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Abstract Let G be a finite p-solvable group. We describe the structure of the p-complements of G when
the set of p-regular conjugacy classes has exactly three class sizes. For instance, when the set of p-regular
class sizes of G is {1, pa, pam} or {1, m, pam} with (m, p) = 1, then we show that m = qb for some prime
q and the structure of the p-complements of G is determined.
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1. Introduction

It is known that the structure of a finite group is strongly related to its set of conjugacy
class sizes. In particular, in some papers it has been proved that certain properties of the
sizes of p-regular conjugacy classes also affect the p-structure of G. In [1], Alemany et al .
proved that if the set of conjugacy class sizes of p′-elements of a finite group G is {1, m},
then p-complements of G are nilpotent. In [3], the structure of the p-complements of a
p-solvable group G has been described for the case in which the set of p-regular conjugacy
class sizes of G is {1, m, n} for arbitrary coprime integers m, n > 1. In fact, it is shown
that G is solvable and the p-complements of G are quasi-Frobenius groups in which
the inverse image of the kernel and complement are abelian. Also, in [7], it is proved
that, if the set of conjugacy class sizes of all p′-elements of a finite p-solvable group G

is {1, m, pa, mpa}, where m is a positive number not divisible by p, then m is a prime
power and, furthermore, the p-complements of G are nilpotent.
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We note that studying the p-structure of a finite group G from its set of p-regular
conjugacy class sizes may be more difficult, even if one considers the p-solvability of G,
since if H is a p-complement of G and x ∈ H, then |xH | does not divide |xG| in general.
Furthermore, we are handicapped by the fact that there is no information on the elements
whose order is divisible by p.

In this paper, we study the structure of the p-complements of a p-solvable group G,
with {1, pa, mpa} or {1, m, mpa} as the set of conjugacy class sizes of p′-elements of
G, where (p, m) = 1. In fact, we prove the following two theorems, which are exten-
sions for p-solvable groups of Itô’s Theorem on groups with two class sizes (see, for
example, [9, 33.6]).

Theorem A. Let G be a p-solvable group with {1, m, pam} as the set of conjugacy
class sizes of p′-elements, where (p, m) = 1. Then m = qb for some prime q, and any
p-complement H of G satisfies H = Q × K with Q a Sylow q-subgroup and K abelian.

Theorem B. Let G be a p-solvable group. If the set of conjugacy class sizes of
p′-elements of G is {1, pa, pam}, with (p, m) = 1, then m = qb for some prime q and
some integer b � 0, and every p-complement H of G is either

(i) H = Q × K, with Q a Sylow q-subgroup and K abelian, or

(ii) H = QK, with Q a normal abelian Sylow q-subgroup, K abelian and QOp(G)�G.

Notice that the solvability of G is an easy consequence of both Theorem A and The-
orem B. We also note that the methods we employ for proving Theorems A and B are
quite different. In the proof of Theorem A we use the classification of the finite M-groups
due to Schmidt, that is, those non-abelian groups in which all centralizers of non-central
elements are abelian. In the proof of Theorem B a more detailed analysis is required.

We remark that the information obtained on the p-structure of a group G from its
set of p-regular class sizes has important applications when studying the conjugacy class
sizes of G in the ordinary case (see, for example, [5] and [6], in which the information is
used to obtain the solvability or nilpotency of certain groups) and, as a consequence, in
determining the structure of G.

Throughout this paper all groups are finite. If x is any element of a group G, we denote
by xG the conjugacy class of x in G and |xG| is called the conjugacy class size of x and
also the index of x in G. If p is a prime number and n is an integer, then we use the
notation np for the p-part of n, i.e. np = pα, where pα divides n and pα+1 does not divide
n. We will denote the set of p′-elements of G by Gp′ and the set of conjugacy classes of
p′-elements of G by csp′(G). All further unexplained notation is standard.

2. Preliminary results

We will need some results on conjugacy class sizes of p-regular elements and of π-elements
for a suitable set of primes π.

Lemma 2.1. Let G be a finite group. All the conjugacy class sizes in Gp′ are then
p-numbers if and only if G has abelian p-complements.
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Proof. See Lemma 2 of [4]. �

Lemma 2.2. Suppose that G is a finite group and that p is not a divisor of the sizes
of p-regular conjugacy classes. Then G = P × H, where P is a Sylow p-subgroup and H

is a p-complement of G.

