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ON THE SOLVABILITY OF SEMILINEAR DIFFERENTIAL
EQUATIONS AT RESONANCE

CHUNG-CHENG KUO
Department of Mathematics, Fu Jen University, Taipei, Taiwan, Republic of China

(Received 22 December 1997)

Abstract In this paper we use the Leray-Schauder continuation method to study the existence of
solutions for semilinear differential equations Lu + g(z,u) = h, in which the linear operator L on L?(£2)
may be non-self-adjoint, the L?(£2)-function h belongs to N-1(L), the nonlinear term g(z,u) € O(|u|*)
as |u| = oo for some 0 € a < 1 and satisfies
[ s@p@i Pt [ g@h@I >0,
v(z)>0 v(z)<0

forallv € N(L) — {0}, where 8 € R, —a < 8 < 1and 20 + 8 < 1, g (z) = liminfu— o0 (9(z, w)u/|ul! =B)
and gj (z) = lim infy— — 0o (9(z, w)u/|u|1 7).
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1. Introduction

Let 2 CRM (N >1) be a bounded domain and H = L%(§2) with the inner product
(), (u,v)g = [, uv. We consider the following abstract differential equation

Lu+ g(z,u) = h, (1.1)

where h € H is given, L : D(L) C H — H is a closed, densely defined linear operator
satisfying the following conditions:

(Ly) the null space N(L) of L is finite-dimensional;

(L2) the range R(L) of L is closed,;

(Ls) R(L) = N*(L);

(L4) the right inverse L= : R(L) = R(L) of L is a compact linear operator;

and g: 2 x R = R is a Caratheodory function satisfying
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(G,) there exist constants a 2 0,0 < @ < 1, and b € H, b > 0 such that for a.e. z € 2
and all u € R
lg(z, u)| < alu|® + b(z);
(G2) there exist constants |3] < 1, 7o > 0 and ¢ € L¥ (18 ((2) such that for a.e. z € 2

and |u| = 7o
9(z, wyu > c(@)luf'~*;

(Gs)
/ 6F @@ dz + / g5 @lw(z)'? dz > 0,
w(z)>0 w(z)<0

for all w € N(L) — {0};

where gg(x) = liminfy,y 00 (g(z, w)u/|ul'~?) and 95 (z) = lim infy,, — oo (9(x, w)u/|ult~#).
The solvability of (1.1) has been extensively studied if L (or —L) = A + A, A may be
a non-self-adjoint uniformly elliptic operator with the principal eigenvalue A and the
nonlinearity g may be assumed to grow superlinearly in u as |u| = oo (see [1,3,7,8,
11,13, 14]). When A is self-adjoint with a higher eigenvalue A, and the nonlinearity
g has at most linear growth in u as |u| = oo, existence theorems of (1.1) are proved
in [2,4-6,12,15,186] if h satisfies the following Landesman-Lazer condition:

/Q h(zyo(z) dz < / @@l + / _ %5 @@l d, (12)

for each v € N(L) — {0}.

The purpose of this paper to give several abstract existence theorems of (1.1) by using
the Leray-Schauder continuation method (see [17]) when g(z,u) € O(|u|'/?) as |u| = oo,
h € N1(L) and (G3) may be satisfied with 3 > 0 and 2a + 3 < 1, in which we improve
the main results of Ha [9], Hess [10] and Robinson and Landesman [18], where they
assume that g is a bounded function that satisfies (G2) and (G3) withe=r;=0,3=1
and h € N1(L). Our results can be applied to many well-known differential operators.
For example, let 2 be a bounded open set in RV (N > 1), and A, be the nth eigenvalue
of the Laplacian —A : W22(2) N HA(2) — L2(£2). We first consider the existence of
solutions of the problem

" {:L-(Au +Anu) + g(z,u) =honae z=%€ N =0, (1.3)

u =0 on 912,
where L : D(L) C L?(2) = L?(2) is defined by
D(L) ={u€ L?(2) | Au€ L?(2) and u = 0 on 2} and L(u) = £(Au + Iu).
In order, we consider the existence of time-periodic solutions of problems

