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WHEN CAN SIGMOIDAL DATA BE FIT TO A HILL CURVE?
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Abstract

The Hill equation is a fundamental expression in chemical ikinetics relating velocity of
response to concentration. It is known that the Hill equation is parameter identifiable in the
sense that perfect data yield a unique set of defining parameters. However not all sigmoidal
curves can be well fit by Hill curves. In particular the lower part of the curve can't be too
shallow and the upper part can't be too steep. In this paper an exact mathematical criterion
is derived to describe the degree of shallowness allowed.

1. Introduction

The simple chemical reaction

£ + 5 A C -^ E + P

can be described by the Michaelis-Menten Equation

where [5] is the concentration of substrate 5 and V = | ^p | is the velocity of the
reaction. The response curve (1) has the characteristic concave form shown in Figure 1.

An equation of similar form, the Hill equation, is frequently used in pharmacology
to describe the response of an organism or tissue as a function of drug concentration

V -

where V is the pharmacologic response at drug concentration [5]", V ^ is the max-
imum possible pharmacologic response, KM is the concentration of drug at which
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FIGURE 1.

V = i Vmax and is also a measure of the affinity of the receptor for the drug. The
parameter n, the Hill coefficient, can be viewed mechanistically as the number of
molecules that bind to a receptor. More frequently it is regarded functionally as a
shape factor determining the response curve (Figure 2).

The question investigated in this paper is related to, but distinct from, the problem
of parameter identification. The Hill equation is already known to be parameter
identifiable [2] which means that "perfect data" that is a complete Hill curve, uniquely
determine the three parameters Vmax, Km and n. We are concerned with the question
of which sigmoidal data curves can be fit with the Hill curves to begin with. It turns
out to depend on the steepness or shallowness of the sigmoidal curve.

This is also a different question from parameter estimation where one is interested
in finding the "best" Hill curve for a set of data by using some optimal least squares
technique. One can always find a "best" Hill curve in some sense but we show here
that it still may not be very good.

The Hill equation has three parameters and is a generalization of the Michaelis-
Menten equation with only two parameters. Thus it makes sense to begin with the
much simpler two-parameter case.

2. The Michaelis-Menten equation

Even though Godfrey [1] and Godfrey and Fitch [2] have already adequately dis-
cussed the Michaelis-Menten equation, it is discussed here to introduce the methods
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of this paper in the simplest case. Suppose then that two data points are given:

' * M + [ 5 ] , '

Solving each equation for Vmax yields

V2 =
Vmax[S]2

[S],
— 'max —

[S]2

+ [S]2)

[Sh

Now solving for KM gives

- Vi)[S]dSh
V , [ 5 ] 2 -

provided that Vi[S]2 - V2[S]i ^ 0, that is, that

[5], [S]2
(3)

Since Vl/[5]i and V2/[5]2 are the slopes of lines from the origin to the data points, it
is clear from Figure 1 that (3) holds.

It has been shown that two points on the concave curve (1) determine the parameters
VM and KM uniquely, and thus the Michaelis-Menten curve (1) uniquely determines
VM and KM in every case.

The conditions (3) can be replaced by

[5], [5 ] 2 '
(4)
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by taking into account the concave shape of the curve (2). The inequality (4) or
its reverse turns out to be significant for the investigation of the Hill equation to be
discussed now.

It should be noted that the same approach which will be used to analyze the Hill
equation can also be used to discuss a fractal version of the Michaelis-Menten equation
[3].

3. The Hill equation

Since there are three parameters, VM,KM, and n, in (2), three data points are
needed. Changing notation for simplicity in the lengthy calculation to follow, take
(*M yd* i = 1.2, 3, as three points satisfying

where 1 < n, 0 < X\ < x2 < x3 and 0 < yi < y2 < y3. The following theorem will
be established.

THEOREM l. Let

lnx3d =
\nx2 — i

Then the Hill equation (5) has a unique solution for M, Q, and n if

and has no solution if

The proof of this theorem is computational. We may eliminate n between the three
equations given by substituting (x,, y,) in (5) for i = 1, 2, 3 to derive

pHln-rj*- - ln-r^-

Equating these two values and rearranging gives

HUC3 — dlnx2

lnx2 —
= 1 — d.
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Thus

ln (ld)ln + d\n
M — y3 M - yi M — y2

so that

(6)
V 3 y2(M — yi)d~l

Defining the functions

, , . „ l , . , , , . . . . yd~\k
j (M) = —(M — y-$) and g(M) = —̂

it follows that (6) has a solution for M wherever the graph of/ (M) and g(M) intersect.
Since the graph of / (M) is a straight line, the number of intersections of / and g
depends on the character of the function g(M). The function g(M) is monotone
increasing and concave up. We have

Likewise

-d(d-l)(y2-.

There are now several cases to consider. Suppose first that

i > *£. (7)
^3 y2

Then g(M) < f (A/) for large M, while ^(^3) > / (y3) = 0, and so by convexity of
G a unique point of intersection exists.

