis of
this relationship, the pressure difference can be expressed as

�p = 1
β

(
1 − V

V0

)
, (2.10)

where V0 represents the initial volume. To enhance volume conservation, an integral term,
inspired by proportional-integral control, is added to mitigate steady-state error, yielding
an updated pressure difference expression (Kim et al. 2012)

�p = 1
β

(
1 − V

V0

)
+

∫ t

0

1
β

(
1 − V

V0

)
dt ′. (2.11)

The penalty force ensuring volume conservation is then derived as

FA (s) = �pen, (2.12)

where en is the local outward normal vector of the ring. Consequently, the structural
equation incorporating the volume conservation force is formulated as

∂2 X
∂t2 = ∂

∂s

(
T

∂ X
∂s

)
− γ

∂

∂s

(
∂K

∂s
n
)

+ F A. (2.13)

To evaluate the electrical energy generated by the flexible ring, the piezoelectric–
structure coupling effect is incorporated. The flexible ring surface is assumed to be
fully covered with infinitesimal piezoelectric patches, each with a segmentation length
substantially smaller than L, connected to external circuits. These patches convert strain
energy into electrical energy as the filament deflects. The concurrent application of
an electric voltage to the electrodes induces additional internal torque on both the
piezoelectric patches and the filament (Doaré & Michelin 2011). The local electrical state
of each patch is described by the electric voltage between the positive electrodes, denoted
as V (s, t), and the charge transfer Q(s, t) along the filament axis, both of which are
continuous functions of s and t (Michelin & Doaré 2013). The piezoelectric coupling
effect is governed by the following equations:

Q (s, t) = cV + χ K , (2.14)

M (s, t) = −γ K + χV, (2.15)

where M(s, t) represents the torque of the filament and c and χ are the lineic capacitance
and piezoelectric coupling coefficient, respectively, which are related to the material and
geometric properties of the patch pair (Doaré & Michelin 2011). The positive electrodes
are connected to a purely resistive circuit with lineic conductivity, as described by the
following equation:

∂ Q

∂t
(s, t) = −ςV, (2.16)
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where ς represents the linear conductivity coefficient between the piezoelectric patches
on the upper and lower surfaces of the filament. When the piezoelectric effect is taken into
account, the equivalent bending rigidity can be expressed as

γE = ∂ M

∂s
= −γ

∂K

∂s
+ χ

∂V

∂s
. (2.17)

By combining equations (2.14)−(2.17), we can express the nonlinear structure equation
incorporating the piezoelectric effect, the inextensible condition and the electrical
equation as follows:

∂2 X
∂t2 = ∂

∂s

(
T

∂ X
∂s

)
− γ

∂

∂s

(
∂K

∂s
n
)

+ αe
√

γ
∂

∂s

(
∂V

∂s
n
)

− F f + F A, (2.18)

∂ X
∂s

· ∂ X
∂s

= 1, (2.19)

βe
∂V

∂t
= −V − αeβe

√
γ

∂K

∂t
, (2.20)

where αe = χ/
√

cγL and βe = cU/ς L represent the coupling coefficient and the tuning
coefficient of the electrical system, respectively (Shoele & Mittal 2016). Here, γL denotes
the dimensional bending rigidity of the filament. The voltage and charge density are non-
dimensionalised by U

√
ρL/c and U

√
ρLc, respectively. In the present study, αe and βe

are held constant at values of 0.1, ensuring that they do not affect the overall filament
motion.

The energy-harvesting performance can be evaluated by examining both the elastic
strain energy Es and the power coefficient cp. Here, Es represents the strain energy
generated by the filament’s deformation during motion. It is defined as

Es (t) =
∫

Γ

0.5γ K 2 (s, t) ds. (2.21)

In addition, the harvested energy, which corresponds to the instantaneous power
dissipated in the piezoelectric patches (Michelin & Doaré 2013; Shoele & Mittal 2016),
can be quantified using the power coefficient, defined as

cp = P

ρU 3L
= 1

βe

∫ L

0
V 2ds. (2.22)

The fractional step method on a staggered Cartesian grid is used to solve the Navier–
Stokes equations (Kim, Baek & Sung 2002). A direct numerical method developed by
Huang et al. (2007) is used to calculate the filament motion. Details of the discretisation
of the governing equations and numerical method can be found in the works of (Kim et al.
1992, 2002). We validated the accuracy of the solver in capturing the dynamics of the
flexible ring in our previous work (Kim et al. 2012: Lee, Sung & Zaki 2017).

2.2. Validation
Table 1 presents the results of the domain test for the conventional clamped ring with
ε = 0.6, γ = 0.01 and Re = 100. These results include the averaged drag coefficient
C D , oscillation amplitude Ay and the Strouhal number St (= fv D/U0), along with the
corresponding relative error ε. Here, fv represents the vortex shedding frequency from
the ring. The simulation does not converge for the 16 × 16 domain. The results for the
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Domain C D eC D
Ay eAy St eSt

32 × 8 0.6575 0.1633 0.3572 0.7185 0.1632 0.1481
I 32 × 16 0.5670 0.0032 0.2139 0.0291 0.1421 0

32 × 24 0.5652 – 0.2079 – 0.1421 –

16 × 16 0.6106 0.0762 0.2017 0.1053 0.1526 0.0741
II 32 × 16 0.5670 0.0008 0.2139 0.0295 0.1421 0

64 × 16 0.5674 – 0.2204 – 0.1421 –

Table 1. Domain test, including the averaged drag coefficient C D , oscillation amplitude of Ay , the Strouhal
number St and the relative errors e to 32 × 24 (domain height test in part I) and 64 × 16 (domain length test in
part II) in the conventional configuration (L/D = 3, γ = 0.01, Re = 100).

