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Abstract

In this paper, we study the global attractivity of the zero solution of a particular impulsive
delay differentia) equation. Some sufficient conditions that guarantee every solution of the
equation converges to zero are obtained.

1. Introduction

Recently, with the rapid development of the theory and applications of impulsive dif-
ferential equations, the study of the impulsive delay differential equation has attracted
the interest of many mathematicians [1-9]. The purpose of this paper is to study the
global attractivity of the following impulsive delay differential equation:

\x'{t) + a(t)x(t) = p(/)(l - e*('-r)), t > 0, t * tk,

x(tk
+)-x(tk) = bkx(tk), keN,

where a(t),p(t) g C([0, +oo), [0, +oo)), r > 0, bk > - 1 , p(t) > 0, for all
k e N, t > 0, 0 < tx < t2 <••••, with tk -> +oo as k -*• +oo.

In the special case where p{t) = aNoa(t), (1.1) has been used to model the
impulsive growth of red blood cells.

As usual, we say that x(t) defined in [—x, +oo) is a solution of (1.1), if x(t) is
absolutely continuous at points t / /tandatr = tk, x (tk) exists, x(t) is left-continuous
for t > — r, and satisfies (1.1) for t > 0.
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2. Main results

The main results are as follows.

THEOREM 1. Suppose that:

(i) there is a positive number p such that

l; (2.1)

(ii) for any e > 0, there exists an integer N such that

n+m

f ] ( l + Z>*) < l + . e , n > N , m > 0 ; (2.2)
k=n

(iii)

fMd FT + fet)-> ds = +oo; (2.3)p(s)efo"Mdu FT (i + fe

0<tt<s

(iv) for sufficiently large t, we have

f p(s)e^a(u)du f 7 (1 + bk)~X d s < P + -e-r<-aWdu (2.4)
• ' ' - * t-T<tk<S 2

and

a(t) > a(t - T), t > r. (2.5)

Then every solution of (1.1) tends to zero as t -> oo.

THEOREM 2. Suppose that (2.2), (2.3) and (2.5) hold and for sufficiently large t,
we have

f ] (l + Z?*)-'^<3/2. (2.6)

Then every solution of (1.1) tends to zero as t —> oo.

REMARK 1. Condition (2.2) is not critical; it allows the convergence of

and the possibility that — 1 < bk < 0 as special cases. Condition (2.5) allows constant
functions, nondecreasing functions and r-periodic functions as special cases.
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REMARK 2. If the impulsives disappeared and a(t) = 0, Theorem 2 is the main
result of [4]. If a(t) = k, then the conditions of Theorem 2 are

< - ,
/•+0O /•/

/ p (t)eu dt = +oo and / p(s)e(s~'+n

Jo Ji-x

which improve the conditions in [5].

3. Proofs of the theorems

LEMMA 1. Suppose that (2.2) and (2.3) hold. Then every nonoscillatory solution
of (1.1) tends to zero as t -*• oo.

PROOF. Without loss of generality, suppose that x (t) is eventually positive. Then
there exists T\ > 0 such that x(t — T) > 0 for t > T\, t ^ tk. Moreover, x(t) is
decreasing in (tk, tM] with tk > T\. Let liminf,_+ooj:(r) = a, then a > 0. We
shall prove that a = 0. Since x(tk) is the left minimum value of x(t), there exists a
subsequence {*(f*;)} such that \imj->+oox(tkj) = a. If or > 0, choosing c > 0 such
that a — (. > 0, again there exists T > Ti such that x(t — r) > at — e, for t > T.
Then by (1.1), we have

\\ (l + bk)-
1x(tkj)-x(T)<(l-e<-f)[t'p(s)eKaW f ] (1 + bk)~

xds,
T<IKS

which contradicts (2.2) and (2.3), so a = 0. Now for any t > T, there exists tkj such
that tk. < t < tkj+, and tkj < tkj+1 < • • • < tkj+l < t. Then

j=0

From (2.3), there exists a constant A > 0, such that I~L=o(l + *̂y+*) — ^ f°r a ny
any kj. Hence 0 < x(t) < Ax(r^). Let / -*• +oo. Then we obtain lim,_>+oox(t) = 0.

