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Numerical studies on the statistical properties of irregular waves in finite depth have to date
been based on models founded on weak nonlinearity; as a consequence, only lower-order
(usually third-order) nonlinear interactions have thus far been investigated. The present
study performs numerical simulations with a fully nonlinear, spectrally accurate model
to investigate the statistics of irregular, unidirectional wave fields in finite water depth
initially given by a Texel, Marsen and Arsloe spectrum. A series of random unidirectional
wave fields are considered, covering a wide range of water depth. The wave spectrum and
statistical properties, including the probability density function of the surface elevation,
exceedance probability of wave crests and occurrence probability of extreme (rogue)
waves, are investigated. The importance of full nonlinearity in comparison with third-order
results is likewise evaluated. The results show that full nonlinearity increases kurtosis and
enhances the occurrence probability of large wave crests and rogue waves substantially, in
both deep water and finite water depth. Therefore, we propose that full nonlinearity may
contribute significantly to the formation of rogue waves. Furthermore, to account for the
effects of higher-order nonlinearity on modulational instability, we analyse the relationship
between the Benjamin–Feir index (BFI) and maximal excess kurtosis. Our results show a
strong linear relationship i.e. (Kmax − 3) ∝ BFI, in contrast to (Kmax − 3) ∝ BFI2 based
on the assumptions of weak nonlinearity, a narrow-banded spectrum and deep-water
conditions. Above, Kmax is the maximal kurtosis.
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1. Introduction
Rogue waves, the extreme wave events occurring within irregular waves, have been
reported worldwide from ships, offshore platforms and radars (e.g. Kharif & Pelinovsky
2003; Forristall 2005). Due to anticipated increased storminess in e.g. Northern Europe as
a consequence of climate change, such extreme waves are expected to be increasingly
common in the future. Rogue waves have, on multiple occasions, proven lethal to
ships, offshore structures and their operators (e.g. Kharif & Pelinovsky 2003; Dysthe,
Krogstad & Müller 2008; Kharif, Pelinovsky & Slunyaev 2008; Slunyaev, Didenkulova
& Pelinovsky 2011), with some of the most extreme events ever documented occurring in
conditions of finite depth with kh < 2, k being the characteristic wavenumber and h the
water depth (e.g. Hayer & Andersen 2000; Chien, Kao & Chuang 2002; Trulsen 2007;
Babanin et al. 2011). Accurate evaluation regarding the statistical properties of random
wave fields and understanding the mechanisms generating rogue waves are essential
towards ensuring the safety of shipping, as well as proper design (both preventing failure
and excessive over-design) of offshore wind turbines and other structures.

The occurrence of rogue waves has been attributed to a variety of physical mechanisms
(e.g. Kharif & Pelinovsky 2003; Onorato et al. 2013; Adcock & Taylor 2014). In
addition to the linear superposition of dispersive waves and linear mechanisms linked
to wave refraction (e.g. Lavrenov 1998; White & Fornberg 1998), nonlinear modulational
instability (MI, or Benjamin–Feir instability, also known as the class-I instability) is often
cited as a potential generation mechanism (e.g. Henderson, Peregrine & Dold 1999; Tulin
& Waseda 1999). The MI occurring in narrow-band irregular wave fields is suppressed by
decreased water depth. Benjamin & Feir (1967) and Whitham (1974) first showed that the
one-dimensional (1-D) (i.e. a single horizontal direction) MI disappears for dimensionless
water depths kh < 1.363. Including directional (non-collinear) disturbances, the critical
water depth decreases, meaning that the class-I MI can still exist for kh < 1.363, as was
shown by Davey & Stewartson (1974) and McLean (1982a).

In the past decades, the relationship of MI to rogue wave formation has been widely
studied through theoretical, experimental and numerical methods. In unidirectional
wave fields, Janssen (2003) theoretically proposed the Benjamin–Feir index (BFI),
corresponding to the ratio of wave steepness to spectral bandwidth, to quantify the
importance of MI. In other words, the larger the BFI, the more significant the MI. In special
situations where the wave field is represented by a narrow-band spectrum, this theory is
restricted to the consideration of up to four-wave interactions. Under these conditions,
the long-term excess kurtosis has been found to be proportional to BFI2 (e.g. Mori &
Yasuda 2002; Mori & Janssen 2006). As the kurtosis increases, the probability of rogue
waves increases (e.g. Xiao et al. 2013; Liu et al. 2022). In addition, a series of laboratory
experiments also support this relationship between kurtosis and rogue wave occurrence
(e.g. Onorato et al. 2004; Shemer & Sergeeva 2009; Shemer, Sergeeva & Slunyaev 2010).

Apart from theoretical analysis and experiments, existing numerical investigations
have mostly employed the so-called high-order spectral (HOS) method of West et al.
(1987) and Dommermuth & Yue (1987) (e.g. Toffoli et al. 2010; Xiao et al. 2013;
Fernandez et al. 2014; Liu et al. 2022) truncated at low (typically third) order, models
based on the Zakharov equation (e.g. Janssen & Onorato 2007; Annenkov & Shrira
2009) or its narrow-band limit the nonlinear Schrödinger equation (e.g. Onorato et al.
2001; Gramstad & Trulsen 2011; Dong et al. 2018). These methods are all effectively
weakly nonlinear, and they can only be used to study low-order nonlinear wave–wave
interactions. Furthermore, some fully nonlinear simulations for unidirectional waves have
been carried out, such as Zakharov, Dyachenko & Vasilyev (2002), Chalikov (2009) and
Slunyaev & Sergeeva (2012). These simulations revealed that high-order nonlinearities
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have the potential to alter the statistical properties of deep-water waves. Notably, a strong
correlation between kurtosis and rogue wave formation was identified. Nonetheless, it is
important to acknowledge that these investigations are thus far constrained to the context
of deep-water conditions. As far as the authors are aware, in finite water depth, the impact
of full nonlinearity on both MI and random wave statistical properties has not yet been
explored. Consequently, there remains a gap in the understanding of the relationship
between full nonlinearity (greater than third order in the context of HOS simulations)
and the probability of rogue wave occurrence.

In the present paper, we perform a series of numerical simulations with the fully
nonlinear pseudospectral Fourier–Legendre (PFL) potential flow model of Klahn, Madsen
& Fuhrman (2021d) for unidirectional irregular wave fields in finite depth. This model is
chosen due to its thorough examination in the previous studies of Klahn et al. (2021c,b),
which demonstrated its capability to precisely and efficiently simulate highly nonlinear
wave–wave interactions without resorting to any weakly nonlinear approximations. This
paper will partially fill the voids associated with fully nonlinear wave–wave interactions in
a single horizontal direction in finite depth, as described above, by analysing the statistical
properties of irregular waves, such as the probability density function (PDF) of surface
elevation and wave crest distribution, and the probability of rogue wave occurrence. The
resulting statistical properties will be analysed and compared with third-order simulations
utilising the HOS method (e.g. Liu et al. 2022). It will be shown that, compared with third-
order HOS results, full nonlinearity gives rise to a greater exceedance probability of both
wave crests and kurtosis. The PDF of the surface elevation will also be shown to deviate
significantly from second-order theoretical and third-order HOS simulation results with
respect to the negative and positive tails when kh > 1.363. It will also be clarified that
full nonlinearity can result in larger occurrence probability of rogue waves based on these
statistical properties.

The remainder of the present paper is organised as follows: in § 2, we describe the
governing equations and numerical methods used for time integration of wave fields.
We then proceed to validate the numerical model for cases involving pure 1-D MI in
deep-water conditions in § 3. This validation specifically focuses on assessing the initial
exponential growth rate of the unstable sidebands, in addition to the phenomena of
recurrence (at low initial steepness) and frequency downshift (at larger initial steepness).
The fully nonlinear simulations of unidirectional irregular waves in finite depth will be
presented in § 4, including description of the initial conditions utilised, and subsequent
discussion of obtained results. Based on the statistical results, the dependence of kurtosis
on BFI is analysed and compared in § 5. Conclusions are finally drawn in § 6.