0.2

0

–0.2

ym

(a) ym vs t (b) ym vs t

–0.4
180 190

t
200

�x = 1/32 �t = 6 × 10–4
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�t = 2 × 10–4
�x = 1/64

�x = 1/128

180 190

t
200

0.2

0

–0.2
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–0.4

Figure 3. Time evolution of the transverse displacement of the midpoint of the ring (ym ) for different (a) grid
sizes and (b) time steps.

32 × 16 domain are consistent with those for the 32 × 24 and 64 × 16 domains. Therefore,
a domain size of 32 × 16 was selected because it allows for simulation over a greater
number of time steps, thereby enhancing the accuracy of the results. To assess the effect
of grid resolution and time step on the simulation outcomes, we conducted convergence
studies for various grid resolutions and time steps. Figure 3 shows the time evolution
of the transverse displacement at the midpoint of the ring. The results obtained for
�x = 1/64 and �t = 4 × 10−4 align well with those for �x = 1/128 and �t = 2 × 10−4.
Consequently, a grid resolution of 1/64 and a time step of 4 × 10−4 were chosen to ensure
high accuracy in the simulation. The maximum Courant number was approximately 0.04
in the simulation. The grid was uniform in the x-direction but stretched in the y-direction.
Specifically, within the range −Y/4 ≤ y ≤ Y/4, the grid size was �y = �x . Outside this
range, the grid size was adjusted to �y = 2�x . The grid resolution for the ring was chosen
to match that of the surrounding fluid domain for consistency.

To validate our simulation framework, we conducted experiments in a small open
suction wind tunnel with wind speeds ranging from 10 to 55 m s–1. An event camera was
used to capture the instantaneous shapes of the flexible ring. The ring was fabricated from
polyethylene terephthalate (PET) film with a thickness of 0.05 mm, a Young’s modulus
of 4 GPa, a Poisson’s ratio of 0.4 and a density of 1.3 × 103 kg m–3. Details of the
experimental setup are provided in the work of Lyu, Cai & Liu (2024). Obtaining high-
quality Particle Image Velocimetry measurements was challenging due to the PET film’s
tendency to reflect and scatter the laser sheet, as well as optical occlusions resulting from
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W

Figure 4. Oscillation amplitude for an inverted ring as a function of (a) γ and (b) W/L0.

the ring’s continuously varying curvature. Instead, we focused on examining the influence
of non-dimensional bending rigidity on the oscillation amplitude (Ay), providing valuable
insights into the ring’s dynamic behaviour under varying aerodynamic conditions (Chen
et al. 2024, 2025). Although varying the wind speed to modify γ makes it challenging
to maintain a constant Re, our experiments captured three distinct oscillation modes
that match the predictions from our numerical simulations (figure 4). Moreover, our
investigation into the effect of the ring’s aspect ratio (W/L0, where W is the ring’s
spanwise width and L0 is the equivalent diameter) showed that as W/L0 increases,
Ay converges to a constant value, indicating that three-dimensional effects become
negligible (Banerjee et al. 2015; Gurugubelli & Jaiman 2019). Overall, experimental
studies are limited by the difficulty of altering the parameters of filament materials, which
constrains the scope of research. In contrast, simulations offer greater flexibility, enabling
the exploration of a broader range of parameters and the examination of additional
phenomena.

3. Results and discussion

3.1. Modes of ring motion
We examined the motion and wake patterns of both conventional and inverted flexible
rings under different dynamic modes. As shown in figure 5, the flapping (F) mode,
deflected oscillation (DO) mode, and TO mode were identified as γ was varied, with
ε = 0.65 kept constant. Experimental observations are included in each inset for qualitative
comparison. The F mode, resembling the motion of a conventional flag, is characterised by
low-amplitude, high-frequency oscillations and occurs in the conventional configuration.
By contrast, the inverted configuration exhibits either DO or TO, depending on the
conditions. In the DO mode, the ring deflects to one side and undergoes low-amplitude
oscillations, similar to an inverted flag. As γ increases, the ring transitions to the TO mode,
characterised by large-amplitude oscillations perpendicular to the flow direction. The
experiments were conducted in a wind tunnel, where the three modes were identified as the
wind speed was varied under comparable bending rigidity. Despite differences between
the simulation and experimental conditions, the qualitatively similar results confirm the
existence of these modes. Experimental studies are constrained by the difficulty of altering
filament material parameters, limiting the scope of research. By contrast, simulations
enable broader parameter exploration and the study of additional phenomena in both
inverted and conventional flexible rings.
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Figure 5. Superposition of the instantaneous shapes of the flexible ring for different oscillation modes:
(a) F mode at γ = 0.01, (b) DO mode at γ = 0.02 and (c) TO mode at γ = 0.5, with ε = 0.65. The white
line in each inset represents the experimentally observed mode.