LEMMA 2. Suppose that (2.2), (2.4) or (2.6), and (2.5) /roM. 77ien every oscillatory
solution of (I. I) is bounded.

PROOF. From (2.4) and (2.5), or (2.5) and (2.6), we obtain

p(s)ef'aWdu Y\ (* + bk)ds < M,
'• s<tk<l
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where M is a positive constant. First, we shall prove that x(t) is bounded above. By

(1.1),

x\t) + a{t)x(t)<p(t), t>O,t^tk. (3.1)

Choose any sequence {cn} such that x(cn) = 0 and 0 < c\ < c2 < • • •, with
o cn = +oo, x(t) > 0 for / € [c2,_i, c2l] and x(t) < 0 for t e [c2l, c2l+1]. Let

xt = sup x(t) and i , = inf x(t).
/e[c2l.|,c2(] felc2i,cji+i]

We shall prove that {£,} and {i,} are bounded. First, we prove that {£,} is bounded
above; there are two cases to consider.

Case 1: xt is the maximum value of x(t) in [c2,_!, c2,]. Then there exists c e
(c2(_i, c2() such that*, = x(c) > 0, x'(c) > 0. By (1.1), x(c — r) < 0, so there exists
£ e (c — T, c) such that *(|;) = 0. Integrating (3.1) from £ to c, we obtain

Xi =x(c)< f p(t)ef<aiu)du Y[(l + b^dt - M-
* i<h<c

Case 2: i , is not the maximum value of x{t) in [c2i_i, c2,]. Then there exists
tk+i e (c2,_i, c2() such that*,- = x(t£+l). We assume that c2i_i < rt+i < • • • < 4+/.
There are two possible cases to consider.

Subcase 2.1: x(tk+i) is the left locally maximum value. By Case 1, we have
x(tk+i) < M, so*,- = x(tk+l) = (1 + bk+t)x(tk+i) < (1 + bk+i)M.

Subcase 2.2: x(tk+i) is not the left locally maximum value. There are two possible
subcases to consider.

Subcase 2.2.1: If J C ( ^ / ) < x(tk+i), then x(t) has maximum value noted by x(c)
in (rt+/_i, tk+t). By Case 1, x(c) < M, so xt = * ( £ , ) = (1 + bk+,)x(tk+l) <

Subcase 2.2.2: If jc(rĴ _/_1) > x(tk+i), we have two possible cases to consider.
Subcase 2.2.2.1: If x(tk+l_\) is the left locally maximum value, then, by Case 1,

*('*+/-i) < M. ThusXi = x(tk
+

+l) = (1 + bk+,)x{tk+l) < (1 + bk+l)(l + bk+,^)M.
Subcase 2.2.2.2: *(r*+/_,) is not the left maximum of x(t). Repeating this process,

at the end, if x(tk+\) is the left locally maximum value of x(t), then x(tk+l) < M.
Therefore

Otherwise, since *(c2,_i) = 0,x(t) has maximum value noted by x(c) in (c2,_i, tk+l).
By Case l,x(c) < M, so

+ bk+s)x(tk+l) < Y\d + bk+s)x(c) < f [ ( l + bk+s)M.
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Then i , < AM, where A is defined in Lemma 1.
From Cases 1 and 2, we have xt < max{M, AM] = B. Next we shall prove that

is bounded below. By (1.1), we obtain

x'(t) + a{t)x{t) > (1 - eB)p(t), t > 0, t£tk.

Using a similar method to the above, we obtain

Xi > (1 - eB)M or i , > (1 - eB)/\M.

This shows that {jc,-} is bounded below, and completes the proof of the lemma.

LEMMA 3. Suppose that (2.1), (2.2), (2.4) and (2.5) hold. Then every oscillatory
solution of (1.1) tends to zero as t —>• +oo.

PROOF. Suppose x(t) is any oscillatory solution of (1.1). By Lemma 2, x(t) is
bounded, so let limsup,_v+00x(t) = v, lim'mf,_>+0Ox(t) = u, Then —oo < u < 0 <
v < +oo, and by (2.2), for any e > 0, there exists /V such that

n+m

Y[(l + bk) < 1 + e, n > N, m > 0.