2. Model description
Following Klahn et al. (2021d), we consider the time evolution of 2-D irregular wave fields
in both deep and finite water, assuming they satisfy the conditions of potential flow and
have a non-overturning free surface. Additionally, we take the wave fields to be periodic
in the x-direction over distance Lx . Once the initial conditions for the wave fields have
been specified, their time evolution is completely determined by the irrotational Euler
equations. As has, for example, been shown by Zakharov (1968), this system of equations
may be written as

∂2Φ

∂x2 + ∂2Φ

∂z2 = 0 if z < η, (2.1a)
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∂Φ

∂z

∣∣∣∣
z=−h

= 0, (2.1b)

∂η

∂t
=
(

1 +
(

∂η

∂x

)2
)

v(s)
z − ∂η

∂x

∂Φs

∂x
, (2.1c)

∂Φs

∂t
= −gη − 1

2

(
∂Φs

∂x

)2

+ 1
2

(
1 +

(
∂η

∂x

)2
) (

v(s)
z

)2
, (2.1d)

where η denotes the free surface elevation, Φs ≡ Φ|z=η is the velocity potential at the
surface, v

(s)
z ≡ ∂zΦ|z=η is the vertical velocity of the fluid at the free surface and g is the

gravitational acceleration. This set of equations constitutes an initial value problem for
the pair (η, Φs), and so the initialisation of the system amounts to initialising these two
variables.

The PFL potential flow simulation model of Klahn et al. (2021d) adopted in the
present study is spectrally accurate in all spatial directions, by which we mean that
all spatial dependencies are approximated through generalised Fourier series, which,
for this particular problem, guarantees that the error of the numerical solution decays
exponentially with the resolution. All details of the numerical scheme are explained in
Klahn et al. (2021d). This method adopts a positive number b to make use of an artificial
lower (i.e. beneath trough) boundary condition based on Nicholls (2011), with iterative
solutions to the resulting Laplace equation utilising a linearised preconditioner, following
the strategy of Fuhrman & Bingham (2004). Furthermore, this model utilises the Fourier
collocation method and the classical fourth-order Runge–Kutta method to discretise the
spatial and temporal parts of the free surface boundary conditions, respectively. To avoid
instabilities during simulations, which may arise due to both nonlinearity as well as the
inability to simulate breaking, the artificial damping strategy outlined by Xiao (2013) is
employed, as described in Klahn et al. (2021d). For full details on this model, features,
and prior validations and applications see Klahn et al. (2021b,c,d, 2024) in addition to
Fuhrman, Klahn & Zhai (2023).

3. Sideband instability of modulated wave trains
In this section, our focus is on investigating the classical MI of deep-water waves, which
has not been considered previously with this model. Through combined theoretical and
experimental work, Benjamin & Feir (1967) demonstrated that weakly nonlinear deep-
water waves can experience instability in the presence of modulational perturbations
when certain resonance conditions are met, which can result in the exponential growth of
sideband modes. The Benjamin–Feir instability can be characterised as quartet resonant
interactions involving a carrier wave and two initially small-amplitude sideband waves,
subject to the following resonant conditions:

k1 + k2 = 2k0, ω1 + ω2 = 2ω0. (3.1)

Here, the carrier wave is defined by its wavenumber k0 and angular frequency ω0, while
the two (assumed initially small) perturbations are characterised by the wavenumbers
k1 = (1 + p)k0, k2 = (1 − p)k0 and angular frequencies ω1 = ω0(1 + δ), ω2 = ω0(1 − δ),
where k0 = ω2

0/g and δ is small to ensure minimal de-tuning of the resonance. As
evident from the frequency expressions, the perturbation waves correspond to the unstable
upper/lower sidebands of the primary wave. In the following simulations, the carrier waves
are prescribed as initial conditions, based on the plane progressive streamfunction solution
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of Fenton (1988). The selection of perturbation frequencies and wavenumbers is carefully
made following the approach outlined by McLean (1982b) in deep water. Consequently,
in order to induce the desired instability, two perturbations are introduced to the base
variables in the x direction for both the initial free surface elevation η

η̃ = εa0 sin(k j x), (3.2)

and the velocity potential at the free surface Φs

Φ̃s = εa0

√
g

k j h

cosh(k j (η + h))

cosh(k j h)
cos(k j x), (3.3)

where j = 1,2 and a0 is the amplitude of the carrier wave. The normalised perturbation
amplitude, denoted as ε, represents the initial perturbation amplitudes relative to that of
the carrier wave a0.

Tulin & Waseda (1999) and Madsen, Bingham & Liu (2002) conducted numerical and
experimental investigations, respectively, to explore the MI of deep-water wave trains. In
their numerical study, Madsen et al. (2002) observed a recurrence phenomenon when wave
breaking was absent. In both experiments and simulations utilising conditions where wave
breaking occurred, a permanent frequency downshift was noted. In the subsequent §§ 3.1
and 3.2, we utilise the fully nonlinear potential flow model to reproduce the two specific
cases considered by Tulin & Waseda (1999) and Madsen et al. (2002), respectively. To
extend these studies and further assess the model’s capability in capturing the strongly
nonlinear wave dynamics under finite-depth conditions, we introduce two additional
numerical experiments, presented alongside the deep-water cases in §§ 3.1 and 3.2.

3.1. Simulations involving recurrence
For our initial test case, we draw inspiration from the previous simulation of Madsen et al.
(2002). Following their set-up, we utilise an initial carrier wave steepness k0a0 = 0.1, with
dimensionless depth k0h = 2π (i.e. deep water). The perturbations are prescribed with
p = 0.2 (corresponding to δ = k0a0) and relative steepness ε = 0.05. The initial waves
are determined and specified using the streamfunction solution of Fenton (1988). The
computational domain has length 10λ0, where λ0 = 2π/k0 is the carrier wavelength,
utilising periodic lateral boundary conditions. Simulations utilise 320 horizontal grid
points such that the carrier wave field is resolved by λ0/	x = 32 points per wavelength,
coupled with eight points distributed in the vertical direction. The time step is set such that
T0/	t = 50, where T0 = 2π/ω0 is the carrier wave period. The simulation is carried out
over a duration of 500T0.

The primary objective of these simulations is to verify the present fully nonlinear
model against the theoretical predictions of McLean (1982b). Specifically, we focus on
assessing the initial growth rate of sidebands as a means of validation. To facilitate a
spatial domain comparison, we adopt the method outlined by Benjamin & Feir (1967)
and convert our simulated results from the time domain to the spatial domain using the
following transformation:

x

λ0
= cgt

c0T0
= 1

2

(
1 + 2k0h

sinh(2k0h)

)
t

T0
, (3.4)

where t is the time, cg represents the group velocity of the primary wave train and
c0 = ω0/k0, the celerity of the carrier wave.
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1.2

1.0

Carrier wave

Lower sideband

Upper sideband

Theoretical (Mclean 1982b)
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0 50 100 150 200

x/λ0

a/
a 0

Figure 1. Computed spatial evolution of the carrier wave and sideband amplitudes from the simulated
Benjamin–Feir instability for k0h = 2π with low initial steepness k0a0 = 0.1. The theoretical sideband growth
rate corresponds to the evolution predicted by McLean (1982b).

During the initial growth stage, the theoretical sideband amplitudes will follow (McLean
1982a)

a

a0
= ε exp(Im{β}√gk0x/cg), (3.5)

where Im{·} represents the imaginary part and β is the unstable eigenvalue, representing
a dimensionless complex frequency in a frame of reference moving with the primary
wave, stemming from the analysis of McLean (1982a,b). For the present case McLean’s
(1982a) analysis, as implemented in Fuhrman, Madsen & Bingham (2004), yields the
dimensionless complex frequency β = −0.0977 + 0.00364i , where i is the imaginary unit.
Figure 1 displays the spatial evolution of the carrier and sideband amplitudes from the
present case. It is evident that the initial growth rate of the sidebands is in good agreement
with that predicted by McLean’s theoretical analysis. This serves as validation, particularly
for the initial stage of the simulation. Following the initial stage, the exponential growth
slows, with the lower sideband amplitude slightly exceeding that of the upper sideband,
as also found e.g. by Lo & Mei (1985). Following their respective peaks, the simulation
results in a nearly symmetric recurrence cycle, where energy is passed from the sidebands
back to the carrier wave, eventually resulting in a situation resembling the initial condition,
and the phenomenon repeats. The length of each cycle, defined as the distance between
two minima of the carrier wave, measures approximately 138λ0. This finding agrees well
with the results of Landrini et al. (1998) and Madsen et al. (2002), who reported 140λ0
and 141λ0, respectively. With this simulation, we conclude that the present fully nonlinear
model is capable of simulating the Benjamin–Feir instability with low initial carrier wave
steepness.