(i) {:t[ut — Au— Mu] + g(z,u) = hon ae. z = (&,t) € 2 =0 x (—m,7), (1.4)

u=0on 8 x R,
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where L : D(L) C L%*(2) — L%(£2) is defined by
D(L) = {u € L*(R) | Dyu, Au € L?(2) and u = 0 on 82 x R}
and L{u) = £(us — Au — \yu); and
(i) {:i:[utt — Au+ vuy — Au) + g(z,u) = hon a.e. £ = (Z,t) € 2 = 2 x (—7,7),

u=0o0ndN x R,
(1.5)

where v # 0, L : D(L) C L%(2) — L?(£2) is defined by
D(L) = {u € L*(R) | Dyu, Dyu, Au € L*(22) and u = 0 on 82 x R}

and L(u) = tuy — Au + vuy — Aqul.

2. Existence theorems
In this section we shall always assume that the linear operator L is closed, densely defined
and satisfies (L1)—(L4).

Theorem 2.1. Let g : 2 X R — R be a Caratheodory function satisfying (G1) and
(G3) with 20+ 8 < 1. Then, for each h € N+ (L), the problem (1.1) is solvable, provided
that (G3) holds.

Proof. Let P and @ be the orthogonal projections of H on N(L) and R(L), respec-
tively, and let f : H — H be a continuous function defined by

u, if [Jull <1,
flu) = { ' flll
uf||lull, if lul > 1.

We consider the following semilinear equations
Lu+ (1 - t)f(Pu) + tg(z,u) = th, (2.1)

for 0 < t < 1. Then the problem (2.1) has only a trivial solution when ¢ = 0, and becomes
the original problem (1.1) when ¢ = 1. To apply the Leray—Schauder continuation method,
it suffices to show that there exists Ry > 0 such that ||u|| < Ry for each 0 < ¢t < 1 and
for all possible solutions u to (2.1). Now let ©« be a possible solution of (2.1) for some
0 <t <1 By (L) we have

1Qull = IL7H{(1 — ) f(Pu) + tg(z,u) — th}|
SIETHQ = 8 f(Pu) + tg(z, u) — th
SNL7HI(Q = ¢) + allul|* + 1] + |21
< Cy1 + Co|lul®, (2.2)
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for some constants Cp,C2 = 0 independent of . To show that solutions to (2.1) for
0 <t <1 have an a priori bound in H, we argue by contradiction, and suppose that
there exists a sequence {u,} in H and a corresponding sequence {t,} in (0,1) such that
U, is a solution to (2.1) with ¢t = ¢, and |ju,|| = n for all n. Let v, = u,/||un|, then
lunll = 1, and, by (2.2), we have, for each n € N,

(C1 + Collunl*)

l[unll

I1Quall < (2.3)

Since a < 1, the right-hand side of (2.3) tends to zero in R as n — oo, and, since
{Pv,} is bounded in H and N(L) is of finite dimension, we may assume, without loss
of generality, that {v,} is bounded by an L?(2)-function independent of n, converges to
w in H, and is pointwise convergent to w on a.e. z € £2. It follows that u,(z) — oo for
ae. z € 2 ={ye 2| w(y) >0}, u(z) - —co for a.e. z € 2, = {y € 2| w(y) <0},
and w # 0 because |lv,|| = 1 for all n € N. Taking the inner product of (2.1) in H when
u = u, and t = ¢, with Pu,, we obtain from (L3) that

tn/g(x,un)Pun £(Q —tn)/f(Pun)Pun+tn/g(x,un)Pun
=tn/hPun. (2.4)

It is clear from the assumption of h € N+ (L) that the right-hand side of the last equality
of (2.4) is equal to zero. From (G}), (2.2) and the assumption of 2a + 8 < 1 that there
exist constants C3,Cs > 0 independent of n such that

| fg(myun)Qunl < f(alunia + b)|Qun|
l|un|*=# l|unll*=P
< (Callun||® + C4)(C1 + Cof|ua®)
= l—ﬂ
[l

