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Abstract

Subject to techniques of perturbative renormalization, the Standard Model makes empirical pre-
dictions that are stupendously successful. But also deeply mysterious. Not every quantum field
theory (qft) is renormalizable. Indeed, most aren’t. The mystery is: why should we be so lucky,
that we live in a world governed by a renormalizable qft? I explicate this Renormalizability
Puzzle, and explain why Renormalization Group (RG) approaches are widely thought to resolve
it. Looking under the hood of the RG resolution, I identify a load-bearing element that might
not be adequate to the explanatory burden the RG resolution places upon it.

1. Introduction

Our best quantum field theories (gfts), the interacting qfts making up the Standard Model
of high energy physics, are renormalizable. When pressed into service to calculate
empirical quantities, these theories threaten to yield meaningless infinities. However,
a variety of perturbative renormalization techniques, developed in the mid-twentieth
century, succeed in averting that threat.! Subject to techniques of perturbative renormal-
ization, the Standard Model makes empirical predictions that are not only sensibly finite
but also outlandishly (e.g., to one part in a trillion!) accurate. This stunning success
numbers among the greatest triumphs of contemporary physics. It’s also deeply myste-
rious. Not every qft is renormalizable. Indeed, most aren’t. The mystery is: why should
we be so lucky, that we live in a world governed by a qft with the rare property that its
froward infinities can be tamed by perturbative renormalization techniques? This is the
Renormalizability Puzzle.

It is now a catechism among high-energy physicists that a solution to the puzzle
comes from Renormalization Group (RG) analyses, which “help explain why renor-
malizable theories play such an important role in physics” (Schwartz 2014, 443). The
Standard Model consists of effective theories (the catechism goes). Effective theories
aren’t the fundamental truth, only a tolerable approximation to its implications for the
limited domain of energies accessible in accelerator experiments. And Renormalization
Group (RG) analyses teach us that effective theories are renormalizable. This RG

!(Schweber 2020) and (Blum forthcoming) are philosophically-minded accounts of the history.
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Explanation’s elegant resolution of the Renormalizability Puzzle has inspired philoso-
phers to reconfigure the very terms of the scientific realism debate (Fraser 2016, 2018,
2020ab; Williams 2019, 2023, §5.2).

Although my brazenly iconoclastic aim here is to suggest that the RG Explanation
might not be as satisfying as it initially appears, I also have aims that are more
community-minded. One is to provide a technically undemanding account of aspects
of the RG Explanation complementary to aspects foregrounded by a number of excel-
lent recent treatments in the literature.> Another is to draw attention to methodological
questions about applied mathematics dramatized by the RG Explanation. Chief among
these is: is it reasonable to draw conclusions about the physical world on the basis of
what’s necessary for (or even merely conducive to) the success of certain strategies of
mathematical analysis?

I proceed as follows. §2-§3 are stage-setting. §2 motivates the Renormalizability
Puzzle. Sketching the RG Explanation’s resolution, §3 highlights the role played
therein by a “dimension-cancelling” maneuver undertaken to render the gfts under
study amenable to convenient analysis. The stage thus set, the drama unfolds in §4.
Conducting a very brief trial of the dimension-cancelling manueuver, §4 asks whether
it’s capable of supporting the explanatory burden the RG Explanation places on it.

2. The Renormalizability Puzzle

In qft, lagrangians are used to calculate quantities of empirical interest. The hitch is that,
naively pursued, these calculations deliver infinities, rather than finite numbers to test
against experiment. The conventional fix—renormalization— is to pursue more sophis-
ticated calculations. Not every lagrangian can be cured by the conventional fix: not every
lagrangian is renormalizable. Indeed, in some sense, most aren’t. The good news is that
Standard Model lagrangians are: they can be renormalized to yield finite predictions.
The bad news is that the good news stuck us with the Renormalizability Puzzle, that
“it seemed incredibly lucky that we could describe so much in particle physics using
renormalizable QFTs” (Williams 2023, 45).3 This section offers a minimally technical
introduction to the Renormalizability Puzzle.

