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0. Introduction. Throughout the paper the letter A will denote a commutative,
semisimple, weakly sequentially complete and completely continuous Banach alge-
bra. The term ‘“‘completely continuous” means that, for each a € 4, the multi-
plication operator L, : A—> A, L,(x) = ax, is compact. Now let G be an arbitrary
discrete group and A(G) be its Fourier algebra and VN(G) be its von Neumann
algebra, as defined by P. Eymard in [6]. The algebra A(G) possesses all the properties
imposed on A, see [6] and e.g. [16; Theorem 3.6]. The algebra A(G) is our main
example and throughout the paper special attention will be paid to it. As is well
known, on the second dual 4** of A4 there are two algebra multiplications extending
that of 4, known as the first and second Arens multiplications, whose constructions
are recalled below. Assume that 4™ is equipped with the first of them. Unless the
algebra A is Arens regular, the algebra 4™ is not commutative and a characteriza-
tion of the central elements of 4** presents a certain interest. In this paper we study
about the algebras 4 and A™ the following four questions. (a) What are the central
elements of 4**? (b) When is 4 Arens regular? (¢) When does Arens regularity of A
imply that A4 is finite dimensional?; and (d) When is there a weakly compact homo-
morphism from A into Cy(X) with an infinite dimensional range? Here ¥ is the
Gelfand spectrum of the algebra 4. For the Fourier algebra 4(G) of an amenable
discrete group G, as will be explained below, all these questions are solved. On the
other hand, if G is a nonamenable discrete group, none of the these questions seems
to be solved for the algebra A(G). In the case where G is amenable, Lau and Losert
in [11; Theorem 6.5] proved that the center of the algebra VN(G)* is A(G). Again for
G amenable, in [13] Lau and Wong proved that the algebra A(G) is Arens regular if
and only if G is finite. In the case where G is nonamenable, concerning Arens reg-
ularity of A(G), the best known result seems to be the one obtained by Forrest [7],
which says that if 4(G) is Arens regular then each amenable subgroup of G is finite.
In the case where G is amenable, as proved by Granirer [8] and the author [16],
weakly compact homomorphisms on A(G) have a finite dimensional range and, as
remarked by Granirer [8], this result fails if G is not amenable. In these kinds of
problems, existence of a bounded approximate identity and knowledge of the center
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of the auxiliary algebra (44*)* play an essential role, as clearly displayed in the
paper [12]. For a nonamenable discrete group G, the algebra A(G) does not have a
bounded approximate identity and we do not know the center of the algebra
(A(G)VN(G)*)*. So we have had to follow a different path. Concerning the first
question, our main result says that an element m € A4** is in the center of this algebra
if and only if mA™ C A and 4**m C A. Concerning the second and third questions,
we give several necessary and sufficient conditions for 4 to be Arens regular or finite
dimensional. At this point we remark that there exist nonreflexive Arens regular
Banach algebras satisfying the conditions imposed on 4. Concerning the fourth
question, we show that there exist weakly compact homomorphisms % : A—> Cy(X)
with infinite dimensional ranges if, and only if, the functional zero is in the weak
sequential closure of ¥ in 4*. The main ingredients of the proofs are weak sequen-
tial completeness and the fact that any von Neumann algebra has the Grothendieck
property [14].

1. Notation and Preliminaries. Let 4 be a commutative Banach algebra, a, b two
elements of A4, f an element of A* and m, n be two elements of 4**. We define the
elements f.a, a.f, m.f, f*n of A* and nm and n*m of A** as follows.