Following the deep-water case, we next consider a simulation in finite water depth
with k0h = 2, again starting with an initial carrier wave steepness of k0a0 = 0.1.
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x/λ0

a/
a 0

Carrier wave

Lower sideband

Upper sideband

Theoretical (Mclean 1982a)1.0

0.8
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0 50 100 150 200 250 300 350 400 450 500

1.2

Figure 2. Computed spatial evolution of the carrier wave and sideband amplitudes from the simulated
Benjamin–Feir instability for k0h = 2 with moderate initial steepness k0a0 = 0.1. The theoretical sideband
growth rate corresponds to the evolution predicted by McLean (1982a).

The perturbations are prescribed with p = 0.1 and ε = 0.1. The total simulation duration
is extended to 900T0, while all other computational parameters are identical to those used
in the deep-water case. The dimensionless complex frequency associated with this case is
β = −0.0410 + 0.00218i . Figure 2 presents the computed spatial evolution of the carrier
wave and sideband amplitudes for this finite-depth case, considering the transformation
described by (3.4). As shown, the sideband amplitudes initially exhibit exponential growth,
closely matching the theoretical prediction of McLean (1982a), which can be taken as
model validation. After reaching their peak values, a recurrence phenomenon develops,
characterised by the transfer of energy from the sidebands back to the carrier wave,
similar to the behaviour observed in the deep-water recurrence case. These results further
demonstrate the capability of the present fully nonlinear model to accurately simulate the
Benjamin–Feir instability under varying depth conditions.

3.2. Simulations involving frequency downshift
As demonstrated in the preceding case, a local frequency downshift occurs when
the sideband amplitudes are near their respective peaks. Nevertheless, it is crucial to
acknowledge that this downshift is temporary in nature, as the modulational process
is cyclical. On the contrary, experiments conducted by Tulin & Waseda (1999),
leading to wave breaking, have revealed a permanent downshift of the peak frequency.
Simultaneously, the amplitudes of both the carrier wave and upper sideband decrease,
while the lower sideband experiences a permanent increase in amplitude. In the following,
we will examine one of their cases involving a brief wave breaking around the first
modulational peak. The water depth is set as h = 1.2 m, consistent with the value employed
in previous studies such as Madsen et al. (2002) and Li & Fuhrman (2022), rather than
the 2.1 m utilised in the experimental set-up. A carrier wave characterised by λ0 = 1.2
m (corresponding to ω0 = 1.14 s−1 and k0h = 2π i.e. deep water) and k0a0 = 0.133 is
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Carrier wave (T&W 1999)

Lower sideband (T&W 1999)

Upper sideband (T&W 1999)

Carrier wave
1.2
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Figure 3. Computed spatial evolution of the carrier wave and sideband amplitudes from the simulated
Benjamin–Feir instability with larger initial steepness k0a0 = 0.133. The theoretical sideband growth rate
corresponding to the evolution predicted by McLean (1982b), and T&W 1999 represents the experimental
data of Tulin & Waseda (1999).

used. Notably, the chosen steepness k0a0 exceeds the breaking threshold value of 0.1125
according to Banner & Tian (1998) and Henderson et al. (1999). Consequently, the
occurrence of dissipative breaking would be anticipated from a physical perspective.
The perturbations are generated using parameters δ = 0.785k0a0, which corresponds
to p = 0.2, from which the stability analysis of McLean (1982a) yields the unstable
eigenvalue β = −0.0963 + 0.00639i , the perturbation strength is set to ε = 0.03. The total
simulation time is 200T0. The remaining computed parameters, such as the domain size
and resolution, remain consistent with those utilised in § 3.1.

The present fully nonlinear simulation is quantitatively validated in figure 3, again
making use of (3.4). Here the spatial evolution of amplitudes (carrier wave plus both
sidebands) is compared with the experimental data from Tulin & Waseda (1999).
We likewise verify the initial exponential growth rate of the sidebands against the
theoretical prediction of McLean (1982a), based on the unstable eigenvalue reported
above. Figure 3 demonstrates a good match of the initial sideband growth rate with
the theoretical prediction. This match is maintained longer for the lower sideband than
the upper. Furthermore, the initial and longer term evolutions of both the carrier wave
and the sidebands exhibit reasonable agreement with the experimental data of Tulin
& Waseda (1999). Around the vicinity of the first modulational peak, approximately
at x ≈ 42λ0, the primary wave undergoes a decrease, reaching a local minimum
before gradually rising again. However, it does not fully regain its original strength
attained prior to wave breaking. This phenomenon has also been confirmed through
other experimental studies (Melville 1982). It is also observed that the lower sideband
consistently maintains the highest amplitude (around 0.75a0), while both the carrier wave
and upper sideband experience fluctuations at much lower levels. Consequently, this
confirms the occurrence of a permanent frequency downshift for larger initial carrier wave
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Figure 4. Computed spatial evolution of the carrier wave and sideband amplitudes from the simulated
Benjamin–Feir instability for k0h = 2 with initial steepness k0a0 = 0.2. The theoretical sideband growth rate
corresponding to the evolution predicted by McLean (1982a).

steepness. Physically, this phenomenon is related to dissipative wave breaking around the
modulation peak. The present simulated results are likewise in close agreement with those
reported previously, either utilising potential flow models (Madsen et al. 2002) or more
advanced computational fluid dynamics models (Li & Fuhrman 2022) which directly
simulated the wave breaking process.

Further validation of the present model’s ability to simulate strongly nonlinear wave
evolution at finite depth is achieved through an additional numerical experiment with
parameters p = 0.2, k0a0 = 0.2 and ε = 0.02, while maintaining all other computational
parameters identical to the deep-water frequency downshifted case. The unstable
eigenvalue β = −0.0764 + 0.00902i , obtained from the finite-depth stability analysis of
McLean (1982a), is employed to verify the initial sideband growth rate. As shown in
figure 4, the simulated sideband amplitudes initially exhibit exponential growth, closely
matching the theoretical prediction up to approximately x ≈ 35λ0 for the lower sideband.
Beyond the first modulational peak, a permanent frequency downshift is established,
characterised by a sustained reduction in the carrier wave amplitude, associated with
dissipative effects linked to wave breaking, and consistent with behaviour observed under
deep-water conditions. These results further validate the present model’s accuracy in
capturing steep wave evolution under finite-depth conditions.

3.3. Modelling energy dissipation
For the long-time simulations considered herein, it is essential to account for potential
energy dissipation during wave evolution. To quantify the energy loss, the total mechanical
energy is computed following the formulation of Klahn et al. (2021a,b) as

E = 1
2

∫ Lx

0

(
Φs

∂η

∂t
+ gη2

)
dx, (3.6)
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Figure 5. Spatial evolution of the total mechanical energy for wave fields exhibiting recurrence and frequency
downshift, shown for k0h = 2π (a) and k0h = 2 (b).

where Lx denotes the horizontal extent of the computational domain. The spatial evolution
of the total energy for the simulations, using (3.4) and discussed in §§ 3.1 and 3.2,
is presented in figure 5. Notably, there is no sign of energy loss in the simulations
involving recurrence. In contrast, simulations exhibiting frequency downshift preserve
E/E0 ≈ 1 during the initial stage, followed by a rapid decline of approximately 15 % and
31 % over a spatial interval of roughly 10λ0, for k0h = 2π and k0h = 2, respectively. In
deeper water (figure 5a), stronger dispersion delays sideband saturation and thus limits
energy loss, whereas in finite depth (figure 5b), reduced dispersion accelerates sideband
growth and precipitates larger, earlier energy dissipation. Comparison with figures 3
and 4 confirms that irreversible energy dissipation contributes to the establishment of a
permanent frequency downshift.