0.8

0.6

0.4

0.2

10–3 10–2

DO TO F E

E

10–1 100 101

γ
10–3 10–2 10–1 100 101

γ

ε

0.8

0.6

0.4

0.2

ε

(a) Inverted (b) Conventional

Figure 6. Mode diagram for (a) inverted and (b) conventional initial states depending on γ and ε; regions
DO, TO, F and E correspond to the DO mode, the TO mode, the F mode and the E mode, respectively.

To illustrate the distribution of modes for both inverted and conventional flexible rings
as γ and ε were varied, mode diagrams are presented in figure 6. All simulations in the
present study are run for at least 80 oscillation cycles to ensure that the motion has fully
converged. For the inverted flexible ring, three distinct modes emerge depending on γ and
ε. At low bending rigidity and in the transition zone between the TO and equilibrium (E)
modes, the DO mode dominates. This mode is characterised by motion confined to one
side of the y-axis, resembling the DO mode of the inverted flag. Unlike the symmetric up-
and-down flapping observed in the conventional ring, the DO mode occurs asymmetrically
on one side, either above or below the x-axis, depending on the initial excitation. As γ

increases to a level where the flexible ring can resist the fluid forces, the ring transitions
into the TO mode, where it exhibits symmetric oscillation along the y-axis. Notably, the
TO mode is more likely to occur at higher ε values and is absent at lower ε values (i.e.
ε = 0.2), possibly because of the flatter shape of the ring under low ε, which causes it to
deflect to one side rather than oscillate in the TO motion. When γ becomes sufficiently
high, the ring’s motion diminishes, eventually leading to the E mode. By contrast, the
conventional ring only exhibits two modes: the F mode at low γ and the E mode as γ

increases beyond the critical bending rigidity.
The TO mode of the inverted flexible ring, characterised by a large oscillation amplitude

and high critical bending rigidity, is particularly well suited for energy harvesting.
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ɛ = 0.65, γ = 0.5

(a) ym, xm vs t
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Figure 7. (a) Time histories of the midpoint (xm , ym ) in the TO mode. (b) The sequential process of the TO
mode (ε = 0.65, γ = 0.5).

To better illustrate the TO mode, the time history of the midpoint (xm , ym), along with
the sequential motion of the flexible ring, is presented in figure 7. From the time history
of the midpoint, it is evident that the motion in the y-direction dominates in the TO mode,
whereas the x-direction motion is almost negligible. Figure 7(b) depicts a complete TO
mode cycle from T0 to T1. At T0, ym is at its maximum value, signalling the beginning of
a downward motion. By T0 + δ, the ym crosses the x-axis, revealing an asymmetric shape.
As the time progresses to T0 + 2δ, ym reaches its minimum value, positioning the flexible
ring at its lowest point. The ring then initiates an upward motion mirroring the earlier
downward movement. Finally, at T1, the flexible ring returns to its upper position, marking
the completion of one TO cycle.

We examined the vortex shedding and pressure distribution of the flexible ring across
different modes. Figure 8 shows the instantaneous contours of ωz and p for the F, DO
and TO modes. Although all three modes exhibit a 2S wake pattern, the shapes of the
shed vortices and the corresponding pressure fields differ. In the F mode, the interaction
between the two closed shear layers and the adjacent vortices causes the vortices to stretch
and diverge. This interaction suppresses the low-pressure regions in the wake as the
vortices dissipate. In the DO mode, the distance between the two shear layers increases,
reducing the interaction between the shedding vortices. This reduced interaction results in
more concentrated vortices and increased vorticity. In addition, the low-pressure region in
the DO mode is more prominent than in the F mode. In the TO mode, vorticity intensifies,
leading to even lower wake pressure, likely due to greater fluctuations in fluid forces, which
enhance the oscillation amplitude. A detailed analysis of vortex shedding for each mode is
presented in subsequent sections.

To elucidate the relationship between vortex shedding and ring motion, we analysed
the vorticity and pressure contours around the flexible ring in the TO mode, alongside
time histories of the midpoint position, fluid force, elastic force and energy (figure 9).
Four specific time steps within one half of an oscillation period, denoted as A, B, C and
D, are highlighted; the corresponding contours of ωz and p at these specific times are
displayed in figure 9(b). Notably, the fluid force exhibits a higher-frequency component
than the oscillation itself, likely because of the streamwise vibration of the ring. At time
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Figure 8. Instantaneous contours of (a) ωz and (b) p for the F mode (γ = 0.01), DO mode (γ = 0.02) and TO
mode (γ = 0.5) under ε = 0.65.
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A, the flexible ring is in its uppermost position, with the ym at its maximum value. A
high-pressure region forms on the lower-left side of the ring, whereas a low-pressure
region, induced by vortex shedding, develops near the rear part. This pressure distribution
results in a maximum value of F f y . The elastic energy (Es) also peaks because of the
large deflection at this position. Simultaneously, a negative vortex is forming on the top
of the ring and a positive vortex is being shed from it. After time A, the ring begins its
downward motion, driven by the elastic restoring force. At time B, the high-pressure region
diminishes and F f y approaches zero. Here, Es is largely converted into kinetic energy
(Ek), leading to a minimum in Es and a peak of Ek . At time C, the ym passes the x-axis, a
negative vortex is shed, and a new high-pressure region forms on the upper-left side of the
ring, generating a negative F f y that pushes the ring further downward. During the period
from B to C, the elastic energy remains low, indicating minimal deformation. By time D,
the ring reaches its lowest position, with elastic energy again at its maximum, mirroring
the conditions at time A. After time D, the ring begins its upward motion, completing
the oscillation cycle. The periodic formation and shedding of vortices play a critical role
in driving the TO motion, with the associated fluid forces and pressure gradients directly
influencing the ring’s dynamic behaviour.