A lagrangian is a function of a collection of spacetime fields, where each field is map
from points of a spacetime (which I’ll assume to be four-dimensional) to a value, and
their spacetime derivatives. Throughout, I'll adopt the drastically simplifying assump-
tion, that a lagrangian involves only one field, a scalar-valued field ¢, and its derivatives
2¢.* Thus a generic scalar field lagrangian . is a sum of mononomials of ¢ and
d¢, modified by coupling coefficients. A schematic example, shaped by some physical

2[ aspire for my exposition to be accessible to anyone acquainted with the fact, that integrating the same
function against different domains— [ f(x)dx and fob f(x)dx for a # b, say—can yield different answers.

3The mystery abates if renormalizability is a consistency constraint. In the 1970s, it was widely regarded
to be just that (Weinberg 1977). “There is something puzzling about demanding renormalizability a priori
in this way however. What licenses us to assume that the world is amenable to perturbative analysis?”
(Fraser 2020b, 399). To elevate renormalizability to a consistency constraint is to make the sufficiency of
an approximation technique we’ve ironed out to calculate empirical quantities we care about criterial for
a theory’s consistency. But a theory could fail to satisfy the criterion through no logical fault of its own, if
either our approximation methods or our notion of empirical content are inadequate.

4This simplifying assumption sets to one side a host of further foundational questions; see (Miller 2021)
for a sense of some of them.
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background knowledge and a few additional simplifying assumptions”:
L =090 +m*d* + 810" + g20° + 830 +. .. (1)
The physical background knowledge is that
Ly =(09)* +m*9?

is a cracker-jack lagrangian, the free-field lagrangian, under complete analytic control.
We can draw upon analogies with more familiar theories to recognize its kinetic term
(29)?* as describing the kinetic energy of the free field, and its mass term m?¢? as
describing a potential energy associated with the mass m of the field. And that’s not
all! We can explicitly characterize solutions to the classical equations of motion %
generates, and use the classical solution space to construct a Hilbert space undergird-
ing a quantum field theory based on that lagrangian (see (Wald 1994) for more on the
construction).

Alas, the gft thus obtained is deathly boring. Free fields don’t interact; they don’t
scatter; they pass unaltered through our particle accelerators. For the sake of character-
izing interesting physics, we need to add more terms to .%y, interaction terms third-order
or higher in ¢. A sum of %} and a host of interaction terms, (1)’s generic lagrangian .’
amends the free theory % by adding interactions ¢*, ¢°, ¢® .. multiplied by coupling
coefficients g1, g2, g3 ... that indicate the strength of those interactions. Think of .Z a
residing in space ¢ of lagrangians; each lagrangian in ¢ is specified by a coupling vec-
tor listing the coefficients® gi, gm, 81,82, 83, - - - modifying the monomials it depends
on.

Now we’ve got an interacting gft that might describe interesting physics! Only there’s
a hitch. Even the simplest interacting gft, one that adds just a ¢* interaction to .%p,

Ly = Lo+ 219 ()]

eludes our analytical reach. We don’t know how to construct an Hilbert space from
its classical solution space. So we pursue quantum theoretic results by other means.
We undertake to calculate quantities of empirical interest perturbatively. That is, we
assume that the coupling g; is small, so that $¢4 represents a small perturbation to .%.
And we approximate a quantity .# of empirical interest—a scattering amplitude, say—
by performing a perturbative expansion, in orders of gi, around the (usually very dull)
precise value .# the free lagrangian predicts:

M= M+ 1.0 + (1) Mo+ (1) s .. 3)

The .#,, in (3) are n'"*-order perturbative corrections. Perturbation theory is tasked with
directing us in their calculation. Assuming g is small, we hope that truncating the per-
turbative expansion after a few orders yields an approximation to .# accurate enough
to test in our particle accelerators.