Again for this € > 0, there exists T > tN such that

K I = K — e < j c ( f — r ) < v + e = ui, t > T.

Then (1.1) gives

*'(*) + a(t)x(t) < (1 - eBl)p(0, ? > T, t £ tk, (3.2)

x\t) + a(t)x(t) > (1 - ev')p(t), t>T, t*tk. (3.3)

Choose a sequence [cn] such that A:(C«) = 0, T < C\ < • • • < cn -*• +00, n -*• +00,
x{t) > 0, for t € (c2,_i, c2() and J : ( 0 < 0 for t 6 (c2l, c2l+i). Let

it = sup x(r) and xt = inf A:(r).

Without loss of generality, we assume that l i m s u p ^ ^ i , = v and liminf^ooX, = u.
First, we prove that

xi < p(l - eu')(l + €) (3.4)

or

** < P d - « " ' ) ( ! + O2- (3-5)
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There are two possible cases to consider.
Case 1: *, is the maximum value of x(t) in (C2,_i, en). Then there exists c e

(c2l_i, c2l) such that *, = x(c) > 0, JC'(C) > 0. By (1.1), x(c - r) < 0, so there exists
£ e (c — r, c) such that x(£) = 0, if t e [|, c] then t - r < £. Integrating (3.2) from
r — T to£, we have

-r)e^"aMdu <(l-eu') f p ^Wd Y[ (3.6)
t-t<tk<( ' '

Since 1 — e* < —J: and by (1.1), we have

x'(t) + a(t)x(t)<-p(t)x(t-T), t>O,t^tk. (3.7)

Then

(1 + bk)~
l ds. (3.8)

Integrating (3.8) from £ to c, we get

x(c)e£"wdu < (1 - eUl) I p(t)ef°a(uUu f ] (1 +bk) I p{s)e^-'aWdu

? t*? t, s' f ** * ^t<lk<c

I—t<r»<j

< ( 1 - g U l ) /" p ( t ) e & a { u ) d u Y \ ( l b ) ( £
L ̂

LoW" dt - f p(t)ef°a(u)du PJ (1 + W /" p{s)eK"wdu

n o+**r'^ •
r<tk<c Js<lk<c t-t<tk<c

Using (2.2), (2.4) and (2.5), we obtain

\ + bk)dt[-
l<lk<c

e
-r-cwdu fc

I
bk)
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= (1 - e") I p{t)e&aiu)du

t<tk<c

In the following, we consider two possible subcases.
Subcase 1.1: //p(O«;°'<l(")''"n,<ll<c(l + bk)dt < (1 + €)e^'wdlt. Since the

function

is i n c r e a s i n g , w e o b t a i n x ( c ) e & a ( u ) d u < p ( l - eu<)ef°aiu)du(l + e ) . T h e n ( 3 . 4 ) h o l d s .
Subcase 1.2: fip(t)e&aMdu n,«ft<c(

1 + b^>dt > (l + e)e^"'"("w". We choose
r) e (§, c) such that

/
n

p(.t)e &a{u)du

Integrating (3.2) from £ to r), we have

x(n)etiaMdu < (1 - «-) ["p(t)ef°a(u)du

Integrating (3.8) from rj to c,

Jl_ta(u)du

/<(t<C

Then we get

x(c)ef°aWdu < (1-e"1)

+ f p(t)el°aWdu Yl (1 + W f p(s)ef"alu

J1 t<lk<c ^ ' - r

l-Z<lk<C

)du

t<lk<c

1-X <lk<S
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Similarly to the argument we used in Subcase 1.1, we get

[8]

aMdu < (1 - eu') f bk)dt
t<<k<C

l-e"'

2(1
<<tt<c

bk)dt

- eu') ( l
^2 &a(u)du \ \

Hence (3.4) is proved.
Case 2: xt is not the maximum value of x(t) in (c2,_i, c2i). Then there exists

tk+i 6 (c2,-i,c2)) such that i , = x(tk
+

+1). Suppose that c2,_i < tk+x < • • • < tk+t.
Proving that x (t) is bounded, we obtain

)' 7 = 1 , 2 , . . . , I.
s=j

Theni, < (1 + e)2p(l - eu'). From (3.4)and (3.5), let j -> +ooande - • Otoobtain

Next, we shall prove

u>(p - ev).