— 0 asn — oo. (2.5)

By (Gl)) we ha'vea for 0 7é |un(x)| < 1o,

l9(@, un)unl, 11 o 192, tn)| [un]
n =

I llunl*~#
[ar§ + b(x)]ro
< 1o + XT)ITo. 2.6
Jual8 (29
and, by (G2) and the assumption of g < 1, we also have for |u,(z)| > 7o

g{ZT, Un )U - -

L2l o, ['8 > clo)fonl' . (27)
n

It follows from (2.6), (2.7) and the fact that |u,| is pointwise bounded by an L?(2)-
function independent of n, that we have (g(z,un)un/|un|'?)|v.|'~# is bounded from
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below by an L'(§2)-function independent of n. Using (2.3), (2.4), (2.6), (2.7), the fact
that t,, # 0 and h € N+ (L), we also have

9@, Un)un, 11 g 9(z,un)n, 1 p
A,‘(z)>0 ,unll_ﬂ |'U'n.| + e () <0 ,Un'l—'@ I'Unl
w(zx)#0

w(z)#0

_ g(I,Un)Un 1-8
- 1-8 Ivnl
v,,(z);éO I’U,nl
w(z)#0

_ 9(T, un)un

_ﬁn(z);éo PRI
w(z)#0
_/ g(x:un)unl |1 B8 _ / g(mvun)univ |1_g
= 9T, Un)Un Jln
un@)#0  [Unl'™? Um0 fun|t=P
1 9(Z, un)un ,  1-p
= g 9w = [ e e
w(z)=0
< — [ o) Qun — 9, un)Un 115
llunllt=# TRET D Jua@#0 un 1R T
w(z)=0

1 arg +b
< — 1-8 —0 ' 1|
"unlll_ﬂ ‘/g(.’E,Un)Q’U,n + /un(ﬂ':)'>"‘0 |C| |vn| + _/)<|'“'n(13)|<7'0 [”un”l*ﬁ]
w(z)=0 w(z)=0

(2.8)

|'=#

Clearly, from (2.5), the assumption of 2a + 8 < 1, the fact of v,(z) — 0 for ae.
z € 29 ={y € 2| w(y) =0} and the Lebesgue bounded convergence theorem that the
right-hand side of the last inequality of (2.8) is convergent to zero as n approaches oo.
Applying Fatou’s Lemma to the left-hand side of the first equality of (2.8), we have

[ g@weiter [ ge@! e

w(z)>0 w(z)<0
= [ st @@l xaz o+ [ g @@ Pxg b
- [ @@ Pt [ @M@ g
w(z)#0 w(z)#0

< / lim inf [g (&, un(2)Jun() Ivn(x)ll“’xﬂzfn] dz

(@)#0 "o [t ()1

+/ lim inf [g(z, Un(@))un(z) ivn(z)ll_ﬂxm_"] dz

@=0 = | |un(e)|'P

< liminf / 9(&, un(@))un(z) lvn (2)* Px s d
w(z)#0 "

whos fun (@) 7

. 9(z, un () )un () -
+ it w(z)7#0 Iunn(x)ll—g [on ()] ﬁXQJn dz
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g9(z, un(x))un(z) |vn(x)|1—ﬁ dz

= liminf [ oo [un(@) =P
w(z)#0
L. g(:r,un(:z:))un(m) 1-8
+1Ln_’,£f/;n(z)<o o (@) [1=F lvn ()] " dz
w(x)#0
. 9(z, un(z))un(z) 1-8
<
= l%%ﬁgf[/un(zpo lun () [1-P lon(2)]""" dz
w(z)#0
9(Z, un(x))un(z) 1-8
+ oo e loa(a)[' d
w(z)#0
<0,
which contradicts the inequality (G3), and the proof is complete. O

By modifying slightly the proof of Theorem 2.1, we can obtain the following theorems
in which 2a + 8 may be equal to 1.