Path-integrals are a standard method for extracting empirical content from qfts.
To calculate a quantity .# of empirical interest, one evaluates a path-integral whose

SI’m assuming . is symmetric under interchange of ¢ and —¢, and pretending spacetime derivatives are
absent from interaction terms. I'm also writing things like factors of % and minus signs in invisible ink, and
settingc=h=1.

Swhere g; and g, are coefficients of the kinetic and mass term respectively.
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integrand depends on the qft lagrangian.” Schematically

///:/D[m{...g...} )

The D|[¢] denotes a functional integration over field configurations ¢ whose energy and
momentum depend on ¢’s frequency. The path integral defining .# integrates over field
configurations of all energies/momenta/frequencies, including arbitrarily high ones.

If £ is a free lagrangian, we can execute the path integral defining .. If ¥
contains interaction terms, however, we can’t. Instead, we resort to the perturbative
approximation (3). Feynman diagrams guide our calculation of perturbative corrections
M\, M. ... Starting with the “loop-order” correction .#,, Feynman diagrams instruct
us to calculate corrections by evaluating integrals that conspicuously and tragically
diverge. Brought on by integrating over arbitrarily large momenta/frequencies, these
catastrophes are known as ultraviolet divergences. Rather than the small adjustments
to empirical quantities presupposed by our perturbative approximation, corrections
plagued by ultraviolet divergence contribute infinite ones. Ultraviolet divergences render
perturbative approximation meaningless.

Renormalization, the conventional way to address the catastrophic divergences, is a
recipe for an order-by-order doctoring of a lagrangian’s couplings that eventuates, at
each order, in finite perturbative corrections. An essential ingredient in the recipe is
a finite set of measurements that serve to constrain the doctoring at all orders. Other
ingredients struck even the framers of perturbative renormalization approaches as suspi-
ciously ad hoc, even desperate.® Notoriously, renormalization restores empirical sanity
to perturbative approximations by subtracting one infinity from another to obtain a finite
answer.

And yet, for some lagrangians, renormalization techniques succeed, stunningly
well. Call lagrangians that surrender finite predictions when subject to renormalization
techniques renomalizable. Dyson articulated a criterion for identifying such amiable
lagrangians. The criterion hinges on the notion of mass dimension. It’s standard operat-
ing procedure in high-energy physics to set Planck’s constant equal to the speed of light
equal to the dimensionless number 1. This convention means we need only one physical
dimension, which particle physicists declare to be [mass].’ Scalar fields and their deriva-
tives have mass dimension 1, as—unsurprisinglyl—does the mass m. Thus each term in
% has mass dimension 4, as does the ¢* interaction. Higher order interactions—¢°, ¢8
...— have mass dimension > 4.

The notion of an action supplies a nomic scaffolding for path-integral approaches.
(4) implicates . in empirical calculations by using it to define an action via S =
exp(— [ Zd*x). The definition requires [ .Zd*x to be dimensionless. Because d*x =
(%)4 has mass dimension —4, this obliges each term in . to have mass dimension 4.

"Details: What I'm schematizing is the calculation of n-point functions from the partition function
Z(J) = [ D[plexp(—i [ d*x[Z(¢) + J]) defining a gft. For a nice introduction to path integrals and func-
tional integration, see (Hall 2013). But don’t fret if these are alien concepts. A feeling for the basic
mechanics of ordinary integration will be sufficient to follow the plot of this essay.

8Feynman infamously called renormalization “a dippy process” (1995, 128).

Because ¢ = 1, [length] = [time]. Because h = 1, [mass][length)* = [time], which implies that [length] =
[mass]™". So every physical dimension can be expressed as mass dimension: [mass] = [mass] (obviously!),

[length] = [time] = [mass] 1.
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Thus an interaction term with mass dimension d must be multiplied by a coupling g of
mass dimension 4 — d.