Now suppose that the other case occurs, namely

d-\

" yi
To proceed further the asymptote as M —*• 00 for g(M) is needed. This is accom-
plished by finding the Taylor expansion of g(M) for large M. To do this write

(M - y2)
d (R + (y, - y2))"
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where R — M — yx. Let z = \/R and

Then H (z) = (1 + (yi - yi)z)d satisfies //(0) = 1 and tf'(O) = J(y, - y2). Thus

= 1+ rf(y, - >2)z H asz^O,

and

= R + d(j{ - y2) + • • • as R -+ oo,
Rd-\

(M - y2)
d

(M -

Thus

— — M - yi + d(y, - y2)-\ as M -*• oo.

Thus d(y2 — yt) + yt < y3 or d < ^ ^ means g(M) and/ (M) do not intersect.
It will be shown that the condition

y-z - y i

is incompatible with y2 < yf~'y3 which is equivalent to (7). This is accomplished by
examining the condition

ln*3-ln*i y3-yi
= Q = .

l— lnjcj y2 — y{

Consider the curve a(x2) = y2 = (y3 - yO ( } ^ 5 i ^ ) + ?i-
01(̂ 3) = y3, and ct(x) is concave down (a(x) is a logarithmic function).

The fact that g(M) and / (M) do not intersect if d < (y3 — yi)/(y2 — yi) means
that there is no solution for points (x2, y2) below (or on) the graph of a(x). It will
now be shown that condition (7) means that (x2, y2) must lie below the graph of a(x).
We thus consider the equation y( = yi~xyz, that is,

y2 = yf~ {)ldy\ld.
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Now

d — 1 XnxT, — \nx2

and

Thus we have the function

— \x\X\

1 lnjc2 —

d

= y2 = yx > 3

to compare with the function a(x2). Again note that /3(Xi) — yt and Pix?,) — y-$, and
we want to show that fi(x2) < a(x2) for xi < x2 < JC3. Now a(x2) can be written as

/ln;c2 — l n x . \ /lnxT —Inx 2 \
a(x2) = y3 )+yll — —^ .

\lnjc3 — In JCI / \lnjc3 — In JCI /

Thus /3(JC2) < a(jc2), which we want to verify, can be written as

r^'l;" Tr'h',1 /lnjC3 - Inx2\ /lnj:2 - lnjcA
yx >- ' yj '" ' < yA -—: • + y,[ ; ,

\lnjC3 — In JCI / \lnjC3 — lnxi /

or equivalently

ln-n-ln.t?

\y3/ \y3/ \InJC3 — lnjci / lnx3 —lnjci

Since 0 < y, < yy and 0 < X\ < x2 < x3, this can be expressed as

yr < yx + 1 — x or 0 < yx + 1 — x — yx.

Let y(x) = yx + 1 - x - y" and note that y(0) = 0 and y ( l ) = 0. We want to show
that y(x) > 0 for all 0 < x < 1. Now

y'(x)=y- 1 -\nyexXny

and

y"(x) = —(\ny)2exlny < 0

for all 0 < x < 1 and so y(x) > 0 for 0 < x < 1 since y(x) is concave down on this
interval.

This means that fi(x2) < a(x2) for JC, < x2 < x3. Since the inequality (7) implies
that y2(x2) < /3(x2) and, as mentioned above, there are no solutions of (6) below a(x),
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FIGURE 3.

it has finally been shown that no values of M, Q, and n can be found when (7) holds.
Theorem 1 is thus proved.

From a practical point of view it is the region where the unique solution exists
which is of importance. This region is determined by the curve

yi(x2) = y?y?d. (8)

The points (x2, yi) lying above the curve (8) correspond to uniquely determined
parameters M, Q, and n. The shape of (8) can be easily determined.

THEOREM 2. The curve ^2(^2) =y\d yi « monotone increasing, and is concave
UP > y\lx\> and *s concave down ifyi/x3 < y\/xi.

This theorem is proven by simple differentiation of the curve (8) which is described
by the function

i ln.

'y3

First write

Thus

and

. =

= JO^ny, 1
\nx ln^ x

_
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FIGURE 4.

Thus pu(x) > 0 if Cy3/yi)/(*3/*i) > 1. that is, if

>yi/xt. (9)

and conversely for P"(x) < 0. The theorem can be illustrated as in Figure 3.
Since the uniqueness region is above fi(x), it follows that the uniqueness region is

larger if (9) holds than when the inequality goes the other way.

4. An example

Finally we use Theorem 1 to show that sigmoidal data can not always be fit to a
Hill curve. We generate sigmoidal data by using the sigmoidal function

w{x) = lQ_x - 1Q ,

which satisfies the conditions to(0) = 0 and lim^^oo w(x) = 4.99 as shown in
Figure 4. Now adjust the function y = y\~xldy\ld so that it passes through the points
(1, iu(l)) and (12, w(12)) to obtain the concave (up) curve

y(x) =

also shown in Figure 4.
On the interval (1, 12) only points above y(x) can be fit to a Hill curve passing

through the points (1, io(l)) and (12, to(12)). Since w(x) lies below y(x) on the
interval (1,9), then the sigmoidal data w(x) can't be fit by a Hill curve on the interval
(1,12).
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