(3.9)

(3.10)

There are two cases to consider.
Case 1: *, is the minimum value of x{t) in [c2(, c2i+\]. Then there exists c e

(c2,, c2l+i) such that x(c) = xt < 0, x'(c) = 0. By (1.1), x(c - T) > 0. Then there
exists £ 6 [c — r, c) such that *(£) = 0. Integrating (3.3) from £ to c, we obtain

> (1 - e1") /"

Then by (2.2) and (2.4), we get

x,•> (1 + c)(l - ev')(p + 1/2). (3.11)
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Case 2: i , is not the minimum value of x(t) in (c2/, c2(+i). Then there exists
tk+i 6 (c2i, c2l+i) such that x, = x(tk

+
+l). Suppose that c2, < tk+i < • • • < ri+/.

Proving that x (t) is bounded, we get

By (2.2), Xi > (1 + €)2(p + 1/2)(1 - e"1)- Let i -> +oo and e - • 0. By (3.11) and
(3.12), we get (3.10). From (2.1), (3.9), (3.10) and the fact that -oo < u < 0 < v <
+oo, we get u = v = 0. Then AT (r) tends to zero as t -*• oo. By Lemmas 1 and 3,
Theorem 1 is proved.

In order to prove Theorem 2, we need the following lemma.

LEMMA 4. Suppose that (2.2), (2.5) and (2.6) hold. Then every oscillatory solution
of (I.I) tends to zero as t —*• 00.

PROOF. From Lemma 2, x (t) is bounded. By the proof of Lemma 3, we get (3.2),
(3.3) and (3.6). Choose [cn] satisfing the conditions in Lemma 3, with xt -> v, xt -> u
as / -> +oo. There are two cases to consider.

Case 1: x, is the maximum value of x(t) in (c2l_i, c2l). Substituting (3.6) into (1.1),
we have, for t e [£, c], / ̂  tk,

x'(t) + a(t)x(t)

<p(t) \l-expl-AJ p(s)e^'aMdu f [ (I + bk)~
l ds\ , (3.13)

where 1 — eu> = A. Integrating (3.13) from £ to c, we get

x(c)el°a(u)du < I p(t)\ l - e x p ( - A f p{s)e^'-'aiu)du ]~J (1 + bk)~
l ds)

< f bk)dt-

I-A f
i-r<tk<s

/—r<(»<j

https://doi.org/10.1017/S1446181100013328 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013328


280 Yuji Liu and Binggen Zhang [10]

t<lt<C

,-3/1/2 f— e
L ' ' '

(A(Z>
x exp j

t<tk<C

< f p(t)ef°a

r (A j;p{s)e!o"^'"'Y\ {\ + bk)ds\ 1
x exp I —f̂ | - 1 .

\_ \ (1 +c)e& aMdu ) J

Case 1.1: f^p(t)e^"^du n,<ft<c(l +bk)dt < -(l/A)ln(l-A)e^"aWda(l
Then

x{c)e!o^uu < Jn(l-A) e f r a M d e - ™ »
A

^ + ^
A I — A

so

By Kuang's method [1, (2.21)], we get

i / = J c ( c ) < ( l + O ( A - A 2 / 6 ) . (3.14)

Case 1.2:

" 1 + &t)rfr < -^"'a (")< ' ' ' (l + e)

< e ( i + 6 ) .
A

Then, integrating (3.13) from £ to c, similarly to Case 1.1, we get

xi =x(c)< 3(1 + 0 / 2 + (1 + e)(eW 2 - I)/A.

By a method similar to that used by Kuang in [1, (2.19)], we get (3.14).
Case 1.3: £ p(t)e&alu)dllY\l£lt<e(l + bk)dt > -(1/A)ln(l -A)(l+e)e^aMdu.

Choose t] e (£, c) such that

Jn
bk) dt = -

A
t<tk<C
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Integrating (3.2) from £ to r), we have

x(r})eK
aMdu <A I p{t)eK'lK)d" ]~[ (l+bk)dt.