<fa,b>=<fab > <af,b>=<fab>
<mf,a>=<m,fa> <fxm,a>=<m,af >
<nmm, f>=<nmf> <nxmf>=<m,fxn>

The operations (n, m)i—>n.m and (n, m)i—>n * m define two Banach algebra multi-
plications on 4™, known, respectively, as the first and second Arens multiplication
of A*™. The basic properties of these operations are the following: a.m =
m.a = axm = mx* a; for m fixed, the mapping n—nm is weak*-weak* continuous
on A**. However the mapping mi—>nm need not be weak*-weak* continuous,
unless 7 is in the center of 4**. The properties of the second multiplication is sym-
metric to those of the first multiplication. For either multiplication, 4 is a sub-
algebra of A™*. If, for all n, m in A**, the equality nm = n * m holds, then algebra 4
is said to be Arens regular. From now on, we shall denote by 4** the algebra 4**
equipped with the first Arens multiplication and consider A4 as a subalgebra of A4**.
All the results we need and use about Arens multiplications can be found in the
survey paper [4]. An element of A4 is said to be (weakly) compact if the operator
L,: A— A, defined by L,(b) = ab, is (weakly) compact. The algebra 4 is an ideal in
its second dual equipped with either of the Arens multiplications if and only if every
element of A4 is weakly compact [4]. The algebra A is said to be c.c. (=completely
continuous) if each element of A4 is compact. Now assume that A is an ideal in its
second dual, and let m be an element of A™. Define the mapping L,, : A—> A by
L,,(a) = ma. Then the first and second adjoints of L, are given by L (f) =
m.f=f*m and L}*(n) = nm. The algebra 4 being commutative, as one can see it
readily, nm = m * n. Thus, an element m of A** is in the center of the algebra A** if
and only if for all nin 4™, mn = m x n. By 4**4* and A4* we denote, respectively,
the subspaces {m.¢:me A* and ¢ € A*} and {a.9p:a€ Aandgp € A*} of A*.
Finally we remark that, algebra 4 being commutative, the centers of the algebras
A** and (4*, %) are the same.
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2. Central Elements of 4(G)™. Throughout the paper A will be a commutative,
semisimple, c.c. and weakly sequentially complete Banach algebra. By ¥ we shall
denote the Gelfand space of A4 (the set of multiplicative functionals on A equipped
with the weak* topology induced by o(A4*, A)). For m in A** (so, for a in 4A) by m
we shall denote the function 7 : £— C defined by < 1, f'>= m(f). It is clear that
if T:4—Cy(X) is the Gelfand transform, I'™* applies A** into £°°(X) and
['(m) = m. We now give some examples of Banach algebras satisfying the above
conditions.

ExaMPLES 2.1. The following Banach algebras satisfy all the conditions we have
imposed on 4.

(a) The Fourier algebra A(G) of any discrete group G. See [6] and e.g. [16; The-
orem 3.6]. In particular, the group algebra L'(G) of a compact abelian group G.

(b) The space ¢', considered as a Banach algebra with coordinatewise multi-
plication.

(c) The semigroup algebra £'(N), where the set of the positive integers N is
equipped with the multiplication pg = min{p, ¢} [9; Example 11.1.5].

(d) The space

by = {(xn)en € cy A () =1 X0 | 4 Znen | Xngp1 — X, | < 00}

equipped with coordinatewise multiplication.
(e) Any closed subalgebra of a Banach algebra that satisfies the properties
imposed on A.

Now let a be an element in 4. For f in %, we have L’(f) = f.a =< f, a > f'so that
< f,a> is an eigenvalue of the compact operator L}. This fact and well known
spectral properties of the compact operators show that the Gelfand space X of 4 is
discrete and the set

S, = {fe Ti<fia>#0=U s 1{fe T:<f a>| 2%}

is countable. The weak® topology of A* being weaker than its weak topology, the
space (2, weak)—the set ¥ endowed with the topology induced by the weak topology
of A*—is also discrete. The first main result of the paper is the following theorem.

THEOREM 2.2. Let m be an element of the algebra A**. Then m is in the center of
A** if and only if mA™ C A and A**m C A.