The reward for this slog through the niceties of mass dimension is that Dyson’s renor-
malizability criterion is simply stated. A lagrangian is renormalizable only if it contains
no interactions of mass dimension >4, and an interaction is renormalizable only if it
has mass dimension < 4. But the vast majority of interactions appearing in our generic
lagrangian (1) violate this criterion! Renormalizable lagrangians are confined to a tiny
corner of theory space ¢: the measley three-dimensional subspace ¢*% spanned by the
handful of terms with mass dimension < 4.

Hence the Renormalizability Puzzle. It somehow just so happens that the lagrangians
figuring in the Standard Model—not to mention other useful lagrangians, such as the ¢*
lagrangian—are renormalizable. They re residents of that tiny region ¢*K. Particularly
given how suspicious renormalization techniques seemed even to their framers, this
seems absolutely extraordinary. Why should it be that the lagrangians that govern
real-world physics providentially belong to the small but exclusive subspace ¢”K?

3. The RG Explanation

Viewed through the lens of RG approaches, the space ¢ of lagrangians is pierced by a
flow of RG trajectories; the RG Explanation uses the structure of this flow to explain
why so many useful lagrangians are renormalizable. Here’s how.

Recall the schematic (4): Integrating over all energies, we can predict amplitudes for
scattering experiments conducted at all energies. Only we haven’t got the wherewithal to
conduct arbitrarily high-energy experiments. What we have the wherewithal to conduct
are experiments at energies we can achieve in the particle accelerators we’ve managed to
construct. Introduce an effective energy scale A that sets an upper bound on the energies
at which we can test amplitudes extracted from our gft.

Now indulge in what I’ll call the autonomy-of-scales hope. This is the hope there is
some way to describe scale A effective physics that prescinds from the details of ultra-
high energy physics—that to generate predictions empirically adequate at scale A, we
need only survey scale A fields: there is a lagrangian £ such that we can describe ampli-
tudes for scattering experiments conducted at energies up to A, a la (5), by integrating
% against a domain of field configurations that’s cut off at A. (.Z, A) is a scale-A effec-
tive theory: its domain, both of definition and of application, is limited, but it succeeds
in that domain.

Revised to implement the scale-A effective theory inspired by our autonomy-of-
scales, (4) becomes

M = D[¢p|{... & ...} 5)
Jo<a

where the subscript ¢ < A flags the cutoff we’ve imposed on the domain of integration.
Evaluating (5) requires performing a path integral over field configurations of energies
up to—but not beyond—the cutoff energy A. Issuing amplitudes for scattering experi-
ments conducted at energies up to (but not above) A, (5) is a recipe for surveying fields
at scale A in order to derive predictions concerning phenomena at that scale. Comparing
(4) to (5) makes manifest that gft lagrangians do not describe phenomena on their own,
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but only in conjunction with a range of field energies over which they’re integrated to
yield amplitudes.

We are ready to embark on an RG analysis of the space ¢ of lagrangians.'® Our first
move is to pick a very high energy A,,. Take a theory defined by a lagrangian .’ and the
UV cutoff energy A,,. We’re being studiously ecumenical about what form UV physics
might take: even lagrangiansthat aren’t renormalizable might play the role of .Z.

The theory (£, A,y) predicts values for low (scale A) energy amplitudes. So aug-
ment our autonomy-of-scales hope: posit a scale A effective theory (.£’,A) that
reproduces the low-energy amplitudes (£, A,,) predicts:

/¢<AWD[¢] {g}:<A/¢<AD[¢] {g/} ©)

where =_, denotes agreement about low energy amplitudes.

RG equations identify theories (£, A,,) and (£, A) that satisfy the hopes just
expressed. Given a high-energy (scale A,,) lagrangian ., RG equations identify a low-
energy (scale A) lagrangian .’ that mimics .Z’s low-energy empirical implications—
where (6) explicates the mimicry relations. RG equations induce a map Raa,, on ¢:
L' =Ran,,-Z. It’s important to keep the a pair of energy scales indexing the RG
map in view: although the map acts on the space ¢ of lagrangians, it’s establishing
an association (explicated by (6)) between theories (.Z, A,,) and (£’ A).