3.2. Dimensional analysis of the energy equation
Having analysed the motion and wake patterns of the flexible ring across different modes,
we here focus on the energy-harvesting performance. A dimensional analysis of the energy
equation is applied to assess the contribution of each component to the overall energy-
harvesting efficiency. By applying a Fourier transform to both sides of (2.20), we derive
the energy equation in the frequency domain

(iβeω + 1)V̂ = −iαeβeω
√

γ K , (3.1)

where ω = 2π fym is the dominant angular frequency of the filament and V̂ is the amplitude
of the V component with frequency ω. By combining Parseval’s theorem with (3.1), we
can estimate the mean power coefficient cp as

cp ∼ 1
βe

∫ 1

0
V̂ 2ds ∼ 1

βe

(βeω)2

(βeω)2 + 1
γα2

e K 2. (3.2)

Given the small value of βe used in the present study, the expression simplifies to

cp ∼ γβeα
2
eω2K 2. (3.3)

From this analysis, we can directly assess the influence of bending rigidity, oscillation
frequency and filament deformation on energy harvesting. Deformation and oscillation
frequency are critical because cp is proportional to the square of the ring’s curvature.
This relationship suggests that motion involving both high frequency and large deflection
substantially enhances energy harvesting. Although cp is only linearly proportional to γ ,
the operational range of γ spans several orders of magnitude, which closely affects cp.

The following sections examine the influence of bending rigidity and eccentricity on the
flexible ring’s motion and energy-harvesting performance. Using prior analysis, we assess
the contributions of bending rigidity, deflection and oscillation frequency to the efficiency
of energy extraction from fluid–structure interactions.

3.3. Effect of bending rigidity
We investigate the effect of bending rigidity on the dynamic and energy-harvesting
performance of the clamped flexible ring, with eccentricity (ε) fixed at 0.65 for clarity.
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(a) Ay vs γ (b) fym vs γ
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Figure 10. (a) Oscillation amplitude (Ay) and (b) oscillation frequency ( fym ) as a function of γ (ε = 0.65).

For comparison, results for transversely and streamwise buckled filaments are also
included (Mao et al. 2024; Chen et al. 2024). Figure 10 illustrates the oscillation amplitude
(Ay) and frequency ( fym ) for both conventional and inverted flexible rings as γ is
varied. At low bending rigidity, the flexible ring is too soft to withstand the fluid forces,
resulting in a deflected motion confined to one side and sustained in the DO mode,
with a Strouhal number of ∼0.163. In this mode, Ay is small, whereas fym is relatively
high. As γ increases to 0.05, the inverted ring transitions from the DO mode to the
TO mode, leading to a sudden increase in Ay , indicating the onset of large-amplitude
motion. The Strouhal number in the TO mode is approximately 0.15, slightly lower than
that in the DO mode. Notably, the oscillation frequency decreases after the transition.
As γ continues to increase, both Ay and fym increase, reaching their maximum values
at 0.2 and 0.5, respectively. The lock-in and resonance phenomena are observed near
γ = 0.5, where the oscillation frequency aligns with the vortex shedding frequency,
suggesting that the TO mode exhibits vortex-induced vibration (VIV). This phenomenon
resembles the lock-in behaviour observed in elastically mounted cylinders (Williamson
& Govardhan 2004; Prasanth & Mittal 2008; Navrose & Mittal 2016) because of their
similar geometries. Beyond the lock-in regime, both amplitude and frequency decrease,
resulting in a transition to the E mode. By contrast, for the conventional clamped ring,
vigorous motion occurs under low bending rigidity, with the vortex shedding frequency
being twice the oscillation frequency for γ < 0.01. Once γ exceeds 0.01, the oscillation
of the conventional ring synchronises with the vortex shedding. As γ increases further,
Ay decreases, ultimately approaching zero at γ = 0.1, indicating a transition to the E
mode. The conventional ring does not demonstrate a lock-in phenomenon across various
γ , suggesting that its F mode is not VIV. This comparison reveals that the inverted ring
exhibits a larger oscillation amplitude, higher frequency and greater bending rigidity in the
lock-in regime compared with both transversely and streamwise buckled filaments, leading
to superior energy-harvesting potential. Consequently, the following discussion focuses on
the inverted-clamped filament.