Proof. Assume first that m is in the center of 4**. Let us prove that the operator
L, : A— A, L,(a) = ma, is weakly compact. To this end let (a,),.y be a sequence
in the unit ball of 4. Put S, ={fe€ X :<f,a, ># 0} and S = U,cyS,. The set S is
countable so that the subspace Span(S) of A* generated by S is separable. Hence, by
Cantor’s diagonal process, from the sequence (a,),.y We can extract a subsequence,
denoted again (a,),cy, such that, for each ¢ in Span(S), the sequence (< ¢, a, >),cn
converges. Since, for each f in X\S and all » in N, <f,a,>=0 and
Span(X) = Span(S) + Span(X\S), we see that, for each ¢ in Span(X), the sequence
(< @, a, >),cy converges too. The sequence (a,).y being bounded, we conclude that
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for each ¢ in Span(X), the sequence (< ¢, a, >),cy converges. On the other hand,
since m is in the center of 4™, for any ¢ in A*, ¢ *m = m.¢ and, the functional
¢ *xm, which is in A* actually is in 4*4 = {p.a: ¢ € A* and a € A}. Indeed, if
(ba)yes 1s @ net in A converging to m in the weak*—topology of 4™, then

< @by, p>=<@,byp>— <@, mp>=<@, Mmxp>=<@xnm, p>

for any p in A™ so that ¢.b,—> ¢ * m in the weak topology of 4* and ¢ * m is in
A*A. Now let us see that A*4 = Span(X). The inclusion Span(X) € A*A4 is clear
since, for fin X and a in A4, f.a =< f.a > f. To prove the reverse inclusion, assume
that, for some ¢ in A* and a in 4, we have ¢.a ¢ Span(%). Then, by The Hahn-Banach
Theorem, there is some p in A**, such that < g.a,p ># 0 but < f, p >= 0, for each f
inX. Asapisin 4, < ap,f >=<a,f><p,f>=0, and as 4 is semisimple, we con-
clude that ap = 0. However this contradicts the inequality < ¢, ap ># 0. Hence, for
all ¢ € A*, m.p € Span(¥) and consequently the sequence (< ¢, ma, >),cy cOn-
verges. This shows that the sequence (may),cx is weakly Cauchy in 4. As the algebra
A is weakly sequentially complete, the sequence (ma,),.y converges weakly to some
point in A. This proves that the operator L,,(a) = ma is weakly compact on 4 so
that L*(A4™) = A**m C A. As m is in the center of 4™, mA™ = A™*m C A too.

To prove the reverse implication, assume that 4**m C 4 and mA™* C A. Then,
for each n in A*, the products nm and mn are in A and since
<nmm,f>=<n,f><m,f>=<mn,f> for each fin X, A being semisimple, we get
that nm = mn. This being true for all n in 4**, we conclude that m is in the center of
A**,

REMARK 2.3. Let m be an element of 4**. If m is in the center of A** then, as
seen above, the mapping L,, : A—> A, L,;,(a) = ma, is weakly compact. But, if for
some m € A™*, L,, is weakly compact, we can not say that m is in the center of A4**.
Indeed, for any m in the annihilator of ¥ in 4**, L, (A) = mA = {0} so that L,, is
weakly compact but m need not to be in the center of 4™, see Theorem 3.2. below.
We also remark that from the inclusions mA** € A4 and 4A**m C A, we can not
deduce that m € A4, see Remark 3.4. below.

COROLLARY 2.4. If the algebra A has a bounded approximate identity, then the
center of A™ is A.

Proof. Indeed, in this case 4™ has a right unit £ so that for m in A™, mE = m.
This fact and the inclusion mA4** € 4 show that the center of 4** is 4.

Thus, if G is a compact abelian group and 4 = L'(G) is its group algebra, then
the center of A** is A. For a completely different proof of this result (for a not
necessarily commutative G ) see the paper [10].

3. Arens Regularity of A(G) and Related Questions. In this section we study the
following three questions: a) When is the algebra A4 Arens regular? b) When does
Arens regularity of A imply that A4 is finite dimensional?; and ¢) When is there a
weakly compact homomorphism /4 : 4—> Cy(X) with an infinite dimensional range?
The letter A will have the same signification as in the previous section. Moreover in this
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section we assume that A* is a von Neumann algebra. The reader will observe that
most of the results below remain valid without this hypothesis but for the unity of
the statements we put this condition as a blanket assumption.