RG equations are devised by starting with the high energy theory (., A,,) and
“integrating out” field configurations with energies between A, and the new cutoff A—
roughly speaking, blurring (£, A,,)’s high-energy content by replacing individual high
energy field configurations with averages over the collection of high-energy fields—
to identify the low-energy theory that reproduces (.#, A,,) low-energy amplitudes.'!
Because low-energy amplitudes are approximated perturbatively, so are RG equations:
a first-order RG equation identifies low- and high-energy theories whose low-energy
amplitudes, calculated to tree order, agree; a second- or loop order RG equation iden-
tifies theories whose low-energy amplitudes, calculated to loop order, agree, and so
on.

In the space ¢, a lagrangian is coded by the coupling vector giving the coefficients
of its kinetic, mass, and interaction terms. The central dogma of the RG approach is
that “changing [the cutoff scale A] and demanding the the physics be the same (since
A is arbitrary) means the the couplings in the theory ... must depend on A” (Schwartz
2014, 418). Poetically put, RG equations describe the running of the couplings. More
prosaically, for each coupling g, they determine a function g(A) that tracks how that
coupling evolves as the cutoff scale is lowered from A,, to A.'?

So how do the couplings run? A celebrated analysis of RG flows in the space of
scalar field theories due to Polchinski supports a striking answer. Fix a UV cutoff scale
Ayy. Pick a lagrangian . and start the RG flow. At first the news is bad. “Although
the [cutoff scale A,,] lagrangian might start with a simple form, at lower scales it

10The variety of RG analysis sketched here is a Wilsonian RG analysis. There are other varieties, with the
conceptual distinctions between them non-trivial. See (Fraser, ms) for a splendid discussion.

11See (Peskin and Schroeder 1995, §12.1) for a less impressionistic account.

12Not essential to the story told is the use of beta functions to describe the running of the couplings under
the RG. A coupling’s beta function gives its infinitesimal variation with respect to the logarithm of the cutoff
scale A.
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becomes complicated” (1984, 277), as interactions of all sorts, not just renormalizable
ones, scramble to encapsulate the empirical implications of high energy modes inte-
grated out of (.Z, A,y). But good news is coming: “At scales far below A,, ...a great
simplification will occur. . ..no matter what initial lagrangian we start with (within lim-
its), the lagrangian will be strongly attracted toward a three-dimensional submanifold
in the infinite-dimensional space of possible lagrangians” (1984, 277). For A << Ay,
L' = Rpp,,-Z will be well-approximated by a lagrangian featuring just three terms. '3
Additional terms in the high-energy lagrangian . are suppressed—multiplied by fac-
tors of A—by the RG flow. Although they won’t be strictly speaking absent from %",
these additional terms have so little empirical impact that we might as well write them
in invisible ink. As far as effective physics within experimental tolerances is concerned,
it’ll be described by a lagrangian in a three-dimensional subspace of ¢.

What’s more, according to Polchinski’s analysis, the exponentially suppressed terms
are exactly the interactions declared non-renormalizable by Dyson’s criterion. In other
words, to all intents and purposes, lagrangians participating in effective physics reside
in PR, “In light of the above RG analysis,” Williams remarks, “it no longer seems like
incredible luck that so many useful QFT [lagrangians] are renormalizable” (2023, 54).

And that’s the RG Explanation. Useful physics is low-energy effective physics, and
the RG flow suppresses the contributions of non-renormalizable interactions to low-
energy effective lagrangians. Polchinski tells us that this happy outcome “follows in
a very general way when dimensional analysis is applied to the RG equation for an
effective lagrangian” (1984, 274). Where g; is a coupling vector specifying a scale A,
lagrangian, RG analysis yields an account g;(A) of how each coupling runs as high-
energy modes are integrated out of the high-energy theory. We expect that couplings are
going to mix under the action of the RG—that after a RG transformation, the coupling
for each interaction will typically be a function of the complete set of pre-transformation
couplings. If the couplings {g;(A)} have different mass dimensions, what sense can we
make of the mass dimension of their combination? An easy way to avert this awkward-
ness is to have the RG act on dimensionless couplings. “It is,” after all, as Weinberg
remarks, “convenient to work with dimensionless parameters” (1995, 525).