Theorem 2.2. Let g : 2 x R = R be a Caratheodory function satisfying (G1), (G2)
with 200+ 8 = 1 and 3 < 1. Then the problem (1.1) is solvable for each h € N*(L),
provided that (G3) holds and for a.e. z € 2

gz, u) _

lu|—o00 [’LL[Q

0. (2.9)

Proof. In proving Theorem 2.1, the condition 200 + 3 < 1 is used only to show
that the sequence {(1/||lun||*~?) [ g(z,un)Qun} is convergent to zero in R. Thus we
can proceed exactly the same way as in the proof of Theorem 2.1, and it suffices to
prove that {(1/[u.|'=?) [ 9(z,un)Qu,} is convergent to zero. By the assumption of
(G1), the sequence {Lu,/||u,]|*} is bounded in H. Using the compactness of L™! that
{Qun/|lun|*} has a subsequence that is convergent in H. We may assume without loss of
generality that {Qu,/||u.||®} is bounded by an L?(£2)-function independent of n. Since
2a+ 4 =1 and § < 1, we have a > 0. It follows from (2.9), the fact that u,(z) — oo
for a.e. z € 27, un(x) > —co for a.e. x € £, and the Lebesgue bounded convergence
theorem that we have

L
llun|I~#

< . ( Qun| + ( Quan|
h “un”l-‘ﬁ ]U-n(z)|STo |g m,un) 'U.n‘ |un($)|>7'o |g myun) Un

w(z)50
+ /“"51;'3;0 (2, )Qu |
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1 lg(, Un)| |Qun']

< L lwQul [ ] o]
lunll' =2 Jiu..(z)1<ro me '";%:350’0 lual® T Jlunlle

Ig(a:,'u.n)l a |Qun|
*/unmizom e [ TP

w(z)=
1 |g(zaun)|lv Ia] |Qun|

< —
S TanF7 lar, || |Qunll + /u,,(z)l>ro[ T [t ][
w(z)#0

Ig(z,un)l @ IQU’""
+[un(z)|>m | a7
w(z)=0

—0asn— oo (2.10)
O

Theorem 2.3. Let g : £2 x R — R be a Caratheodory function satisfying (G1), (G2)
with 2o + 8 < 1. Then the problem (1.1) is solvable for each h € N+ (L), provided that
for each w € N(L) \ {0},

./w(z)>o 95 @hs(@)"* dz + / 95 (@) w(z)|" P dz = co. (2.11)

w(z)<0

Proof. By the assumption of 2a + 8 < 1, we find that the left-hand side of the
first inequality of (2.5) is bounded by a constant independent of n and (2.8) is satisfied.
Clearly, both

ar§ + b(zx)

1-8 hatll L S’
Jowiaors DN @ P e ana [ EEE ag
w(z)=0 w(z)=0

are bounded by a constant independent of n. Applying Fatou’s Lemma to the left-hand
side of the first equality of (2.8), we have

/ 63 (@) (@)1 dz + / 05 @hw(z)[** dz
w(z)>0 w(z)<0

1-8 ar§ +b
+ /un<z)|>ro lef a7 + /J<|un(z)|<ro [unlT=7
w(z)=0 w(z)=0

. 1
< llmSup[W’/g(l',un)Qun
n

n—o0
< 00,
which contradicts the condition (2.11), and the proof is complete. O

If the null space of L enjoys the unique continuation property, then the assumption of
B < 1in Theorem 2.2 is superfluous, and the following theorem can be proved.

Theorem 2.4. Under assumptions of Theorem 2.3, the problem (1.1) is solvable for
each h € N+ (L), provided that N(L) has the unique continuation property and both
(2.9) and (G3) hold.
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Proof. It suffices to prove that the theorem is true when # =1 and a = 0, and it
needs only to be shown that

/g(z,un)Qun =0, asn— 0. (2.12)

Indeed, the unique continuation property of N(L) implies that, for a.e. z € £2, ju,(z)| —
0o as n — 0. It follows from this, (2.9) and the boundedness of {Qu,} in H that (2.12)
is satisfied. Hence the proof is complete. O

If h = 0in L?(2) and (Lu,u)y > 0 for all u € D(L), then the condition (2.9) in
Theorem 2.4 is superfluous, and the following theorem can be obtained.

