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1. Introduction

By a partial endomorphism of a group G we mean a homomorphic mapping
u of a subgroup A of G onto a subgroup B of G. If u is defined on the whole
of G then it is called a total endomorphism. We call a partial endomorphism
totally extendable (or extendable) if there exists a supergroup G*=2G with a
total endomorphism u* which extends p in the sense that gu* = gu, whenever
the right-hand side is defined (3).

In a previous paper (2), we derived necessary and sufficient conditions for a
well-ordered set of partial endomorphisms u(x) of a group G to be extendable
to a set of total endomorphisms u*(x) of a supergroup G* such that each
p*(a) acts as an isomorphism on G*[u*()]"®, where n(a) is a given positive
integer. These conditions are in fact a generalisation of the conditions in case
of a single extension (1).

In this work sufficient conditions are derived for the required extension,
with the same condition imposed on u*(x), to be established in case u(a) are
partial endomorphisms of certain types of subgroups. In particular sufficient
conditions for the extension of partial endomorphisms of E-subgroups are
given; where the subgroup H of the group G is called an E-subgroup if every
normal subgroup of H is the intersection with H of a normal subgroup of G.
This is equivalent to the fact that if Nisa normal subgroup of H then N nH = N,
where N€ is the normal closure of N in G.

We conclude by deriving necessary and sufficient conditions for a well-
ordered set of partial endomorphisms of G to be all extendable to one and the
same total endomorphism 6* of a supergroup G* such that 8* is an isomorphism
on G*(0*)" for some positive integer m.

2. Extension in a special case

We shall assume that G is a given group and pu(a), where a ranges over a
well-ordered set Z, is a partial endomorphism of G mapping the subgroup
A(x)=G onto the subgroup B(x)=G. In (2) it was proved that the necessary
and sufficient conditions for the existence of G*2 G with total endomorphisms
u*(«) which extend u(a) such that for every a, u*(«) acts as an isomorphism on
G*[1*(@)]"®, where n(x) is a positive integer are that if Q is the semigroup
freely generated by the u(), then for every w € Q there exists a normal subgroup
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L(w) of G such that

Liw)cL(wow,) forall w, 0, € Q, .ccvevrenrnininnll. 2.1

L{{u(e)}" @] = LI{u@)}"@* ], e, 2.2)
for any a € £ and any positive integer i,

L()]nA(a) is the kernel of u(er), ..oevvvvvnvninniniins (2.3)

[L{g(@)w}nA(@)]u(e) = L(w)nB(e), ..ovvevenvinennens 2.4)

for everyae X and w e Q.

Theorem 1. With the presious notation, it is sufficient for the required ex-
tension to be established that if, for every a € X, K[u(a)] is the kernel of u(et) then

KO [u(0)]nA@) = KU@)], cveveverenene. e (2.5

KO[pu(a)InB(B) = {€} ceeveevreeinaneeiieeiiienann, 2.6)
for every a, Be X.

Proof. For every w € Q, put
Lp(@)w] = Llp@)] = K°[u(@)].
If o = p(2)w’ and w, are any words in Q then
L(w) = L{wo,) = K[u()]
which simultaneously proves (2.1) and (2.2). Also
L{p@)]nA(@) = K°[p@)]nA4(@) = Klu()]

is the kernel of u(x), which proves (2.3).
To prove (2.4) we note that if © = u(y)w’ is any word in Q then

[L{m(@)w}nA(e))u(e) = [L{p()}nA(0)]u(e)
= K@) = e,
and L(w)nB(a) = Llu(y)w’InB(ex)
= K°[umInB(@)
= e, by (2.6).

This completes the proof of Theorem 1.