4. Simulations of irregular waves
Having validated the model for cases involving MI of regular wave trains in the previous
section, the present section will present numerical simulations examining the impact of full
(beyond third-order) nonlinearity in the simulation of realistic frequency spectra. Within
this framework, a series of unidirectional irregular wave simulations are conducted in both
deep and finite depths using the fully nonlinear model. This work is inspired by the study
of Liu et al. (2022). They carried out unidirectional irregular wave simulations using HOS
method truncated at third order to study the relationship between rogue wave formation
and BFI. The initial conditions and parameters used in our simulations will be described
in § 4.1. In § 4.2 we consider some specific properties of the wave field such as the energy
wave spectrum and significant wave height at different peak periods. Furthermore, we
also consider some specific statistical properties of the surface elevation and contrast them
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with third-order HOS results of Liu et al. (2022). In § 4.3 we investigate the skewness and
kurtosis of the surface elevation as well as its PDF, and in that connection we will work
with spatial averages. In § 4.4 we consider the exceedance probability of the wave crest
and probability of rogue wave occurrence.

4.1. Initial conditions and computational parameters
In the forthcoming simulations with the present model, the initial conditions for (η, Φs)

are constructed by linearly combining sinusoidal wave components with random phases
uniformly distributed in the range of [0, 2π]. Each component is characterised by its
angular frequency ω and amplitude chosen based on the Texel, Marsen and Arsloe (TMA)
spectrum proposed by Holthuijsen (2010). The TMA spectrum derives its name from the
TEXEL, MARSEN and ARSLOE datasets that were used by Bouws et al. (1985). It is
characterised by the product of a JONSWAP (Joint North Sea Wave Observation Project)
spectrum SJ (ω) and a depth factor H(ω, h)

S (ω) = SJ (ω) × H (ω, h) . (4.1)

The JONSWAP spectrum is defined as

SJ (ω) = S0

(
ω

ωp

)−5

exp

(
−5

4

(
ω

ωp

)−4
)

γ
exp

(
−(ω/ωp−1)2

/
(
2σ 2

s
))

, (4.2)

where ωp is the peak angular frequency of the wave field, γ is the peak enhancement
factor, σs = 0.07 if ω < ωp and 0.09 otherwise and the constant S0 is defined implicitly
through the relation ∫ ∞

0
SJ (ω)dω = σ 2 = 〈η2〉, (4.3)

where angle brackets denote spatial averaging, 〈η〉= 0 and σ is the standard deviation
of the surface elevation. Therefore, the value of S0 is determined by the characteristic
steepness of the wave field, which is expressed as ε = 2kpσ . To transform the deep-water
JONSWAP spectrum into a spectrum applicable to arbitrary water depths, the depth factor
introduced by Holthuijsen (2010) in (4.1) is defined as

H (ω, h) = tanh2(kh)c

2cg
, cg = c

2

(
1 + 2kh

sinh 2kh

)
, c = ω

k
. (4.4)

To compare with the wave statistics of Liu et al. (2022), we employ the same spectral
parameters and numerical resolution across all cases in the present model. The spectral
significant wave height is taken as Hm0 = 4σ = 0.06 m, with the peak wave period
Tp = 1 s (corresponding to the peak wavelength λp = 1.56 m, ωp = 2π/Tp = 2π s−1 and
peak frequency f p = 1/Tp = 1 Hz), and γ = 6. In the computational set-up, we define
the dimensions of the computational domain as Lx = 128λp. The vertical extent of the
fluid domain is reduced by using the artificial boundary condition with b = 1.5Hm0. To
discretise the domain, a total of 4096 (horizontal) grid points are used corresponding
to 32 points per peak wavelength, coupled with 11 points distributed in the vertical
direction. Note that the resolution utilised implies that the spectrum is effectively cut off at
ωc ≈ 4.86ωp, which is enough for simulating third-order effects, see (3.24) of Klahn et al.
(2021b). Following the same procedure described in Klahn et al. (2021b,c), starting with
linearised initial conditions, the nonlinear terms are ramped to fully on over a duration
of 10Tp. Simulations then continue for a total duration of 200Tp. The characteristic wave
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kph 1 1.5 2 3 4 10

ε 0.1585 0.1334 0.1252 0.1213 0.1208 0.1207
K + 0.2955 0.1290 0.1200 0.1197 0.1196 0.1195

Table 1. The values of the relative water depth, the characteristic wave steepness and the nonlinear parameter
given by (4.5) adopted in the present simulations.

1.00

kph = 1.5
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kph = 3

kph = 4

kph = 10

0.99

0.98

0.97

0.96

0.95
50 100 150 200

t/Tp

E(
t)/

E(
0

)

Figure 6. The total mechanical energy as a function of time for wave fields for different values of kph.

steepness for the linearised initial conditions are set according to ε. To characterise the
waves in terms of bound wave nonlinearity, the nonlinear parameter defined by Toffoli
et al. (2007)

K + = Hm0kp

4

((
4 tanh(kph) + tanh (2kph)

) (
1 − tanh (kph)2)

tanh (kph)
(
2 tanh (kph) − tanh (2kph)

) + 2 tanh (kph)

)
(4.5)

is used. This parameter transitions to the characteristic steepness as kph → ∞ and to the
Ursell number as kph → 0. The values of kph, ε and K + for each of the cases to be
considered are listed in table 1. The time step is set such that 	t = Tp/50, with artificial
damping applied at each time step to ensure stability. For each case, we have carried out
the time integration with 500 independent initial conditions, with the phase of each wave
component determined randomly. Each individual simulation considered, running on a
single processor, requires approximately three hours to complete in terms of wall-clock
time. We note that the simulations have thus cumulatively taken approximately one year
of computation time in total. Due to the presence of artificial damping, the total energy E ,
computed according to (3.6), exhibits a gradual decrease of approximately 4 %–5 % over
a duration of 200Tp, as shown in figure 6. This level of energy reduction is comparable in
magnitude to that reported by Xiao (2013) and Klahn et al. (2021a,b).
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Figure 7. Evolution of the computed spectra for the cases involving six dimensionless water depths.
(a) kph = 10, (b) kph = 4, (c) kph = 3, (d) kph = 2, (e) kph = 1.5 and (f ) kph = 1.

4.2. Wave spectra and significant wave height
Here, we consider the evolution of the wavenumber spectrum at four different non-
dimensional times: t/Tp = 0, 20, 50 and 80, as shown in figure 7. Although the total
simulation duration is 200Tp, we present results only up to 80Tp, as the spectral
characteristics exhibit negligible variation beyond approximately 50Tp, indicating that the
spectrum has reached a statistically steady state within the considered wavenumber range.
As expected, the initial spectra exhibit minor discrepancies at various water depths due
to the change in dispersion relation induced by variation in water depth. As described
in Holthuijsen (2010), the derivation of the TMA spectrum depends critically on the
assumption that the high-frequency tail of the JONSWAP spectrum in deep water is
proportional to f −5. Consequently, the spectrum tail in deep water should be close
to the power law k−3, as clearly depicted in figure 7. Similar to previous simulations
in finite depth (Xiao 2013), our observations reveal that in deeper water (kph � 2, see
figure 7a–d), the tails of S(k) are close to k−3 and remain time invariant. In shallower water
(kph � 1.5, see figure 7e, f ), the spectral tails at t/Tp = 0 are already steeper than k−3.
This can be attributed to finite-depth effects, which suppress high-wavenumber (short-
wave) components due to enhanced bottom influence and reduced dispersive capacity.
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Figure 8. Spectral evolution over time for the case with kph = 1.

Furthermore, the tails at t/Tp = 20, 50, 80 exhibit a steeper slope relative to the initial
state at t/Tp = 0. A downward shift in the spectral peak is observed in most cases
relative to the initial spectrum; however, for kph = 1.5, the peak frequency remains nearly
unchanged. This is because, as kph approaches the critical value of 1.363, MI becomes
weak and can no longer effectively transfer energy to lower wavenumbers. This finding
is in accordance with the results from both experiments conducted by Onorato et al.
(2009) and numerical simulations presented in Dysthe et al. (2003). In these simulation
studies, a spectrum shift is already observed on the scale of the Benjamin–Feir instability,
and this pattern is also noted in the study of Onorato et al. (2002). Furthermore, in the
shallowest case (kph = 1), the peak frequency exhibits a rapid decrease during the initial
stage, accompanied by the emergence of a secondary wave system at lower frequencies, as
illustrated in figure 8. This is attributed to enhanced nonlinear interactions, which become
increasingly effective as dispersion weakens in shallow water.