For the proof of the next theorem we recall that: a) A Banach space X is said to
be “weakly compactly generated” if, for some weakly compact subset E of X, X is
the closed linear span of E. A weakly compactly generated dual Banach space has
the RNP [1; p.76, Corollary 4.1.10]. b) As proved by Pfitzner in [14], any von Neu-
mann algebra B has the so called Grothendieck property. i.e. In the space B*, weak*
convergent sequences are weakly convergent. Any continuous linear operator from a
space having the Grothendieck property into a weakly compactly generated Banach
space is weakly compact [5; p.179].

By =+ we denote the annihilator of ¥ in 4** and by Z the center of A**. For the
proof of the next theorem we need the following lemma. Before this we remark that,
for m in ©+, mA = {0} since A4 is semisimple and A4 is an ideal in 4**. This implies
that A™m = {0}. (But mA4** # {0}, unless m € Z).

LeMMA 3.1. If Tt is contained in Z then X is relatively weakly compact in A*.

Proof. Assume that ¥+ C Z. Then for any n and m in 4**, nm — mn is in £+, So,
for any p in A™, p(mn— nm)= (mn —nm)p. Hence, by the above remark,
p(mn — nm) = 0 = (mn — nm)p so that, for all n,m, p in 4**, we have pmn = nmp.
For p = m, we get that m*n = nm? for all n in 4**. This shows that m? is in Z so that,
by Theorem 2.1 above, m? is in A. Tt follows that, for any ¢ > 0, the set

K.={feS:<fim>|=e}={feT:|<fim’>| =&}

is finite. This proves that the second adjoint of the Gelfand transform maps 4™ into
Co(X). From this we conclude that the Gelfand transform I" : A— Cy(Z) is weakly
compact. As ¥ is contained in the image under I'* of the closed unit ball of £'(X), we
deduce that ¥ is relatively weakly compact in 4*.

As an immediate corollary of this lemma we have the following result.

COROLLARY 3.2. If the algebra A is Arens regular then X is relatively compact in
(A*, weak).

At this point we recall that the algebra 4 = ¢! (example 2.1 (b) above) is Arens
regular (so its spectrum is relatively weakly compact in £€°°) but it is not finite
dimensional.

THEOREM 3.3. For the algebra A the following assertions are equivalent.

(a) A is Arens regular.

(b) A 4™ C A.

c)xtcz

(d) For any m in A**, A*m = {0} implies that mA™ = {0}.

(e) A A* = AA*.

(f) For each m in A™*, the mapping L,, : A— A, L,(a) = ma, is weakly compact.
(g) For eachm in A**, the mapping S,,, . A**—> A**, S,,,(n) = nm, is weakly compact.
(h) A** is Arens regular.
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Proof. Since A is Arens regular if, and only if, Z = 4**, by Theorem 2.1 above,
the equivalence of the assertions (a) and (b) is clear.

b)—c) and c)=—=d). Implication b)=—>c) being obvious, we prove implication
¢)—d). To prove this implication assume that c) holds. Let m € A** be such that
A**m = {0}. The algebra 4 being semisimple, this implies that m € . Hence, by c),
m € Z. It follows that mA™ = A**m = {0}.

d)==e). Assume that d) holds. Let m € 4™ and ¢ € A4*. If we had m.@ ¢ AA*,
we would have an n in 4™ such that < m.p, n >=< ¢,nm ># 0 but < ayr,n >=
< Y,na >=0 for all « € A and ¥ € A*. This implies that an = na = 0 for all a in A.
This in turn implies that nm = 0, which contradicts the inequality < ¢, nm ># 0 and
proves e).