3. Extension in case of E-subgroups
Theorem 2. Let A(x) be E-subgroups of G. If we define K{u(«)] = eu™*(a)

and inductively
K[p(@)o] = K@) He) oeeereneeeeneneennnennnn. 3.DH

i.e. the greatest subgroup of A(x) mapped into K%(w) by p(a), then for the required
extension to be established it is sufficient that

K[u())™ are normal in G, i.e. ...cocovvvevnininnnn. 3.2
Kp@™*! = K[p(@)]"e " (2); for m =1, 2, ..., whenever x[u()]"®*! is

defined and is equal to e then
X[@]"® = €. e (3.3)
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Proof. We can as in (3) prove that

¥ (7)) 1= (1 ) TP .9
for any w, o’ € Q.
Now we prove that
K@@+ = K[u(@)]™@. ceveeeeeeeieireveieeeennns 3.5
Let x € K[p@)]"®*! = K[p(@)]"®p~ (),
thus xp(a) € K{p(@)"®.
Repeating we arrive at
x[u(@)1" € K[u(@)],

and hence
*u(@I@*t = e.

This implies by (3.3) that
x[u(@)]"® = e,

which in turn gives

x € K[u(a)]"™.
Thus Kp@)]"®* ' < K[u(@)]"®;
but Ku(@)]"® < K[u(@)]"®+1, from (3.4).

These two together prove (3.5).
From (3.2) and (3.5) we get

K@)l *? = Ku@I"®* '@
= K@ u'@)

= Ku@r®*!
= KIu(]"®.
More generally we have
Ku(@)]"®*i = K[u()]"® for any integer i>0. ............... 3.6)
Now put
L(@) = KO(@). - eeveeeiiieiriiirenieeeiennnnens 3.7
Thus from (3.4) and (3.6) we get
L{w)c L(ww")

for any w, @’ € Q; and )
Lp@]"®*" = L{u(@)]"®,
for any « € X and any integer i>0. This proves (2.1) and (2.2). From (3.7) and
the fact that A(x) are E-subgroups it follows immediately that
Llu(@)1nA(x) = K[p(x)] is the kernel of u(x), which proves (2.3).

The proof that (2.4) also holds is the same as in (3). This completes the
proof of Theorem 2.

Special case. If the group G is abelian then every subgroup of G is an

E-subgroup and condition (3.2) holds automatically. Thus we have the
following result.
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Corollary. If G is abelian then it is sufficient for the required extension to
be established that (3.3) holds.

4. Extending all () to a single endomorphism

Theorem 3. For all u(e), o € X to be extendable to one and the same total
endomorphism 0* of a group G*22G such that 0% is an isomorphism on G*(0*)™,
for some positive integer m, it is necessary and sufficient that if we define 6 to
map any word w(a,) € {A(a)} onto w(a.u(t)) € {B(«)} where a, € A(t), T ranges
over some finite set ICX, a ranges over T then

0 is a one-valued mapping of {A(x)} onto {B(e)} which is a homomorphism, (4.1)

there exists in G a sequence of normal subgroups
L€l S...CLy =Lty = i viveieieiin, 4.2)

such that
L,n{A(«)} is the kernel of 6,

[Lj+1n{A@}]0 = L;n{B(a)},
forj=1,2,..,m.

Proof. (i). To prove the necessity of (4.1) we assume that the extension is
already established, that is we assume the existence of G*2G and an endo-
morphism 0* which extends p(a) for every a € £ to G* such that 6* is an iso-
morphism on G*(0*)™.

For any g* € G*, g*0* is uniquely defined. In particular the map w(a,)0*
of any word w(a,) € {A(x)}=G* is uniquely defined. Since * extends u(c)
for every a € £ then

w(a)0* = wau()) = w(a)f
and thus the mapping 8 is one-valued.

Moreover since 0* extends 6 then for any two words w(a,), w(a,) € {A(a)}
we have

w(a,)w(a)]0 = [w(a,)w,(a)]0*
= [w(a,)10*[w,(a,)16*
= [w(a,)]0 . [wy(a,)10
which shows that 6 is a homomorphism.

The proof that (4.2) is necessary is the same as in (1).
(ii). To prove the sufficiency of the conditions we put

4; = {40}, B, = {B)}

Then 6 becomes a partial endomorphism of G which maps A4, onto B,. Thus
because of (4.2) we can extend 8 to a total endomorphism 6* of G*=G such
that 6* acts as an isomorphism on G*(0*)™. Since 0 extends u(x) for every
o € I, then so does 0%.

This completes the proof of Theorem 3.
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