4.3. Skewness, kurtosis and the PDF of the surface elevation
We now investigate some statistical properties of the surface elevation. In figures 9 and 10,
we respectively present the skewness S = 〈η3〉/σ 3 and kurtosis K = 〈η4〉/σ 4 as a function
of non-dimensional time in various water depths. As reference the results from Liu et al.
(2022) are additionally shown in these two figures. As shown in figure 9, S , serving as
a descriptor for the vertical asymmetry of the wave profile, increases significantly from
the Gaussian value of zero and settles into a relatively steady state of around S = 0.2
over the period of 10Tp, due to the nonlinear ramping procedure employed in the present
simulations. Beyond this time frame, there is a relatively good agreement between the fully
nonlinear model and the HOS method adopted in Liu et al. (2022), except for the results
of kph = 1, where the fully nonlinear model yields results approximately 25 % higher
than those of the HOS method (differences for t/Tp < 10 are again due to the ramping
procedure employed, and are thus not substantial). Moreover, the stable values are almost
constant, even for various kph. This can be attributed to the similar values of ε for these
five cases, see table 1. This is in line with the well-known fact that skewness is proportional
to steepness (Fedele & Tayfun 2009).

Kurtosis is predominantly influenced by the nonlinear dynamics of free waves (see e.g.
Mori & Janssen 2006; Onorato et al. 2009), which plays a crucial role in the generation
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Figure 9. Computed variation of the skewness S over time with various dimensionless water depths. Asterisks
represent HOS results from Liu et al. (2022), full lines denote results from the fully nonlinear model and
vertical dashed lines indicate the end of nonlinear ramping at t/Tp = 10. (a) kph = 10, (b) kph = 4, (c) kph = 3,
(d) kph = 2, (e) kph = 1.5 and (f ) kph = 1.

of extreme events. The kurtosis K is regarded to be a good indicator of the importance of
MI (see e.g. Xiao et al. 2013; Liu et al. 2022). The resulting temporal evolution of K from
the fully nonlinear simulations for all five cases are presented as lines in figure 10. In the
case of larger water depths (figure 10a–c), it is evident that K approaches a quasi-steady
level after first reaching a local maximum. This indicates that the nonlinear interactions
among free waves have been significant in these three scenarios, which has likewise
been reported in many studies in deep water (see e.g. Onorato et al. 2009; Toffoli et al.
2010; Xiao et al. 2013). At the instant of maximum K, the wave fields may therefore be
considered to be at their most nonlinear state during the simulations. On the other hand,
for shallower water depths (figure 10d, e), it is observed that K converges towards a steady
value without necessarily first reaching a clear local maximum. The time at which the
roughly steady state is reached depends on water depth. This observation implies that
the wave fields considered in these two cases are driven away from their initial Gaussian
state by bound wave nonlinearities. It is worth highlighting that, as water depth decreases,
the four-wave nonlinear interactions among the free waves become weaker. Assessing all
cases considered in this work, it becomes apparent that the quasi-steady value is strongly
related to the water depth. More specifically, it tends to be higher for larger water depths.
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Figure 10. Computed variation of the kurtosis K over time for various dimensionless water depths. Asterisks
represent HOS results from Liu et al. (2022), full lines denote results from the fully nonlinear model and
vertical dashed lines indicate the end of nonlinear ramping at t/Tp = 10. (a) kph = 10, (b) kph = 4, (c) kph = 3,
(d) kph = 2, (e) kph = 1.5 and (f ) kph = 1.

Compared with the results from Liu et al. (2022), the maximum K from the present fully
nonlinear simulations are around 6 % larger, whereas it is approximately 6 % smaller for
kph = 1. This difference can likely be attributed to the presence of full nonlinearity.

We now consider PDFs of the surface elevation at t/Tp = 50 for various water
depths. The specific time, t/Tp = 50, was selected to correspond directly with the
results presented by Liu et al. (2022). Although PDFs of the surface elevation
inherently evolve with time, and thus the choice of the instant analysed could influence
quantitative outcomes, adopting t/Tp = 50 ensures consistency and facilitates meaningful
comparisons. Other instants would likely yield quantitatively distinct distributions, but the
chosen reference time provides a robust basis for evaluating and interpreting our results
within an established framework. For convenience, we scale the surface elevation η by its
standard deviation σ , i.e. as ζ = η/σ . For each case the numerous space series segments
have been collectively analysed, with a ζ bin size corresponding to 0.2, resulting in the six
PDFs (circles) shown in figure 11. Error bars are also included, estimated as ±p(ζ )/

√
Nb,

where Nb is the number of samples in each bin, following Onorato et al. (2009). Also
shown for comparison are the PDFs from (i) the third-order HOS results of Liu et al.
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Figure 11. Comparison of PDFs computed from data generated using the present fully nonlinear model (Klahn
et al. 2021d, circles, with error bars) with simulated results from the third-order HOS method (Liu et al.
2022, asterisks), second-order theory (Fuhrman et al. 2023, black lines, referred to as FKZ23; Tayfun &
Alkhalidi 2020, red lines), as well as third- through sixth-order theoretical solutions (dashed lines, following
the methodology of Klahn et al. 2024, referred to as KZF24 above). (a) kph = 10, (b) kph = 4, (c) kph = 3,
(d) kph = 2, (e) kph = 1.5 and (f ) kph = 1.
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(2022) (asterisks), (ii) the (first-order) Gaussian distribution (dotted lines)

p(ζ ) = 1√
2π

exp
(

−ζ 2

2

)
, (4.6)

and (iii) the exact second-order theoretical PDF derived recently by Fuhrman et al. (2023)
(black lines)

p(ζ ) =
(

2
S
)1/3

exp
[

1
3S2 + ζ

S
]

Zi (χ) , (4.7)

where

χ =
(

2
S
)1/3 ( 1

2S + ζ

)
, (4.8)

Zi(χ) ≡
{

Ai(χ) for χ �−1.17371,

Ci(χ) for χ < −1.17371,
(4.9)

where

Ci(χ) ≡ [Ai(χ)2 + Bi(χ)2]1/2. (4.10)

Note that the switch to the Ci(χ) function in (4.9) below the indicated threshold for χ

was suggested by Fuhrman et al. (2023), provided that S � 0.2, to eliminate non-physical
oscillatory behaviour for negative ζ in the otherwise theoretical solution. Above, Ai(χ)

and Bi(χ) are respectively the Airy functions of the first and second kinds. Figure 11 also
presents (iv) the second-order Tayfun & Alkhalidi (2020) distribution (red lines)

p(ζ ) =

⎧⎪⎨⎪⎩
αpG(ζs)/(1 + ε1ζs) for ζs > 0,

αpG(ζs)/ exp (ε1ζs) for − 2/ε1 < ζs � 0,

0 for ζs �−2/ε1,

(4.11)

where

ζ =
{

(ζs + ε1ζ
2
s /2 − ηm)/σs for ζs > 0,

(ζseε1ζs/2 − ηm)/σs for − 2/ε1 < ζs � 0,
(4.12)

where α = σs/PG(2/ε1), pG is the standard normal PDF, see (4.6), PG is the
standard normal cumulative distribution function, ε1 = 0.3377S + 0.0174S2 + 0.0259S3,
ηm = 0.1687S − 0.0012S2 + 0.0101S3 and σs = 1 + 0.0025S + 0.0396S2 + 0.0104S3.
Additionally shown in figure 11 are (v) numerically determined PDFs at third- through
sixth-order, based on the theoretically based solutions of Klahn, Zhai & Fuhrman (2024),
who showed that the theoretical PDFs could be computed to essentially any desired order,
which was newly posed as solutions to an ordinary differential equation. The sixth-order
results based on their methodology are newly presented in this study, with the required
coefficients used in the solution detailed in Appendix A. The statistical moments required
for the calculation of the second- through sixth-order theoretical PDFs are as indicated
in table 2, calculated from all model results at t/Tp = 50. Space series of the surface
elevation containing the largest computed rogue waves are likewise provided in figure 12,
as examples, where it is seen that these rogue waves often appear to be surrounded by an
otherwise rather ordinary wave field for the given conditions. From these PDFs, as well
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kph S K Sh = 〈ζ 5〉 Kh = 〈ζ 6〉 m7 = 〈ζ 7〉
1 0.2679 2.624 2.060 10.99 15.89

