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ABSTRACT

In this note we consider how to maximise the adjustment coefficient in the
case of proportional reinsurance. This complements some work of Waters
(1983), where it was shown that there is a unique retention level maximising
the adjustment coefficient. The advantage of our method is that only one implicit
equation has to be solved.
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1. INTRODUCTION

Application of control theory to non-life insurance problems has obtained
some attention recently. One of the problems considered was the minimisa-
tion of the ruin probability, see Hipp & Plum (2000), Hipp & Taksar (2000),
Schmidli (2001) and Schmidli (2002a). In these papers it is shown that the
value function fulfils the so-called Hamilton-Jacobi-Bellman equation. The
optimal strategy can be obtained from the solution to the Hamilton-Jacobi-Bell-
man equation. In Hipp & Schmidli (2002), see also Schmidli (2002b), it is shown
that the optimal strategies converge as the initial capital tends to infinity. The
asymptotic value can be found by maximising the adjustment coefficient.

Already Waters (1983) investigated the maximisation of the adjustment coef-
ficient. He considered a model with an embedded regenerative structure. The
reinsurance treaty was parametrised by a parameter b, and the corresponding
adjustment coefficient was denoted by R(b). Under quite mild conditions he
proved that b 7 R(b) is a unimodal function. Moreover, it was shown that
there is a unique b0 for which R(b0) = supbR(b).

Because a model only is an approximation to reality and the calculation of
the optimal strategy is quite complicated it seems reasonable to use a fixed strat-
egy instead of a dynamic one. It seems to be simpler just to calculate the asymp-
totic value of the optimal strategy than to solve the Hamilton-Jacobi-Bellman
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equation and then to calculate the optimal strategy. Moreover, the adjustment
coefficient is a stable measure for the risk.

The question how to calculate b0 and R(b0) was not considered in Waters
(1983). The problem is that the adjustment coefficient is given implicitly. A naive
way would be to calculate R(b) for different values of b. Because the function
R(b) is unimodal the area where b0 lies can be localised better and better. Alter-
natively, Newton’s method could be used to solve R�(b) = 0, but the second
derivative is quite complicated. The problem is that R(b) has to be found
numerically, for example by Newton’s method. This means that the naive
method is time consuming.

In this paper we consider proportional reinsurance. We show how to cal-
culate the maximal adjustment coefficient and the maximising parameter b0 in
an efficient way. We also prove that our method has a unique solution, and that
this solution really coincides with b0 and R(b0). The results had also been
obtained in the first author’s Master thesis Hald (2000). This note is organised
as follows. In Section 2 we consider the classical Cramér-Lundberg model.
We show that b0 and R(b0) can be obtained by solving a simple equation.
In the Sparre-Andersen model (Section 3) the equation to solve is a little bit
more complicated, but there is still one implicit equation to be solved. Finally,
in Section 4 we briefly discuss by way of two examples how more complicated
models can be treated by the same ideas.

2. THE CRAMÉR-LUNDBERG MODEL

Consider a model of the form

t i ,X u ct Y
i
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= + -
=
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where u is the initial capital, c is the (linear) premium rate, {Nt} is a Poisson
process with rate l, say, and {Yi} are the claim sizes, assumed to be iid. We
assume that {Nt} and {Yi} are independent. We denote by G (y) the distribu-
tion function of Yi, by m = � [Yi ] its mean value and by MY (r) = � [e rYi] its
moment generating function. The object of interest in ruin theory is the ruin
probability c(u) = � [inftXt < 0]. In order that c(u) ≠ 1 we have to assume the
net profit condition c > lm. For an introduction to the model see for instance
Rolski et al. (1999).

The function q(r) = l (MY (r) – 1) – cr is strictly convex. Because q(0) = 0
and q�(0) = lm – c < 0 there may be a value R ≠ 0 such that q(R) = 0. The
solution R is unique and strictly positive, and called the adjustment coefficient.
For instance, R exists if limr ↑r∞

MY (r) = ∞, where r∞ = sup{r ≥ 0: MY (r) < ∞}.
The fundamental results on the ruin probability in the small claim case are

Lundberg’s inequality

c(u) < e–Ru (1) 
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and the Cramér-Lundberg approximation
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The adjustment coefficient is therefore a measure of risk. For large values of
u it is possible to compare ruin probabilities by comparing the adjustment
coefficients. For an actuary, it is therefore possible to base decisions upon com-
parison of adjustment coefficients.

Suppose the insurer has the possibility to choose proportional reinsurance
with retention level b ∈ [0,1]. The premium rate for the reinsurance is (1 + j)
(1 – b)lm. In order to simplify the notation we denote by k = c/(lm) – 1 the
safety loading of the insurer. Then the surplus process of the insurer becomes

t ,X u b k t bYj j lm1b
i

i

N
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t

= + + - - -
=

!^ ^^ h hh (3)

with corresponding ruin probability cb(u) = � [inftX
b
t < 0]. If k ≥ j the insurer

can choose b = 0 in order to obtain c0(u) = 0. In this case our problem becomes
trivial. We therefore only consider the case j > k, i.e. reinsurance is more expen-
sive than first insurance.