To further explore the transition between the DO and TO modes of the inverted ring, we
examine the instantaneous contours of vorticity (ωz) and the corresponding power spectral
density (PSD) of both fym and fv in the transition region (figure 11). At γ = 0.02, the
inverted ring is in the DO mode, exhibiting a 2S wake pattern. In this mode, the DO motion
is synchronised with the vortex shedding, as indicated by a peak at the same frequency in
the PSD analysis. As γ increases to 0.1, the inverted ring transitions to the TO mode.
Although the wake pattern is similar to that observed at γ = 0.02, a notable difference is
observed: fym is lower than fv , indicating that the TO and vortex shedding are no longer
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Figure 11. (a) Instantaneous contours of ωz and (b) the PSD of fym and fv for an inverted-clamped ring under
different γ (ε = 0.65).

synchronised. This desynchronisation contributes to the sudden decrease in fym observed
in figure 10. At γ = 0.5, the inverted ring enters a lock-in regime, where fym and fv match.
The wake pattern in this regime shows a distinct gap between the positive and negative
vortices in the y-direction, whereas the vortices gather closely in the x-direction, marking
a clear change in the wake dynamics.

To further explore the interaction between the ring’s motion and vortex shedding,
as well as to clarify the synchronisation phenomenon, we systematically analyse the
oscillation frequency ( fym ), vortex shedding frequency ( fv) and the natural frequency
( fn) of the flexible ring as γ varies, as illustrated in figure 12. The natural frequency
is determined using the Euler–Bernoulli beam theory with clamped boundary conditions,
yielding the formula fn = 2.267

√
γ /ρs/2π . This analysis provides deeper insight into the

coupling mechanisms governing the ring’s oscillations and its energy-harvesting potential.
Figure 12 reveals that the different oscillation modes – F, DO and TO – are distinctly
characterised by the relationships between the oscillation frequency, vortex shedding
frequency and natural frequency. In the DO mode, the oscillation frequency matches the
vortex shedding frequency while remaining different from the ring’s natural frequency.
This observation suggests that the DO mode results from a simple forced vibration driven
by unsteady fluid forces. In contrast, for the TO mode, the oscillation frequency initially
increases with the natural frequency as γ increases. Once the system enters the lock-in
regime, the oscillation frequency synchronises with the vortex shedding frequency and
maintains this synchronisation until the system exits the lock-in regime. This behaviour
is reminiscent of VIV observed in elastically mounted cylinders, confirming that the TO
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Figure 12. Oscillation frequency ( fym ), vortex shedding frequency ( fv) and natural frequency ( fn) for
(a) inverted rings and (b) conventional rings as a function of γ (ε = 0.65).

mode is a form of VIV. Conversely, the F mode of the conventional ring does not exhibit
any synchronisation, indicating that it is not associated with VIV. This distinction further
highlights the different underlying mechanisms governing each oscillation mode.

We here shift our focus to the relationship between the ring’s motion and fluid force
during the transition between the DO and TO modes. Figure 13 presents the time histories
of the midpoint position (xm , ym) and the fluid force acting on the inverted ring under
various γ values. At γ = 0.02, the inverted ring remains in the DO mode, characterised
by small-amplitude, periodic motion and fluid force. As γ increases to 0.1, the ring stores
more elastic energy due to its higher bending rigidity. This enhanced energy storage allows
the ring’s elastic restoring forces to more effectively counteract the fluid forces induced
by vortex shedding, triggering the transition to the TO mode. This transition highlights
the critical role of bending rigidity in governing the dynamic response of the flexible
ring and its mode selection under varying flow conditions. In addition, the TO motion
becomes aperiodic at γ = 0.1. When γ reaches 0.5, the inverted ring enters the lock-in
regime, exhibiting large-amplitude, regular motion with a high oscillation frequency; this
behaviour distinctly differs from that observed at γ = 0.1. A high-frequency vibration in
xm is evident, manifesting as a shaking motion in the ring during TO. In addition, the fluid
force increases substantially compared with the values at γ = 0.02 and 0.1, accompanied
by a high-frequency component likely attributable to the vibrations in the x-direction. The
distinctive behaviour observed at γ = 0.5 might be associated with the resonance of the
inverted ring.

Here, we analyse the degree of deformation and the variation in elastic energy, both
of which are directly linked to energy-harvesting performance. Figure 14 illustrates
the average variation of curvature (K

′
) and elastic energy (E

′
s) for both inverted and

conventional ring functions of γ . Here, K
′

is defined as K
′ = K − K min , where K =∫ L

0 K (s, t)ds represents the deflection during the ring’s motion. The time-averaged elastic
energy E

′
s is defined as E

′
s = Es − Es min , indicating the elastic variation in the ring’s

motion. Both K
′

and E
′
s of the inverted ring remain low in the DO mode because the

oscillation amplitudes are small (figure 10). When the motion transitions to the TO mode,
both K

′
and E

′
s increase, with E

′
s exhibiting a higher rate of increase than K

′
, which we

attribute to the influence of γ on E
′
s (as shown in (2.21)). Both K

′
and E

′
s reach their

maximum values at γ = 0.5, indicating resonance. Notably, the oscillation amplitude Ay

peaks at γ = 0.2, which is slightly lower than the γ corresponding to the peak of K
′
,
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Figure 14. Average variation of (a) curvature (K
′
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s ) for inverted and conventional

rings as a function of γ (ε = 0.65).

suggesting that oscillation amplitude does not accurately reflect the intensity of motion.
After the inverted ring exits the lock-in regime, both K

′
and E

′
s exhibit a sudden decrease.