1.5 0.1775 3.341 2.324 22.04 37.82
2 0.1796 3.667 2.937 30.32 64.52
3 0.1894 3.800 3.199 32.65 69.19
4 0.1991 3.907 3.481 35.23 79.40
10 0.2051 4.044 3.760 38.91 90.26

Table 2. Summary statistical moments of cases considered in the present work (Sh is the hyperskewness, Kh
is the hyperkurtosis and m7 is the seventh statistical moment).

as the depicted space series, it is seen that all fully nonlinear simulations result in isolated
rogue waves, with crest elevations in the most extreme cases reaching nearly ζ = 8 i.e.
eight standard deviations above the mean.

From figure 11, it is observed that the third-order HOS results of Liu et al. (2022)
exhibit noticeable deviations from the present fully nonlinear results, which generally
predict significantly increased probability density of both extreme wave crests and troughs,
as is clear in both positive and negative tail regions. It is well known that, as kph
approaches 1.363, the four-wave nonlinear interactions (in the weakly nonlinear regime, at
least within the narrow-band approximation) become weaker. Therefore, the two primary
factors contributing to this observed discrepancy are seemingly limitations associated with
higher-order nonlinear dynamics of free waves and stronger effects arising from bound
waves. Additionally, we further observe that none of the current theoretical distributions
fully capture the characteristics of the simulated results. To illustrate this, we proceed by
comparing our findings with a range of analytical distributions, detailing how each aligns
with or diverges from the simulated outcomes. Notably, the heavy positive tailed regions
computed from the present fully nonlinear results are reasonably predicted by e.g. the
fifth and sixth-order solutions based on Klahn et al. (2024), although even these under-
predict the probability density in these regions, perhaps with the exception of results
with kph = 1.5. This stands in contrast to the findings of Toffoli et al. (2007), who
reported no significant deviations from second-order theory. The discrepancy is likely
attributable to the fact that their data are characterised by a directional spreading, whereas
our computations are based on long-crested, unidirectional waves, which represent an
idealised scenario providing an upper bound for wave statistics. On the other hand, none
of the depicted theoretical PDFs do an adequate job of predicting the probability density
of the negative tail region (where the resulting theoretical PDFs turn oscillatory at third
and higher orders), which is considered as an open problem. Furthermore, at kph = 1,
K is 2.6244 (see table 2), which is less than 3. Therefore, the theoretical PDFs above
second order proposed by Klahn et al. (2024) are not applicable (and hence not shown), as
cumulants used in their theory should be positive.

4.4. Wave crest distribution and rogue wave occurrence
Here, we investigate the exceedance probability of the wave crest, defined as the highest
elevation of each individual wave with respect to the mean water level using zero-up
crossing analysis. In the context of the crest amplitude, linear theory predicts a Rayleigh
distribution

P

(
ηc

Hm0

)
= exp

(
−8

η2
c

H2
m0

)
, (4.13)
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Figure 12. Example snapshots of the computed surface elevation surrounding the largest crests generated by
the fully nonlinear wave model of Klahn et al. (2021c). Insets depict the region immediately surrounding the
largest crest. Variable x p denotes the x position of the highest crest. (a) kph = 10, (b) kph = 4, (c) kph = 3,
(d) kph = 2, (e) kph = 1.5 and (f ) kph = 1.
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whereas second-order interactions should play a role in causing deviations from this result.
Assuming deep water and narrow-bandedness of the spectrum, Tayfun (1980) formulated
a second-order wave crest distribution, which is also reasonably suitable in intermediate
water depth according to Fedele et al. (2019). The exceedance probability is expressed as

P

(
ηc

Hm0

)
= exp

[
− 8

H2
m0k2

p

(√
1 + 2kpηc − 1

)2
]

= exp

[
− 2

ε2

(√
1 + 4ε

ηc

Hm0
− 1

)2
]
,

(4.14)

where ηc is the crest height. Extending this framework, Tayfun & Fedele (2007) later
proposed a third-order wave crest distribution model, further improving the description of
nonlinearity

P

(
ηc

Hm0

)
= exp

[
− 2

ε2

(√
1 + 4ε

ηc

Hm0
− 1

)2
] [

1 + Λ

(
ηc

Hm0

)2
((

2ηc

Hm0

)2

− 1

)]
,

(4.15)

where Λ = λ40 + 2λ22 + λ04 is a relative measure of third-order nonlinearities. The
surface cumulants λmn are defined by

λmn = 〈ηm η̂n〉
σm+n

+ (−1)m/2(m − 1)(n − 1), for m + n = 4, (4.16)

where η̂ is the Hilbert transform of η. In figure 13, the theoretical (linear) Rayleigh, second-
order Tayfun and third-order Tayfun–Fedele distributions, along with the simulated results
of Liu et al. (2022), are utilised as references for comparing with the numerical results
obtained from the present fully nonlinear model at t/Tp = 50.

The wave crest distributions from the present fully nonlinear simulations exhibit a
substantial departure from the Tayfun distribution (4.14) at the tails for cases having larger
water depths (see figure 13a–d), although this solution still notably provides much better
accuracy than the Rayleigh distribution. These deviations are primarily influenced by the
nonlinear dynamics of free waves, which dominates the statistical characteristics of the
wave crests. The aforementioned phenomenon of deviation from the Tayfun distribution
has already been substantiated in the context of long–crested waves through experimental
and numerical models, as demonstrated in Onorato et al. (2006) and Onorato et al. (2009).
As we move towards shallower water depth (see figure 13e), the crest amplitude attenuates,
leading to reduced (but still apparent) deviations from the second-order theory. Similar
trends with respect to water depth are also observed in the simulations conducted by
Liu et al. (2022), confirming that the primary contributing factor is likely the MI enhanced
by third-order nonlinearity. For each case considered in the present work, comparing
with the third-order HOS simulation results of Liu et al. (2022), the results of the fully
nonlinear simulations demonstrate much larger probability of large crests, especially for
kph � 1.5. This discrepancy can be attributed to the impact of full nonlinearity in the
interactions among free waves, which will result in and enhance the MI. It should be
noted that, at kph = 1.5, Liu et al. (2022) showed that the difference between their results
and the second-order Tayfun distribution almost disappears, which indicates that their
simulated wave fields are dominated by bound wave effects. Conversely, the deviation of
the present results from both the Tayfun and Tayfun–Fedele distributions is still significant.
This seemingly indicates that the nonlinear dynamics of free waves and higher-order
bound wave effects remain important in the statistical properties of the fully nonlinear
wave fields. The third-order Tayfun–Fedele model yields improved predictions in the tail
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Figure 13. Exceedance probability of wave crests for various dimensionless depths kph. Also shown are the
Rayleigh distribution (dotted lines), the second-order Tayfun distribution (full lines), results from the third-
order HOS model from Liu et al. (2022) (asterisks) and those from the present fully nonlinear simulations
(circles). (a) kph = 10, (b) kph = 4, (c) kph = 3, (d) kph = 2, (e) kph = 1.5 and (f ) kph = 1.
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region compared with the second-order Tayfun model. However, it still underestimates
the probability of extreme crests when compared with fully nonlinear simulations. This
highlights the limitations of weakly nonlinear approximations in capturing the strongly
nonlinear wave dynamics, consistent with the findings of Karmpadakis, Swan & Christou
(2019). Furthermore, at kph = 1, λ40 takes a negative value (−0.3756), which violates the
underlying assumption of the Tayfun–Fedele model that λ40 must be positive. As such, the
model is not applicable in this case and is therefore omitted.