To facilitate this convenience, take a coupling g that modifies a lagrangian term
whose mass dimension d # 4. For reasons rehearsed in §2, ¢ must have mass dimen-
sion 4 — d. To transmute g to a dimensionless coupling g, multiply it by the appropriate
power of the cutoff A (which, recall, has mass dimension 1) collaborating with the
lagrangian to define the effective theory. Thus

gi=(A)""g (7
g is a duly dimensionless coupling whose running will be amenable to RG analysis.
Because the expedient (A)d’4 plays a major role in what follows, I’ll give it a name: the
dimension-cancelling pre-factor.

For a brutalist approximation to how g runs under the RG, suppose that the “physi-
cal” coupling g itself carries no scale-dependence. Then only the dimension-cancelling

prefactor varies as the cutoff scale changes—assuming, that is, that the A in the
dimension-cancelling prefactor slides along with the scale at which integrals like (5)

3Supposing .& represents only a small perturbation to the gaussian fixed point lagrangian whose only

non-zero term is its kinetic term. This restriction lies behind Polchinki’s “within reason” qualification. See
(Wallace 2019) for a discussion of the restriction.
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are cut off. (This is an assumption we’ll revisit.) It follows that

28 (A%
EV NI
Ignoring the fundamental moral of RG approaches, that physical couplings change as
scales change, (NAIVE) gives a first-order approximation to the RG equations.'* Higher-
order approximations to the RG equations, approximations sensitive to the details of
how qft lagrangians underwrite predictions at higher orders of perturbation theory, could
afflict corrections on (NAIVE).
But let this not distract us from the story (NAIVE) has to tell! According to (NAIVE),
if §(Auw) = (A )9 *g is a coupling’s value in a UV cutoff lagrangian .#, and we lower
the cutoff from A, to A, then the A scale coupling §(A) becomes (A)?~*g. But then

A

B =
d is the dimension of the interaction § modifies. Dyson’s criterion tells us that if
d >4, that interaction is non- renormalizable (9) tells us that if d >4, the RG flow
suppresse av 18 a lot bigger than A—that
interaction’s coupling. So (9) is the happy result we're after. (9) attests that under the RG
flow toward the infrared, couplings of non-renormalizable interactions are dramatically
suppressed.

They’re dramatically suppressed, at least, according to the (NAIVE) approximation
to the RG equations. It could be that higher-order approximations complicate this pleas-
ing upshot, by revealing g—and by extension, the non-renormalizable interaction it
modifies—to matter more to low-energy physics than (9) allows. This menace, that the
higher-order corrections “overwhelm” (1984, 273) (NAIVE)’s account of the RG flow, is
ruled out by Polchinski’s analysis. Approximating RG equations to all orders, he shows
that (NAIVE) gets the basic story basically right. The brutalist approximation is a good
guide to how couplings run under the RG flow. And that approximation tells us what we
want to hear: couplings of non-renormalizable interactions are dramatically suppressed.

(NAIVE) ®)

)8 (Auy) ©9)

4. Some Dimensions of the Problem

This criminally brief concluding section asks: how happy should we be with the RG
Explanation? What’s doing almost all of the work in the version of the explanation just
sketched is the “convenient” dimension-cancelling pre-factor (7) introduces to ensure
that all the couplings, whose running we treat via RG methods, are dimensionless. The
pre-factor condemns non-renormalizable interactions to suppression under the RG flow.
And that condemnation resolves the Puzzle. But can the dimension-cancelling prefactor
really bear the explanatory weight the RG Explanation places on it?