Theorem 2.5. Under the assumptions of Theorem 2.3. Assume that (Lu,u)y > 0 for
all u € D(L), then the problem (1.1) is solvable, provided that h = 0 in L%(12), N(L)
has the unique continuation property and (G3) is satisfied.

Proof. Taking the inner product of (2.1) in H when v = u,, and t = ¢, with u,, we
have

tn/g(a:, Up )ty € (Ltn,un)g + (1 — tn)/f(Pun)Pun + tn/g(x, U ),

=tn/hun=0.

Combining this with (G3), we obtain

r)<0

0< / 97 (2)|w()'~* dz + / 95 (@)w(z)'~* dz
w(z)>0 w(z)

n—00

o 1
< liminf Tuni=P /g(z, Up)Un
T
<0,
which is a contradiction. O

Ifa=0,8=1and dim N(L) = 1, then the unique continuation property for N(L) in
Theorem 2.4 can be omitted, and the following theorem can be proved.

Theorem 2.6. Let g : 2 x R — R be a Caratheodory function satisfying (G1), (G2)
with @ = 0 and 8 = 1. Assume that dim N(L) = 1, then, for each h € N*(L), the
problem (1.1) is solvable, provided that both (G3) and (2.9) hold.

Proof. Let w € N(L) \ {0} be obtained as in the proof of Theorem 2.1, and let
2, = {z|w(z) # 0}. Then

/ g9(z, un)Pu, = /g(z,un)Pun < /hPun =0.

w

https://doi.org/10.1017/50013091500020721 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500020721

Semilinear differential equations at resonance 111

Therefore, if integrals in (2.4) and (2.5) are taken over §2,, with & = 0 and 8 = 1, then
we have, analogously,

0< / gt (z)dz +/ 97 (x)dz
w(z)>0 w(z)<0

< lim inf 9(Z, un )un,

n—o00 0
w

< liminf 9(z, un)Qun
n—00 Rw

=0, (2.13)
which has arrived at a contradiction. Hence the proof is complete. O

Remark 2.7. Under the special case a =0, 8 =1 and ¢(z) 2 ¢o > 0 for a.e. z € 2
and a fixed positive number ¢y. Conclusions of Theorems 2.4 and 2.6 have been obtained
by Ha [9] and Robinson and Landesman [18].

Remark 2.8. By slightly modifying the proofs of Theorems 2.1-2.6. The condition
h € N*+(L) can be replaced by either (1.2) if 8 = 0; or h € L?(£2) is arbitrary and (Gs)
is satisfied if —a < 8 < 0.

Finally, we give an example to show that problems (1.3)-(1.5) are solvable when the
nonlinearity g(z,u) has sublinear growth in » as |u| = oo and (1.2) may be excluded.
Let ,B€R,0< B, a<1and 2a+ B < 1, let ¢c,d € L*(£2) and let a € L=(2), a > 0.

We define
c(z)u .
' TF [’ ifu>0,
91(z,u) = a(z)(sgnu)|sinullu|®, gz, u) =
_d@u <o
T+ s DUSD

and g(z,u) = g1(z,u) +g2(z, u). Then |g(z, u)| < [lallooul*+|c(z)| +d(z)|, g5 (x) = c(z),
95 (z) = d(z), and liminf,_,o g(z,u) = limsup,_, o, 9(z,u) = 0 for § > 0. Hence one
of problems (1.3)—(1.5) is solvable, provided that

/ c(@)|v(z)|* P dx + / d(z)|v(z)|' P dz > / h(z)v(z)dz =0
v(z)>0 v(z)<0 ]

for all v € N(L) — {0}, and either (i) 2ac + 8 < 1; or (ii) (2.9) is satisfied and 2a+ 8 =1,
holds, where N(L) = N(A + Ay,).
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