e)—f). Assume that e) holds. Let us first prove that then c) holds. To see this
let m be an element in X+. Then 4*m = {0} and, by e), for any ¢ € 4* and
ne A%, n.p € AA*. We have to show that, for all n € A**, mn = 0. Assume, for a
contradiction, that for some n in A™,mn+#0. Then, for some ¢ € A%,
< mn, ¢ >=< m, n.g ># 0. On the other hand, since n.¢p € A4*, n.¢ = a.y for some
a€ A and ¢ € A*. Hence, <m,n.¢ >=<m,a.y >=<ma, Yy >= < am,p >=0,
contradicting the inequality < mmn, ¢ ># 0. This contradiction proves that ¥+ € Z
so that, by Lemma 3.1, the space Span(X) is weakly compactly generated. Now fix
an m € A™ and consider the mapping t,, : A*—> A*, defined by t,,(¢) = m.¢. By e),
T, applies A* into AA*. As we have seen in the course of the proof of Theorem 2.1,
AA* = Span(X). From this, since 4* has the Grothendieck property and the space
Span(X) is weakly compactly generated, we conclude that the mapping t,, is weakly
compact. As (L))" = t,,, we conclude that f) holds.

f)y=>g). Assume that f) holds. Then, since for any m € 4™, L’* = S,,, g) holds.

g)—>a). Assume that g) holds. Then f) also holds and, for any m € A4™**,
A*m C A. It follows that, 4™ 4™ C A4, and by Theorem 2.1, 4 is Arens regular.

Implication h)=>a) being obvious, it remains to show that a)=— h). To prove
this implication, assume that 4 is Arens regular. For F € A** and m € A™, F.m is
the functional defined on A** by < F.m,n >=< F, mn >. Since 4™ A™ C 4 and
A¥* = 4* @ A+, Fis of the form F = f+ p and F.m = f.m. It follows that

(Fm:-meA™,||m|| <l}={fm:me A, ||m]|| <1}.

Since A is Arens regular, the set {fa:ae A4,|| a|| <1} is relatively weakly
compact in A*, and consequently

fm:med™ |Im| <)< (fa:aed, all <I}.

From this we conclude that the algebra 4** is Arens regular.

REMARK 3.4. The inclusion 4**4** C 4 does not imply that the algebra A4 is
reflexive. Indeed, let A4 =¢' (Example 2.1(b) above). Then, since A™ =
'@ ct, A A" C 4 but A is not reflexive. Observe also that although 4 = ¢! is
Arens regular, has an (unbounded) approximate identity, and A*4 = ¢, # £ = A*.

For the sake of completeness we include the statement of the following known
result. One part of this proposition is proved in [16; Proposition 2.8 | and the other
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part in [2; Corollary 2.8]. We also recall that X is closed in ( 4%, weak) whenever A
has a bounded approximate identity [16; p. 361].

ProPoSITION 3.5. Let G be any locally compact group and A(G) be its Fourier
algebra. Then the spectrum of the algebra A(G) is closed in (VN(G), weak) if and only
if the group G is amenable.

THEOREM 3.6. For the algebra A the following assertions are equivalent.

(a) The dimension of A is finite.

(b) The algebra A is Arens regular and X is closed in (A*, weak).
(c) For m in A** and ¢ in A*, m.p = 0 implies that < m, ¢ >= 0.
(d) A* = SpanX.

Proof. Implication (a)=>(b) is clear. To prove the reverse implication, assume
that (b) holds. Then, by Corollary 3.2. above, (X, weak) is compact. Since (X, weak)
is also discrete, we conclude that ¥ is finite. The algebra 4 being semisimple, the
dimension of A is finite.

As a finite dimensional semisimple Banach algebra is necessarily unital, impli-
cation (a)==(c) is clear.

To prove implication (c)==(d), assume that assertion (c) holds. Let m be in T+.
Then, for any ¢ € A*, m.¢ = 0. Hence by hypothesis, < ¢, m >= 0. This being true
for any ¢ € A* and m € £+, we conclude that ¥+ = {0} so that SpanX = A4*.

Finally, to prove implication (d)=>(a), assume that (d) holds. This implies that
the algebra A4 is Arens regular so that ¥ is relatively weakly compact and A* is
weakly compactly generated. As a weakly compactly generated dual space has the
RNP [1; p.76], A* has the RNP. However, since 4 is weakly sequentially complete, it
contains an isomorphic copy of £! by Rosenthal’s £' —Theorem [15] unless it is
reflexive. Since the dual of a Banach space containing an isomorphic copy of £!
cannot have the RNP [1; p.75, Corollary 4.1.7], A must be reflexive. Since a reflexive
von Neumann algebra is finite dimensional, we conclude that the dimension of 4 is
finite.