Here, in rapid-fire, are a few reasons to think the answer isn’t obvious.

Start with a difference between the instances of dimensional analysis that lead
to (i) the verdict that interactions of mass dimension d must be accompanied in a
lagrangian by couplings of mass dimension (4 — d), and (ii) the dimension-cancelling

4Impressionistically: at tree order, loop integrations over high energy fields don’t figure in the perturbative
calculation, relieving g of the obligation to adapt to offset changes in the domain of integration.
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pre-factor in (7). For the first verdict, a nomic commodity—the action S := [ d*xL—
guides the conclusion reached by dimensional analysis. That analysis reveals how
couplings must behave in order for the action, and the swathe of physical theorizing
based on the action, to make sense. For verdict (ii), by contrast, something arguably
less nomic guides dimensional analysis—the maneuver, of using dimension-cancelling
pre-factors, to facilitate easy management of functions describing the running of the
couplings. Whereas in case (i), dimensional analysis reveals how couplings must
behave for the sake of nomic compliance, in case (ii), dimensional analysis reveals
how dimension-cancelling pre-factors must behave for the sake of ... convenience.
It’s not obvious that we should trust conclusions reached through dimensional analy-
sis guided by considerations of convenience as much as we trust those guided by nomic
considerations.

But grant, for the sake of argument, that functions describing how couplings run
should act on dimensionless couplings.'> Why use powers of a sliding cutoff A as the
dimension-cancelling pre-factor? The result (NAIVE) anchoring the RG explanation fol-
lows only if the dimension-cancelling pre-factor varies with scale—indeed (NAIVE) is
an account of how the dimension-cancelling pre-factor varies with scale! But a fixed
cutoff— A,,, for instance—would serve just as well in a pre-factor that cancels g(A)’s
dimension as A does. It’s the mass dimension of the pre-factor, not its value, that effects
the cancellation. The problem, for the RG Explanation, is that if we use a fixed value
of the cutoff in the dimension-cancelling pre-factor, dimensionless couplings inherit no
cutoff-dependence from that pre-factor, eradicating the exponential suppression that’s
the crux of the explanation.

Of course, if we use a fixed value of the cutoff in dimensional-cancelling pre-factors,
it would be nice to have a reason for the value we choose. There’s one choice for which
a reason comes ready-made with RG approaches. That choice is A,,. Standard accounts
of RG approaches cast A, as the energy at which lagrangian field theories break down.
The only “natural” energy in sight, A, is like (or may even be) the Planck length,
which physicists are accustomed to wield in the cause of dimensional analyses in other
contexts.'® Given that we can define dimensionless couplings using a fixed cutoff, and
that it’s hardly anathema to RG approaches to identify A, as the fixed cutoff, we needn’t
accept the result (NAIVE) that secures the RG explanation.

There is an even shorter route to the suppression of non-renormalizable interactions
than the one §3 charted. Forget about dimensionless couplings. Adopt another perspec-
tive on (6). We’ve been using (6) to answer the question: which low-energy theory

15The concession incorporates another one. Granting that beta functions should act on couplings of the
same dimension, why should that dimension be 0? Note that if it’s different from 0, the pleasing alignment—
between non-renormalizable interactions and interactions whose couplings are exponentially suppressed by
the RG flow —breaks down. I've conceded that that dimension should be 0. Parts of the story this essay
leaves off-stage—including the pivotal role of the gaussian fixed point in the sorts of RG analysis discussed
here—make this concession easy.