The simplest rogue wave definition is one having ηc > 1.25Hm0. Figure 14 depicts the
progression of the probability of rogue wave occurrence P(ηc > 1.25Hm0) for various
dimensionless water depths. As observed, both the present model and the HOS method
truncated at third order reveal an initial increase in P(ηc > 1.25Hm0), attributed to the
robust MI of the wave fields. Subsequently, a decline ensues, and eventually a relatively
stable stage will occur if the simulation is sufficiently long. Here, we focus on comparing
the present results with those obtained using the third-order HOS method (Liu et al. 2022).
Notably, the present model exhibits a more rapid increase during the ascending phase.
(20 � t/Tp � 50) and produces higher P(ηc > 1.25Hm0) values compared with the third-
order HOS results, albeit of the same order of magnitude. For instance, in the deepest case
with kph = 10, the maximum P(ηc > 1.25Hm0) reaches up to 2.93 ×10−3, significantly
exceeding the third-order HOS (Liu et al. 2022) peak of 1.68 × 10−3 by nearly a factor of
two. This highlights the discernible impact of full nonlinearity on MI, further contributing
to the likelihood of rogue wave formation. As the depth kph decreases from 10 to 1.5,
both the initial growth rate and P(ηc > 1.25Hm0) decrease, yet the maximum values still
significantly exceed the third-order HOS predictions. This further illustrates that the MI
induced by the higher-order nonlinearity weakens as water depth decreases.

The time evolution of P(ηc > 1.25Hm0) and K is plotted simultaneously in figure 14
to enable comparison and analysis of their relationship. This comparison reveals that the
evolution of P(ηc > 1.25Hm0) is consistent with that of K. This connection emerges as
the kurtosis is closely tied to MI, serving as a primary indicator for the occurrence of
rogue waves. Kurtosis as such an indicator has been widely used in deep water (e.g. Mori
& Janssen 2006; Xiao et al. 2013). To better elucidate and quantify the relationship in
finite depth, we plot P(ηc > 1.25Hm0) for various water depths at distinct times (ranging
from t = 10Tp to 100Tp in 5Tp increments) as a function of the excess kurtosis K − 3 in
figure 15. Based on these scatter distributions, we compute a linear fit

P(ηc > 1.25Hm0) = 0.0026(K − 3), (4.17)

with a coefficient of determination (R2) of approximately 0.93 from the fully nonlinear
model, surpassing the value obtained from the third-order HOS results of Liu et al. (2022),
who found the fit

P(ηc > 1.25Hm0) = 0.0010(K − 3), (4.18)

with R2 = 0.56 based on their results. This indicates that the present model gives a stronger
correlation than the third-order HOS method. Comparison of (4.17) and (4.18) indicates
that full nonlinearity increases the probability of rogue waves for a given excess kurtosis
by a factor 0.0026/0.0010 = 2.60 for the present conditions.

5. Dependence of kurtosis on BFI
The results presented above highlight the potential substantial influence of MI in finite
water depths i.e. down to kph = 1.5. Additionally, they emphasise that kurtosis serves as a
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Figure 14. Comparison of the probability of rogue wave occurrence from the fully nonlinear model (circles)
with third-order HOS results reported in Liu et al. (2022) (asterisks). (a) kph = 10, (b) kph = 4, (c) kph = 3,
(d) kph = 2, (e) kph = 1.5 and (f ) kph = 1.

reliable indicator for both MI and the occurrence of rogue waves. Nevertheless, obtaining
the kurtosis value directly from the wave spectrum poses a challenge. Consequently, the
widely adopted approach for evaluating the impact of MI based on the wave spectrum is
the use of the BFI. For finite water depths, BFI = ρε0/δω (Janssen & Bidlot 2009), where
ε0 = 2Hm0kp0, kp0 = ω2

p/g and
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Figure 15. Correlation between the probability of rogue wave occurrence P(ηc > 1.25Hm0) and the excess
kurtosis K− 3. Depicted are results from third-order HOS modelling of Liu et al. (2022) (asterisks) and the
present fully nonlinear simulations (circles), with best-fit lines shown for both.

δω = 1√
π
(−0.015γ 2 + 0.6γ + 1.37

) (5.1)

is the spectral bandwidth, while

ρ = Re

[√
gT1111

k4
pωpω′′

p(k)

]
cg

c
(5.2)

is the depth factor. In finite water depths, T1111 and the second derivative of angular
frequency with respect to wavenumber ω′′

p(k) are calculated using the expressions of
Janssen & Onorato (2007)

T1111

k3
p

= 9T 4
1 − 10T 2

1 + 9

8T 3
1

− 1
kph

[(
2cg − c/2

)2
gh − c2

g
+ 1

]
, (5.3)

ω′′
p(k) = −

g
((

T1 − kph
(
1 − T 2

1
))2 + 4

(
kph

)2
T 2

1
(
1 − T 2

1
))

4ωpkpT1
, (5.4)

where T1 = tanh(kph). In this context, we investigate the BFI as a reliable indicator of the
relationship between full nonlinearity and the occurrence probability of rogue waves. The
BFI and aforementioned K + (see § 4.1) are both functions of kph by definition. These
two parameters are associated with free wave and bound wave nonlinearity, respectively.
Therefore, we plot the dependence of these two parameters on kph in figure 16 for the
wave conditions described in § 4.1 to illustrate how the relative importance of bound and
free wave nonlinearity evolves with kph. Note that free wave effects become dominant
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Figure 16. The dependence of BFI and K + on kph for waves with Tp = 1 s, λp = 1.56 m, Hm0 = 0.06 m and
γ = 6. Depicted are results of BFI (dash line) and K + (full line).

in deeper water conditions. In contrast, bound wave effects dominate in shallower water
depths where kph < 1.363. Various researchers have explored the relationship between K
and BFI. These investigations encompass theoretical analysis, numerical simulations and
experimental studies. Mori & Janssen (2006) proposed that , for unidirectional deep-water
wave fields under the assumption of a narrow-band and stationary spectrum, the long-
time value of K is proportional to BFI2. For non-stationary wave fields, Onorato et al.
(2016) related the evolution of kurtosis to variations in spectral bandwidth; however, their
framework does not provide predictions for Kmax observed under transient conditions. The
correlation between Kmax and BFI in finite-depth simulations, based on the third-order
HOS method (Liu et al. 2022), similarly found that (Kmax − 3) is proportional to BFI2.
The aforementioned findings clearly indicate that BFI serves as an effective indicator of
the impact of third-order nonlinearity in the wave field. However, the influence of full
nonlinearity on the correlation between the BFI and statistical measures such as kurtosis
in finite water depth remains unclear. Hence, to explore this relationship, we employ the
present fully nonlinear model to simulate unidirectional wave fields with initial TMA
spectra covering a broader range of frequency bandwidths (i.e. γ = 1, 1.5, 3, 6 and 9)
and water depths (kph = 1.5, 2, 3, 4 and 10), amounting to a total of 25 tested cases. For
each case, we have carried out 500 realisations with a total simulated duration of 200Tp,
each characterised by initially independent and random phases, as before. The results are
depicted in figure 17. In contrast to previously reported results that (Kmax − 3) ∝ BFI2 for
weakly nonlinear deep-water waves, a linear correlation is found, corresponding to

Kmax − 3 = 1.20 × BFI, (5.5)
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Figure 17. The dependence of the maximum kurtosis on BFI. Depicted are results from third-order HOS
modelling of Liu et al. (2022) (asterisks) and the present fully nonlinear simulations (circles). The black line
represents the best fit to the present (fully nonlinear model) data whereas the red line corresponds to the curve
based on third-order HOS results, as suggested by Liu et al. (2022) (there found by plotting (Kmax − 3) vs.
BFI2 rather than as above).

with coefficient of determination R2 = 0.97 being very near unity and surpassing the value
of R2 = 0.88 reported in Liu et al. (2022), based on their quadratic fit

Kmax − 3 = 1.13 × BFI2. (5.6)