Now let G be a discrete group. If G is amenable then, as proved in [13] by Lau
and Wong, the algebra A(G) is Arens regular if, and only if, the group G is finite.
The question whether this result also holds for every nonamenable G seems to be
still open. Concerning this question, the best known result, as far as we know, is the
following one obtained by B. Forrest [7]: If 4(G) is Arens regular then every amen-
able subgroup of G is finite. Next we present a completely different proof of this
result.

COROLLARY 3.7. Let G be a discrete group. If the algebra A(G) is Arens regular
then every amenable subgroup of G is finite.

Proof. Assume that 4A(G) is Arens regular, and let H be an amenable subgroup
of G. The Fourier algebra 4 = A(H) of H, being isometrically isomorphic to a
quotient algebra of 4(G) [6], is also Arens regular. Hence by Proposition 3.5 and
Theorem 3.6, A(H) is finite dimensional, so H is finite.
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At this point we remark that, if 4(G) is Arens regular then its spectrum (i.e. G )
is relatively weakly compact in V'N(G) so that every subset of G which is closed in
(VN(G), weak) is finite. This reproves the above corollary (Consider the quotient
homomorphism /i : A(G)—> A(H)).

Next we consider weakly compact homomorphisms from A into Cy(X). If the
algebra A4 is Arens regular then, by Corollary 3.2, every homomorphism
h: A— Cy(X) is weakly compact but need not have a finite dimensional range (take
e.g. A=1¢"). On the other hand, if ¥ is closed in (A4*, weak) then every weakly
compact homomorphism % : 4—> Cy(X) has a finite dimensional range [16; Theorem
2.14]. Denote by T the sequential closure of T in (4*, weak). Thus an element f of
A*isin T'" if, and only if, there is a sequence (f),en In X that converges weakly to
f. Then we have the following result.

THEOREM 3.8. There exists a weakly compact homomorphism h : A—> Cy(X) with
W

infinite dimensional range if and only if 0 € X"

Proof. We first recall that a continuous linear operator 7 from a Banach space
X into ¢ is weakly compact if, and only if, there exists a sequence (f,),cy In X*,
converging weakly to zero, such that 7T(x) = (< f;,, X >),cn [4; p.108]. Now assume
that 0 € . Then there exists an infinite sequence (fuey in X that converges
weakly to zero. Let 1 : A—> Cy(X) be the mapping defined by h(a) = (< fu, @ >),cn-
Then & is a weakly compact homomorphism whose range is infinite dimensional.
Conversely, if h: A—Cy(X) is a weakly compact homomorphism with infinite
dimensional range, then, as one can easily see it, / is necessarily of the above form
for some infinite sequence (f,),.y in X that converges weakly to zero. It follows that

W

0eX .

Concerning the problems tackled in this paper, a certain number of questions
remain to be clarified. Below we have enumerated them as remarks and questions.

4. Remarks and questions. Let 4 be as in Section 3.

1) Corollary 3.2. shows that if the algebra A4 is Arens regular then its spectrum X
is relatively weakly compact in 4*. We do not know if the converse of this result is
true.

2) If ¥ is not closed in (4*, weak), then =" = = U {0} [16; p. 361]. We do not
know if, even for A = A(G), in this case, we have 0 € ="

3) If A = A @ X+ then A is Arens regular. We do not know if the converse
result is true. We do not know either, when A is separable, whether the quotient
space A™*/X+, which is a commutative semisimple Banach algebra, is separable. In
which case the functional zero would be in T

4) Assume that X is closed in (4*, weak). Is then Z = A? At this point we
remark that ¥ may be closed in (4*, weak) even if 4 has no bounded approximate
identity, see example 2.9 in [16].

S) It is still not known if there exits an infinite group G for which 4(G) is Arens
regular.
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