16A further consideration: Qft calculations are customarily prosecuted using Euclidean path integrals,
which replace the time coordinate ¢ with an imaginary time coordinate ir. This Wick rotation simplifies
calculations by transmogrifying unwieldly oscillating exponentials e~ into tractable damped ones ¢'. It
also transforms a qft with cutoff A,, to a statistical mechanical theory of a lattice system with a finite
lattice spacing related to A,,. And the lattice spacing of a physical lattice is plausibly a physically relevant
parameter. Whether this plausibility transfers to A,, understood as a cutoff for a real-time gft is very non-
trivial additional question. See (Fraser 2020) for more.
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(&', A) mimics the low-energy amplitudes defined by a high-energy theory (£, Ayy)?
This is a question about theories with different (but overlapping!) domains. But let’s
ask a different question, one about theories with the same domain: how do . and &',
both understood as governing physics upto the UV cutoff A,,, compare? In condensed
matter physics, asking the counterpart of this question has huge payoffs: if the answer
is, “they’re the same!,” you’ve found a fixed point of the RG flow and are well on your
way to calculating critical exponents and explaining universality.

To compare .Z and .’ as lagrangians for the same, high-energy domain, we need
to rescale. ' as it appears in (6) governs physics only upto a scale A. To broaden
its coverage so that its domain coincides with the domain of ., multiply all the cou-
plings that appear on the r.h.s. of (6) with mass (=energy) dimension d by a scale
factor ()7, After this rescaling, .#, ., has the same domain of validity as .. It’s
L) calea We should consider alongside . if our aim is to compare lagrangians with a
common domain. But soft! If .# includes an interaction of mass dimension d >4—a
non-renormalizable interaction—that interaction will be modified by a coupling of neg-
ative mass dimension. This coupling will appear in .Z), ... multiplied by a positive
powers of A—/:‘ This is the exponential suppression key to the RG explanation—here

exhibited as a consequence of the rescaling step of an RG transformation.!”

But why in the context of thinking, fueled by the autonomy-of-scales hopes, about
effective lagrangians, should we take the rescaling step? The question—which low-
energy theory (.¢’, A) mimics the low-energy amplitudes defined by a high-energy
theory (£, A,y)?—is the right one to ask in this context. The adjacent question—what
high energy theory would .’ be, if .#’ were a high energy theory?—isn’t. It’s £’ as
participant in the effective theory (.Z’, A) we care about. And how we’ve expressed
that care makes rescaling .#”’ to extend its domain up to the ultra-high energy cutoff A,
weird. If physics breaks down at A,,, what (after rescaling) are we to make of the high-
energy modes we (before rescaling) integrated out of .# to obtain .#’? This is hardly
to deny what the previous paragraph acknowledged: that there are plenty of contexts
where it’s illuminating to pursue the question about how . and .#”’, considered as the-
ories with the same domain, compare. It is, however, to suggest that the present context
might not be one of them. And if it isn’t one of them, the RG Explanation that emerges
from the pursuit rings hollow.

The foregoing are reasons, internal to the RG Explanation, to question its bona fides.
I'll close with an external reason. It’s that the RG Explanation explains too much.
The RG explanation primes us to expect effective theories to be renormalizable. But
paradigm examples of effective theories—the 4-Fermi theory of beta decay (which
implements the electroweak theory at low energies), the chiral lagrangian (which imple-
ments QCD at low energies)— aren’t renormalizable. This is adamantly not to deny
that such theories play important roles, rewarding of methodological and conceptual
analysis, in working physics, or that a broad effective theory philosophy helps to make
sense of those roles. It is rather to observe that non-renormalizable effective theories sit
awkwardly alongside a very specific line of thought about effective theories: the line of

"There is collateral evidence for (NAIVE) that takes the following form: we can characterize the WRG
flow directly, by calculating what effective lagrangian results when we integrate higher energy modes out of
the higher energy theory. (NAIVE) results. The exhibitions of such evidence I'm aware of (e.g. Melo 2019,
§3) rely on the rescaling described here.

https://doi.org/10.1017/psa.2025.10132 Published online by Cambridge University Press


https://doi.org/10.1017/psa.2025.10132

12

thought traced by the RG Explanation. As sketchy as reservations I’ve raised about that
explanation are, perhaps this awkwardness is a reason to take them seriously.
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