This means that the fitted values have a stronger correlation with the observed values
when compared with the results presents in Liu et al. (2022). Furthermore, when plotted
as in figure 17, it is clear that a linear relationship is also supported by the third-order
HOS data of Liu et al. (2022), similar to the present finding. This suggests that the data
from Liu et al. (2022) are adequately represented by a linear fit, while the adoption of a
quadratic form is not theoretically justified. The extension to higher BFI values in figure 17
is primarily due to the inclusion of deep-water conditions (kph = 10) in the present
study, in contrast to the shallower range (kph � 4) considered by Liu et al. (2022). It is
therefore reasonable to expect that, if HOS simulations were conducted at kph = 10 within
their framework, the resulting relationship between BFI and (Kmax − 3) would likewise
exhibit an approximately linear trend. Considering that the fully nonlinear simulations
show an overshoot in kurtosis that cannot be captured by four-wave interactions, the
relation between BFI and excess kurtosis at its asymptotic state (here, approximated
as at t/Tp = 200), denoted by (K∞ − 3), is also presented in figure 18 to ensure the
expected quadratic behaviour is adequately accounted for. A similar linear correlation is
also found

K∞ − 3 = 0.95 × BFI, (5.7)
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Figure 18. The relation between BFI and the excess kurtosis (K∞ − 3) approximated as K at t/Tp = 200. The
circles denote the present fully nonlinear simulations, and the black line represents the best fit to the present
(fully nonlinear model) data.

with R2 = 0.91. In conjunction with the aforementioned findings, it is demonstrated that
BFI is indeed a reliable indicator of high-order nonlinear effects in the wave field.

6. Conclusions
In the present work, we have presented a numerical study of the MI of wave trains and
statistical properties of the surface elevation of irregular wave fields, with emphasis on the
role of the dimensionless water depth kph. The study has been performed using the fully
nonlinear numerical model of Klahn et al. (2021d), which is spectrally accurate in both
horizontal and vertical spatial directions and maintains good computational efficiency.

We have first focused on the numerical study of wave instability phenomenon in terms
of the 1-D Benjamin–Feir (class I type) instability in deep water. The initial exponential
growth rates of both sidebands have been verified against analytical predictions. The
simulated cases involving modulated regular wave trains have been compared with both
theoretical predictions for the initial growth and experimental measurements for the longer
term dynamics. The simulated results show good agreement with the experimental data,
validating the present wave model for this phenomenon. Regarding the Benjamin–Feir
instability, our long-time simulations illustrate both a recurrence cycle (at low initial
wave steepness) and permanent frequency downshift (at higher initial wave steepness),
in accordance with previous studies.

Subsequently, unidirectional irregular wave fields in finite water depths have been
investigated. We have presented a detailed description of the statistical properties of the
surface elevation. The skewness, the kurtosis, as well as the PDFs for both the surface
elevation and wave crests, have been presented as a function of water depth. Results have
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been compared with the recent work of Liu et al. (2022), in finite depth based on the
HOS method truncated at third-order, which can only predict the statistical properties of
the surface elevation related to lower-order wave–wave interactions. The present study has
been able to simulate the effects of full nonlinearity on wave statistical properties. The
present simulations have demonstrated higher kurtosis, a greater manifestation of MI and
exhibit more pronounced non-Gaussian wave statistics than predicted by the HOS method
across all water depths. As the water depth decreases, the differences between the two
diminish. Hence, we conclude that third-order HOS simulations generally (significantly)
under-predict the occurrence of rogue waves, at least in 1-D simulations.

We have also elucidated the importance of full nonlinearity for MI in the evolution of
unidirectional wave fields at finite depth using more extensive fully nonlinear simulations.
For waves in finite depth we have found that the kurtosis, and hence the occurrence
probability of a rogue wave, can be predicted by the BFI. According to third-order
HOS results, the maximum excess kurtosis is linearly related to the square of BFI (i.e.
(Kmax − 3) ∝ BFI2). This is no longer the case for wave fields including fully nonlinear
wave–wave interactions. Considering full nonlinearity, we have found that a new linear
relationship between maximal kurtosis and BFI (i.e. Kmax − 3 ∝ BFI), with stronger
correlation than found previously based on third-order HOS results. It is noteworthy that
the newly identified linear relationship appears universal over a broad range of water
depths, specifically for dimensionless depth conditions having kph � 1.5.
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Appendix A. Determining PDFs up to sixth order based on Klahn et al. (2024)
Klahn et al. (2024) provided the coefficients required to obtain the theoretical PDF of the
surface elevation up to fifth order. As PDFs up to sixth order have been presented in the
present work (§ 4), we will therefore provide the required additional coefficients and other
details required to obtain the PDF at this new order in the present appendix.

From (2.7) of Klahn et al. (2024), the ordinary differential equation governing the PDF
at sixth order corresponds to

0 = ζ p + κ2
dp

dζ
− κ3

2
d2 p

dζ 2 + κ4

6
d3 p

dζ 3 − κ5

24
d4 p

dζ 4 + κ6

120
d5 p

dζ 5 − κ7

720
d6 p

dζ 6 , (A1)

in which κn is the nth cumulant of ζ . Expressions for these cumulants in terms of the
statistical moments are provided in table 3. As explained by Klahn et al. (2024), asymptotic
solutions at the ζ → ∞ limit to (A1) can be found through the method of dominant
balance. Following their procedure leads to the following asymptotic solution for the
positive tail of p(ζ ) at sixth order:

p(ζ ) ∼ B

ζ a0
exp (a1ζ

7/6 + a2ζ + a3ζ
5/6 + a4ζ

2/3 + a5ζ
1/2 + a6ζ

1/3 + a7ζ
1/6), (A2)
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κ1 κ2 κ3 κ4 κ5 κ6 κ7

0 1 S K− 3 Sh − 10S 30 − 15K− 10S2 +Kh 210S − 35KS − 21Sh + m7

Table 3. The first seven cumulants expressed in terms of the skewness S , kurtosis K, hyperskewness
Sh ≡ 〈ζ 5〉, hyperkurtosis Kh ≡ 〈ζ 6〉 and m7 ≡ 〈ζ 7〉.

a0 − 5
12

a1

− 6
7

(
720
κ7

)1/6

a2
κ6

κ7

a3
32/3(2κ5κ7 − κ2

6 )

22/3 × 51/6κ
11/6
7

a4
52/3(κ3

6 − 3κ5κ6κ7 + 3κ4κ
2
7 )

32/3 × 21/3κ
8/3
7

a5
51/2(−9κ4

6 + 36κ5κ
2
6 κ7 − 20κ2

5 κ2
7 − 32κ4κ6κ

2
7 + 32κ3κ

3
7 )

16κ
7/2
7

a6
21/3(14κ5

6 − 70κ5κ
3
6 κ7 + 75κ2

5 κ6κ
2
7 + 60κ4κ

2
6 κ2

7 − 75κ4κ5κ
3
7 − 45κ3κ6κ

3
7 + 45κ4

7 )

3 × 31/3 × 52/3κ
13/3
7

a7
51/6(1729κ6

6 −10 374κ5κ
4
6 κ7+16 380κ2

5 κ2
6 κ2

7 +8736κ4κ
3
6 κ2

7 −4200κ3
5 κ3

7 −20 160κ4κ5κ6κ
3
7 −6048κ3κ

2
6 κ3

7 +5760κ2
4 κ4

7 +8640κ3κ5κ
4
7 +3456κ6κ

4
7 )

−576 × 21/3 × 32/3κ
31/6
7

Table 4. The coefficients in the asymptotic form of p(ζ ) (see (A2)) at sixth order.

where the coefficients a0, a1, . . ., a7 are listed in table 4. Utilising an assumed value of B,
boundary conditions for p(ζ ) and its first six derivatives at ζ = ζmax can be established
from (A2). Utilising these, (A1) may then be numerically integrated backwards from ζmax
to the first zero crossing at ζmin . As discussed by Klahn et al. (2024), the solution turns
oscillatory for ζ < ζmin , and hence this part of the solution may be discarded. All results
in the present study have utilised ζmax = 9. The correct value of B is then found iteratively,
such that ∫ ζmax

ζmin

p(ζ )dζ = 1, (A3)

leading to the sixth-order PDFs presented in the present work. Functions automating this
procedure up to sixth order are provided at the URL indicated in the data availability
statement.
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