Conversely, for the conventional ring, although Ay is relatively lower in the F mode than
in the TO mode of the inverted ring, the values of K

′
remain comparable. However, K

′
is

still lower than that of the TO mode because of the lower bending rigidity.
To assess the deflection and elastic energy distribution of the inverted ring, we examine

the local curvature variation 〈K 〉 and the time-averaged strain energy 〈Es〉 for different
values of γ (figure 15). The local curvature variation is defined as 〈K 〉 = Kmax − Kmin ,
indicating the amplitude of curvature variation during oscillation, which is directly related
to power generation. The time-averaged strain energy is defined as 〈Es〉 = (1/T )

∫ T
0 Esdt ,
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Figure 15. (a) Values of 〈K 〉 and (b) 〈Es〉 for an inverted ring as a function of s/L (ε = 0.65).

representing the elastic energy distribution of the mean shape. Most of the deflection
occurs near the clamped edge of the inverted ring in the DO mode (γ = 0.02), leading
to a concentration of elastic energy, making it ideal for attaching piezoelectric patches.
In addition, the curvature is asymmetric, with higher values observed toward the trailing
end of the ring, which is attributed to its deflected shape. The inverted ring shows similar
〈K 〉 values for γ = 0.2 and 0.5, both of which are in the TO mode. Although the γ = 0.2
exhibits a larger 〈K 〉, the value of 〈Es〉 at 0.5 is greater, reflecting the influence of greater
γ . Notably, the average elastic energy distribution differs from the curvature variation,
indicating that greater deformations in the mean shape do not necessarily correlate with
increased energy generation.

We examine the average power coefficient (cp) and its estimation using three
components (γ (K

′
fym )2) derived from the dimensional analysis (figure 16). The average

power coefficient is defined as cp = (1/LT )
∫ T

0

∫ L
0 cpdsdt . For comparison, results for

both transversely and streamwise-clamped buckled filaments are also included (Mao, Liu
& Sung 2024; Chen et al. 2025). The trend of γ (K

′
fym )2 closely resembles that of cp,

indicating that it serves as a good approximation for cp and validating our analysis in § 3.2.
The cp of the inverted ring in the DO mode is nearly negligible, which is attributable to
the low amplitude and bending rigidity of this mode. Upon transitioning from the DO
mode to the TO mode, the inverted ring exhibits an increase in oscillation amplitude,
although cp remains low because of the low values of γ and fym . When the inverted ring
enters the lock-in regime, cp increases sharply and maintains a high value throughout this
regime; this behaviour results from the large-amplitude and high-frequency oscillations
of the inverted ring. In addition, the high bending rigidity contributes to the elevated cp.
Once the inverted ring exits the lock-in regime, cp experiences a substantial decrease,
reflecting the reductions in K

′
and fym . By contrast, although the K

′
in the F mode of

a conventional ring is comparable to that in the TO mode, the lower bending rigidity
results in a consistently low cp. For the streamwise-clamped buckled filament, substantial
deflection occurs during its STO mode; however, low critical bending rigidity and low
frequency limit its cp. The transversely clamped buckled filament enhances the critical
bending rigidity and the oscillation frequency, leading to a higher cp compared with that of
the streamwise configuration. Ultimately, the TO mode of the inverted ring, characterised
by a large oscillation amplitude, high frequency and substantial critical bending rigidity,
achieves the highest cp, indicating significant potential for energy harvesting.

Finally, a direct comparison of oscillation behaviour and energy-harvesting performance
between the inverted ring and the inverted flag is essential. In the inverted flag, although
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Figure 16. (a) Values of γ (K
′
fym )2 and (b) the average power coefficient (cp) as a function of γ (0.65).
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Figure 17. (a) Variation of the average power coefficient (cp) as a function of γ , and (b) time evolution of the
power coefficient (cp) for the inverted ring and inverted flag.

some lock-in characteristics are present, the oscillation frequency continuously increases
with increasing bending rigidity or flow velocity (Ryu et al. 2015; Shoele & Mittal 2016;
Kim, Kang & Kim 2017). In contrast, the inverted ring closely follows classical VIV
behaviour, with its oscillation frequency locking near the natural frequency within the
lock-in regime. Notably, the inverted ring exhibits a distinct high-frequency vibration
within the lock-in region (figures 9 and 13), which is absent in the inverted flag.
This high-frequency component, driven by rapid vibrations and significant curvature
variations, enhances energy-harvesting efficiency. As shown in figure 17, the average
power coefficient (cp) of the inverted ring is 5–10 times higher than that of the inverted
flag under identical conditions. Although the power coefficient (cp) of the inverted flag
fluctuates with the flapping cycle, the inverted ring maintains stable high-frequency
components in cp, directly contributing to its superior performance.