* I<IK1

Integrating (3.13) from r) to c, we have

Deleting x(j]), we obtain

<A I p{i)e&a(uUu \ \
* t<H<

<A I p(t)ef°a(u)du Yl d + bk)dt+ fC

* <<'t<c •'1

t<H<c Ji <<tk<c

1 + e „.,
plo »M'"' I PYP I — — / nft\<,Jc-,aWu I I (\+bk)dt

- e x p I / p'(t)ef'-'aMdu Y[(l + bk)dt\\.
\1 + €jt ,<lk<c /J

Then

f"p(t)e^-'aMd

^ i<h<c

)e!L"Uuu Y[ (l + bk)dt
l<l-k<C

(exp (j~ f p^i:-'aMda n

— exp
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< (1 + €)(3A/2 - ((1 - A)/A) ln(l - A) - 1).

By Kuang's method in [1, (2.21)], we get (3.14).
Case 2: If JC, is not the maximum value of x(t) in (c2l_i, c2l), then there exists

tk+t e (c2,_i, c2l) such that*, = x(tk+i). Suppose that c2,_i < tk+l < • • • < tk+l. Then
we can obtain

Then by (2.2), we get*, < (1 + e)2(A - A2/6). By (3.13) and (3.14), let / -> +oo
and e - • 0 to obtain v < (1 - e") - (1 - eu)2/6.

Next we prove

« > (1 - «") - (1 - «")2/6. (3.15)

There are two cases to consider.
Case 1: f, is the minimum value of x(t) in (c2l, c2l+i). Then there exists c 6

(c2l, c2l+i) such that x{c) = xt < 0, x'(c) < 0. There exists £ e (c — r, c) such that
*(£) = 0. If r e [|, c], then r — r < ^. Integrating (3.3) from / - T to £, then

'-*<<*<£ •'(-i /-r<rt<j

where B = 1 — ev>. By (1.1), we get, for t e [^, c], r 5̂  tk,

I I f* p(s)ef'-'aMdu \\
x'(t) + a ( t ) x ( t ) > p ( t ) [ l - e x p [ - B — —ds]). (3.16)

\ V trl i- .f lJl + W Jl
There are three subcases to consider.

Subcase 1.1: f^cp(t)e^aMdu n,<f t«U + bk)dt < 1 + e. Integrating (3.7) from
£ to c, we have

= x(c)
t<tk<c

Then

Subcase 1.2:

>B I
$ l<tk<C

B2/6). (3.17)
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Integrating (3.3) from £ to c, we have

x,=x(c) > B [p(t)ef'aW'1" f [ (1 + bk)dt

4
Hence (3.17) is proved.

Subcase 1.3:

Choose rj e (£, c) such that

[
11

Integrating (3.3) from | to rj and integrating (3.16) from rj to c, we obtain

> B ["p(t)e£"wdu Y\ a + bk)dt+ fCp(t)e^a(u)du f ] (l + bk)dt
* t<ti<C 1 (<lt<C

x exp

> B ["p(t)e£-<aMdu Yl d+bk)dt+ [
* t<ik<c nt<ik<c n t<tt<c

(exp

/ B r

> (1 + €) (jB - I ( ( l - B)ln(l - B) +

Then (3.17) is proved. The last inequality is obtained by the method used by Yu in [6,
page 234].

https://doi.org/10.1017/S1446181100013328 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013328


284 Yuji Liu and Binggen Zhang [14]

Case 2: x, is not the minimum value of x(t) in (c2l, c2l+i). Then there exists
tk+, 6 (c2l, c2l+i) such tha t i , = x(tf+l). Suppose that c2, < tk+x < •• • < tk+t. Then
we can obtain*, > n ' = , U + fo*+*)(l + 0 ( B - -S2/6),y = 1, 2 , . . . , / . By (2.2), we
have

Xi•> (l + e)\B-B2/6). (3.18)

From (3.17) and (3.18), let i ->• +oo and e -> 0 to obtain (3.15).
Let 1 - e" = x, 1 - ev = - y . Then (3.15) and (3.16) become

\n(l+y)<x-x2/6, In (1 - x) > -y - v2/6.

By [6, Lemma 1.4] , * = y = 0, so M = v = 0. Then x(t) tends to zero as t ->• oo.
By Lemmas 1 and 4, we obtain Theorem 2.
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