In order that the net profit condition is fulfilled we need

b > b = 1 – k/j.

The adjustment coefficient R(b) under reinsurance satisfies the equation

l (MY(br) – 1) – (b(1 + j) – (j – k))lmr = 0. (4)

Our goal is to maximise R(b). We know from Waters (1983) that there is a
unique b0 ∈ [0,1] where the maximum is attained. For the moment we allow
b ∈ �+. If the maximiser b0 ∉ [0,1] we know from the uni-modality that the
optimal b is 1, i.e. no reinsurance is chosen.

The next result gives a simple way to calculate b0 and R(b0).

Theorem 1. Assume that r∞ = sup{r : MY (r) < ∞} > 0. Suppose there is a (unique)
solution r to

M �Y (r) = (1 + j)m. (5) 

Then r > 0. If no solution to (5) exists we let r = r∞ = sup{r : MY (r) < ∞}. For

( )b Mj mr r
j k mr
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=
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0
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h

h
(6)

we have b0 = b�0 ! 1 := min{b�0,1}. If b0 = b�0 then R(b0) = r /b0.
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Remark. Note that the value r does not depend on c but on the reinsurer’s
safety loading only. ¬

Proof. Let b�0 denote the argument where R(b) attains its maximum in �+.
Define r(b) = bR(b). Then

MY (r(b)) – 1 + (j – k)m
( )
b

r b
– (1 + j)mr(b) = 0.

Because R(b) is unimodal and continuous r(b) is strictly increasing in [b, b�0 ].
Thus there exists b1 ≥ b�0 such that b 7 r(b) is invertible on [b, b1]. We now
interchange the rôles of r and b. Then

MY (r) – 1 + (j – k)m ( )b r
r – (1 + j)mr = 0.

b(r) can be expressed as

( ) ( ) .b r r M r
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The adjustment coefficient as a function of r becomes
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The function r 7 R(b(r)) is strictly concave, and has its unique maximum in
r = r. Because M�Y (0) = m < (1 + j)m and MY(r) is strictly convex we get that
r > 0. Because r is unique it must coincide with b�0R(b�0). Thus b�0 = b�0. Note that
r(b) > r∞ is not possible. If b�0 > 1 then the maximum is attained at b0 = 1. ¡

Example 1. Suppose the claim sizes are gamma distributed with parameters g
and b, i.e.

G�(y) = ( )g
b

G

g

y g – 1e– by 11y > 0,

where 11 denotes the indicator function. The net profit condition yields bc > lg.
Here r∞ = b and r is obtained as the solution to

b g + 1 = (1 + j) (b – r) g + 1,

i.e. r = b (1 – (1 + j)–1/(g+1)). From (6) we find
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yielding
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In this example there are, except for certain values of g, no closed form expres-
sions for R(b). We see that even in this case it is possible to find closed form
expressions for b0 and R(b0) if b�0 ≤ 1. ¬

3. THE SPARRE-ANDERSEN MODEL

A generalisation of the Cramér-Lundberg model is the Sparre-Andersen model
where {Nt} is a renewal process. The interarrival times {Ti – Ti – 1} (T0 = 0) are
iid with distribution function F(t). The mean value is denoted by l –1 = � [T1].
The net profit condition is k > 0, where k is defined as in Section 2. The adjust-
ment coefficient R is the (strictly positive) solution to

MY (r)MT (– cr) = 1,

where MT(r) = �[erT1] is the moment generating function of the interarrival times.
Lundberg’s inequality (1) remains valid and the Cramér-Lundberg approxi-
mation becomes lim u → ∞c(u)eRu = C for some constant C, that in general is
not known. Also here, the adjustment coefficient R is a measure of risk. An
introduction to the Sparre-Andersen risk model can be found for instance in
Rolski et al. (1999).

We proceed in the same way as with the Cramér-Lundberg model. Under
reinsurance the model is given by (3). The net profit condition yields b > b =
1 – k/j. The adjustment coefficient R(b) is the solution to

MY (rb)MT ((j – k – (1 + j)b)lmr) = 1.

Theorem 2. Assume r∞ > 0. Suppose there is a unique solution r in (0, r∞) to

M�Y (r) = (1 + j)lmMY (r)2M�T (M –1
T (1/MY(r))). (7)

Then r > 0. If no solution exists let r = r∞. Then with
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we obtain b0 = b�0 ! 1. If b0 = b�0 then R(b0) = r/b0. If the solution to (7) is not
unique then r = b0R(b0) solves (7).

Proof. Let again r(b) = bR(b) and note that because of the uni-modality of
R(b) we have that r(b) is invertible on an interval containing [b,b�0 ], where b�0
is the argument maximising R(b) on �+. Then we need to solve
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where we again interchange the rôles of r and b. Then we can express b(r) as
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The adjustment coefficient as a function of r is
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By our assumption there is a unique maximum at r = r. The rest of the proof
is analogous to the proof of Theorem 1. ¡

Remark. If 1/MY(r) is a concave function then M –1
T (1/MY(r)) is strictly concave

and a unique solution to (7) is granted. For instance, for gamma distributed
claim sizes this is the case for g ≤ 1, in particular for exponentially distributed
claim sizes. ¬

From (7) one can see that the solutions will not be as explicit as in the case of
the Cramér-Lundberg model.