3.4. Effects of eccentricity
The eccentricity of the initial shape influences the volume enclosed by the flexible
ring, thereby affecting its shape and motion. A high eccentricity suggests the ring is
closer to a circular shape, whereas a low eccentricity indicates a more slender, elongated
configuration. In this section, we examine the effect of eccentricity on the dynamic
behaviour and energy-harvesting performance of the clamped ring. The bending rigidity
is set to 0.5 for the inverted ring and 0.01 for the conventional ring, ensuring that the
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(a) ɛ = 0.65 (b) ɛ = 0.7 (c) ɛ = 0.88

ɛ = 0.65

TO TO TOγ = 0.5

ɛ = 0.7 ɛ = 0.88

Figure 18. Superposition of the instantaneous shapes of inverted rings under different ε (γ = 0.5).

inverted ring predominantly operates in the TO mode, whereas the conventional ring
remains in the F mode. Figure 18 illustrates the superposition of the instantaneous shapes
of the flexible ring under various eccentricities in the TO mode. When ε = 0.65, the ring’s
shape becomes increasingly flat, deviating from circularity. This alteration reduces the
constraints imposed by inextensibility and volume conservation, resulting in vigorous
motion. As ε increases to 0.7, the oscillation amplitude decreases slightly while still
maintaining a large value. The rationale for initially selecting ε = 0.65 is now being
revisited. At ε = 0.88, the oscillation amplitude further diminishes, indicating small-
amplitude oscillations. Finally, at ε = 1, which corresponds to a perfect circle, the ring
remains steady because of the limitations imposed by the inextensibility condition, mass
conservation and clamped edges.

To further investigate the effect of ε on the dynamics of the clamped ring, we examine
the oscillation amplitude and frequency as functions of ε (figure 19). At ε = 0.2, the
inverted ring operates in the DO mode, characterised by low amplitude and high frequency.
As ε increases to 0.25, the inverted ring transitions to the TO mode, resulting in a
substantial increase in Ay . However, this larger amplitude is achieved at the cost of a
reduced operational range for the TO mode, indicating that activation becomes more
challenging at higher ε (figure 6). When ε reaches 0.4, the ring enters the lock-in regime,
where the oscillation frequency matches the vortex shedding frequency. As ε continues
to increase, the oscillation amplitude decreases because of increased volume restrictions.
When ε reaches 1, the amplitude decreases to zero, indicating a transition to the E mode.
By contrast, the conventional clamped ring exhibits large-amplitude motion at ε = 0.2 and
does not display a DO mode, differing from the inverted configuration. Like the inverted
ring, the conventional ring exhibits a decrease in oscillation amplitude with increasing ε.
In summary, ε substantially affects the oscillation intensity and the presence of the TO
mode in the inverted ring, where higher values favour the TO mode while suppressing
oscillation intensity.

To investigate the transition from the TO mode to the DO mode as ε varies, we display
the vorticity contours alongside the time history of the midpoint displacement and fluid
force in figure 20. At ε = 0.5, the ring remains in the TO mode, characterised by a 2S
wake pattern. A high-frequency component in xm suggests streamwise shaking of the
ring during TO motion, likely caused by high-frequency variations in the streamwise
fluid force F f x . As ε decreases to 0.4, the ring becomes flatter, resulting in a higher
oscillation amplitude. The motion of the ring at ε = 0.4 appears more regular than that
at ε = 0.5. When ε further decreases to 0.2, the flatness of the ring increases, causing
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(a) Ay vs ɛ (b) fym vs ɛ
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Figure 19. (a) Values of Ay and (b) fym for inverted and conventional rings as a function of ε(γ = 0.5 for
inverted and γ = 0.01 for conventional).
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Figure 20. (a) Instantaneous contours of ωz and time histories of (b) the midpoint displacement and (c) fluid
force for an inverted ring under ε = 0.5, 0.4, 0.2 (γ = 0.5).

a transition to the DO mode. The DO mode at ε = 0.2 resembles the flapping motion
observed in transversely clamped filaments (Kwon et al. 1992; Lee et al. 2017, 2018;
Wang et al. 2020). The primary mechanism behind the disappearance of the TO mode
at lower ε is the reduction in the transverse elastic restoring force. As ε decreases, the ring
flattens and tilts further downstream, which redirects a larger portion of its elastic force to
counteract the streamwise fluid forces. This reallocation leaves insufficient restoring force
in the transverse direction to return the ring to its centred position, thus preventing the
exhibition of the TO mode.

1013 A6-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
24

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10244


Z. Chen, Y. Liu and H.J. Sung

(a) K ′ vs 
–

(b) Es
′ vs 

–

K ′– Es
′–

10
DO DOTO TO

5

0 0.5 1.0 0

0.2

0.4

0.5 1.0

Conventional Conventional

Inverted

Inverted

Figure 21. (a) Average variation of curvature (K
′
) and (b) elastic energy (E

′
s ) for inverted and conventional

rings as a function of ε (γ = 0.5 for inverted and γ = 0.01 for conventional).

We here focus on the deformation and elastic energy of the inverted and conventional
rings under various ε (figure 21). The behaviour of K

′
follows a trend similar to Ay as

ε varies. Specifically, K
′

increases as ε decreases, reaching a critical point where the
inverted ring shifts to the DO mode, causing a sharp decrease in K

′
. The trend of E

′
s

generally follows that of Ay , with one key distinction: E
′
s peaks at ε = 0.4, whereas

both K
′

and Ay peak at ε = 0.25. These results suggest that, as the ring flattens further,
large deformations become increasingly difficult. Although the inverted ring achieves the
highest E

′
s under ε = 0.4, the narrow range of the TO mode limits its suitability for energy

harvesting. For the conventional ring, deformation continues to increase as ε decreases,
with K

′
reaching a substantial value at ε = 0.2. Although the K

′
of the conventional ring

is comparable to that of the inverted ring, its notably lower bending rigidity results in
negligible E

′
s relative to the inverted configuration.

Next, we examine 〈K 〉 and 〈Es〉 as functions of s/L under various ε to understand
the curvature and average deformation across each segment of the ring (figure 22).
The inverted ring maintains the TO mode under ε = 0.4 and 0.5, resulting in similar
distributions of 〈K 〉 and 〈Es〉. However, 〈K 〉 and 〈Es〉 are generally larger at ε = 0.4 than
at ε = 0.5, indicating greater deformation at ε = 0.4, as also shown in figure 20. As ε

decreases to 0.2, the ring shifts to DO mode. Notably, 〈K 〉 in the DO mode is lower than
in the TO mode, whereas 〈Es〉 is higher. This difference indicates that, although the DO
mode displays greater average deformation because its deflected shape, the intensity of
motion is relatively low. In addition, the ring’s deflected shape results in an asymmetric
distribution of 〈Es〉.

We here examine the influence of ε on the power coefficient estimate, γ (K
′
fym )2,

and the average power coefficient, cp in figure 23. At ε = 1, the inverted ring remains
stationary because of volume and length constraints, leading to cp = 0. As ε increases,
these constraints relax, allowing for increased dynamic motion and an increase in cp.
For ε > 0.7, cp remains low, which is attributable to small oscillation amplitudes and a
reduced K

′
. When ε reaches 0.65, the oscillation amplitude becomes sufficiently large

to increase cp. Within the range 0.34 ≤ ε ≤0.65, cp remains high, indicating optimal
energy-harvesting performance. However, γ (K

′
fym )2 underestimates cp in this range,

likely because K
′

overestimates ring deflection. As the ring shifts from the TO mode to
the DO mode, cp decreases sharply, corresponding to a reduction in K

′
. Considering both
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Figure 22. (a) Values of 〈K 〉 and (b) 〈Es〉 as functions of s/L for an inverted ring under different ε (γ = 0.5).
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Figure 23. (a) Values of γ (K
′
fym )2 and (b) average power coefficient (cp) for inverted and conventional

rings as a function of ε (γ = 0.5 for inverted and γ = 0.01 for conventional).

cp and the TO mode range, the optimal ε for energy harvesting is 0.65. In comparison, the
conventional ring’s low bending rigidity results in consistently low cp values across all ε,
rendering it less effective for energy harvesting than the inverted configuration.

4. Conclusions
We investigated the flow-induced oscillations of a clamped flexible ring using the penalty
IB method, examining both inverted and conventional configurations. The effects of
bending rigidity and eccentricity on the ring’s dynamics were systematically analysed.
Our study identified four distinct oscillation modes as these parameters were varied: the
F mode, DO mode, TO mode and E mode. Each mode exhibited a 2S wake pattern.
In the inverted configuration, the ring maintained the DO mode at low γ values,
characterised by a deflected shape. As γ increased, the ring transitioned to the TO
mode, which displayed large-amplitude oscillations and a lock-in phenomenon, indicating
that the TO mode exhibits VIVs. Within the lock-in regime, the oscillation amplitude
and frequency increased, leading to the emergence of high-frequency components in
the fluid forces. Driven by rapid vibrations and significant curvature variations, these
components enhanced the energy-harvesting power coefficient through the combined
effects of large bending rigidity, substantial deflection and high frequency. Beyond the
lock-in regime, increasing γ caused a reduction in oscillation intensity and the ring
approached steady-state behaviour, resulting in a decrease in the power coefficient.
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Conversely, the conventional ring sustained the F mode at low γ values. Although the
oscillation amplitude and average deformation in the F mode were comparable to those
in the TO mode, the conventional ring exhibited a lower power coefficient because of its
reduced critical bending rigidity. The initial shape’s eccentricity strongly influenced the
volume enclosed by the flexible ring, thereby affecting its shape and motion. In the inverted
ring, the TO oscillations were more restricted at high eccentricities, leading to reduced
oscillation intensity because of the increased limitations. As eccentricity decreased,
oscillation intensity increased, enhancing the power coefficient. However, the γ range for
the TO mode activation narrowed with increasing oscillation intensity. At an eccentricity
of 0.2, the inverted ring could not activate the TO mode because of its slender shape,
remaining in the DO mode across all γ values. In the conventional ring, the oscillation
intensity increased as eccentricity decreased. At ε = 0.2, the ring exhibited substantial
deflection during flapping, although its power coefficient was limited by low γ values. For
comparison, we also assessed the energy-harvesting performance of transversely clamped
and streamwise-clamped buckled filaments. Among these configurations, the inverted-
clamped ring demonstrated the highest energy-harvesting efficiency. The best performance
occurred at ε = 0.65, achieving a balance between a high power coefficient and a broad TO
mode activity range. Our investigation of basic configurations for a clamped ring provides
key insights into advanced applications of flow-induced oscillations in energy harvesting.
This technology holds significant potential for capturing wind and water energy, providing
a continuous, low-power solution for remote or underwater devices.
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