Example 2. Suppose that the claim sizes are gamma distributed with parame-
ters g and b and the inter-arrival times are gamma distributed with parame-
ters g and �. Then r is the solution to

b g – 1(� – ((b – r) /b )g) g + 1 = �g + 1(1 + j) (b – r)g – 1.

If g and g are integer-valued one has to solve a polynomial equation from
which r, b0 and R(b0) can be obtained. If r < b is not unique one has to try
all solutions and then later to decide which solution is the correct one. For
exponentially distributed claim sizes (g = 1)

r = b (1 – (g(1 + j))–1/(g + 1/g))

and
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If b�0 ≤ 1 then
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Also in this example b0 and R(b0) are explicit if b�0 ≤ 1. ¬

4. EXTENSIONS

The reason why it was so simple to find the optimal b was that we were able
to isolate b as a function of r from the equation determining R(b). In our
case b appeared once in the formula only. Of course, our method also works
if several solutions bk exist, and if it is possible to determine the correct b (for
example if b appears in a quadratic equation). We just mention two cases where
our method works.

4.1. Non-linear premia in the Cramér-Lundberg model

Suppose the insurer uses the variance premium principle, i.e. the premium
becomes (1 – b)lm + n (1 – b)2lm2 where m2 = � [Y 2

i ]. In order that the problem
becomes non-trivial we have to assume that c < l (m + nm2). The adjustment
coefficient R(b) is then determined through the equation

l (MY (rb) – 1) + ((1 – b)lm + n (1 – b)2lm2 – c)r = 0.

Again defining r(b) = bR(b) we can write

( ) ( ) ( ) ( ) ( ) .M r b r
r r b r

r r rb r c b r
rl lm n lm1 2 0Y 2- + - + - + - =^ c cch m m m
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For r > 0 both solutions are positive. As a side condition we need that the
solutions are real and that (MY (r) – 1) – (m + 2nm2)r < 0. The net profit condi-
tion yields that b > b = 1 – ( ) / ( )lnc lm m2- . For b = b we get R(b) = 0 = r(b).
Letting r ↓ 0 we find

( ) .b nm

nm nm m
0

2

2 4 c
l

2

2 2!
=

-_ i
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Thus the solution with the minus sign applies. By continuity
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The function r 7 R(b(r)) can then be maximised. The expression becomes quite
complicated, but the method goes through.

Remark. We also know the solution for r = R(1), namely

( ) .b R nm

m nm m
1 1
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Thus the solution with the plus sign applies. The explanation must be that
b0 < 1. This was also observed by Waters (1983). ¬

4.2. The Markov modulated risk model

Let {Jt} be a Markov chain in continuous time on the state space {1,2, …, J}
with intensity matrix j. That is, as long as Jt = i the process {Jt} jumps after
an exponentially distributed time with parameter –jii. The next state is j with
probability –jij /jii. The risk process X is defined as follows. When Jt = i the
process behaves like a Cramér-Lundberg model with premium rate c, claim
arrival intensity Li (i.e. claims arrive according to a Poisson process with rate
Li) and claim size distribution Gi(y). For a formal definition of the model see
for instance Rolski et al. (1999).

We denote by p the stationary distribution of the Markov chain {Jt}, i.e. the
solution to pj = 0 normed such that p1 = 1. The net profit condition becomes 

i 1=
>c Lp mi i i

J! , where ( ( ))G y dym 1i i= -
3

0
# .

Let S(r) = diag(Li(Mi(r) – 1)), where Mi(r) = e ry3

0
# dGi(y), and F(r) = j +

S(r) – crI. Define by ‡(r) the eigenvalue of F(r) with the largest real part. By
the Perron-Frobenius theorem this eigenvalue is uniquely defined. It turns out
that ‡(r) is a strictly convex function. The adjustment coefficient is defined as
the non-zero solution R to ‡(r) = 0. If R exists then Lundberg’s inequality
c(u) ≤ C+e–Ru holds. If M �i (R) < ∞ then also a Cramér-Lundberg approxima-
tion limu → ∞c(u)eRu = C can be proved. For explicit expressions for C+ and C
see for instance Rolski et al. (1999). Thus again R is a measure of risk.

Under proportional reinsurance the matrix F becomes

( ; ) ( ) ( ) ( ) .r b rb b L rS Ij k j p mF j 1 i i i
i

J

1

= + + - - +
=

!^ h

The adjustment coefficient R(b) is then the solution to det F(r; b) = 0. Again
defining r(b) = bR(b) and interchanging the rôles of b and r yields a polynomial
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for b of degree J. Therefore we obtain J solutions b(r). Which solution to
choose seems not to be obvious. But one can calculate r for all the J solutions
and decide afterwards which is the correct solution.
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