Proof. This is exactly Lemma 1 of [8]. �

Lemma 2.3. Let x and y be a q-element and a q′-element, respectively, of a group G,
such that CG(x) ⊆ CG(y). Then Oq(G) ⊆ CG(y).

Proof. It is enough to apply Thompson’s P × Q-Lemma [11, 8.2.8] to the action of
〈x〉 × 〈y〉 on Oq(G). �

Lemma 2.4. Let G be a π-separable group. If x ∈ G with |xG| a π-number, then
x ∈ Oππ′(G).

Proof. See Theorem C of [2]. �

The following result is an extension for p-regular elements of Itô’s Theorem on groups
having two class sizes.

Theorem 2.5. Let G be a finite group. If the set of p-regular conjugacy class sizes of
G is exactly {1, m}, then m = paqb, with q a prime distinct from p and a, b � 0. If b = 0,
then G has an abelian p-complement. If b �= 0, then G = PQ × A, with P ∈ Sylp(G),
Q ∈ Sylq(G) and A ⊆ Z(G). Furthermore, if a = 0, then G = P × Q × A.

Proof. This is Theorem A of [2]. �

Theorem 2.6. Let G be a finite p-solvable group and let π = {p, q} with q and p two
distinct primes. Suppose that the sizes of the conjugacy classes of Gp′ are π-numbers.
Then G is solvable, it has abelian π-complements and every p-complement of G has a
normal Sylow q-subgroup.

Proof. This is Theorem 5 of [7]. �

The following result extends Theorem 6 of [7] with an easier proof.

Theorem 2.7. Let G be a finite p-solvable group and let π = {p, q} with q and p two
distinct primes. Suppose that the sizes of p-regular classes in G are π-numbers. Let qb

be the highest power of the prime q that divides the sizes of classes of p-regular elements
in G. Suppose that there exists some q-element x ∈ G such that |xG| = paqb, where
a, b � 0. Then G has nilpotent p-complements and they have abelian Sylow subgroups
for all primes distinct from q.
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Proof. We know that G is solvable by Theorem 2.6. Let K be a π-complement of G

such that K ⊆ CG(x). Notice that K is abelian by Theorem 2.6, and furthermore it can
be assumed to be non-central in G, otherwise the result is trivial. Let y be any element
in K and observe that K ⊆ CG(xy) = CG(x) ∩ CG(y) ⊆ CG(x). Notice that the index
of xy in CG(x) is a q′-number, and consequently a p-number. If we choose KQ0 to be a
p-complement of CG(xy), then it is also a p-complement of CG(x). Note that x ∈ KQ0.
Now, let H be a p-complement of G such that KQ0 ⊆ H. We can then write H = KQ

with Q a Sylow q-subgroup of G that is normal in H by Theorem 2.6. Therefore, Q0 ⊆ Q

and
CQ(xy) = Q ∩ CG(xy) = Q0 and CQ(x) = Q ∩ CG(x) = Q0.

Then CQ(x) = CQ(xy) ⊆ CQ(y), so we can apply Thompson’s Lemma to get Q ⊆ CG(y)
for all y ∈ K. Consequently, H = Q × K as desired. �

Theorem 2.8. Let G be a finite group and let π be a set of primes. Suppose that the
conjugacy class size of every π-element of G is a power of p for some fixed prime p �∈ π.
Then G has an abelian Hall π-subgroup H and HOp(G) � G.

Proof. This is part (a) of Theorem A of [4]. �

We use the above theorem to give a simplified proof of Theorem 2.9, which is moreover
an extension of Theorem 7 of [7].

Theorem 2.9. Let G be a p-solvable group whose conjugacy class sizes of p′-elements
are {1, pa1 , . . . , par , pc1qb, . . . , pcsqb}, where q is a prime distinct from p and ci � 0,
b, ai � 0 for all i. Then any p-complement H of G is either

(i) H = Q × K, with Q a Sylow q-subgroup and K abelian, or

(ii) H = QK, with Q a Sylow q-subgroup, Q and K both abelian, Q�H and QOp(G)�
G.

Proof. If there exists a q-element of index qbpci for some i, then case (i) follows by
Theorem 2.7. Otherwise, the index of every q-element is a p-number. So, by Theorem 2.8,
G has an abelian Sylow q-subgroup Q and QOp(G)�G and thus, if H is a p-complement
of G, containing Q, then Q � H. Also by Theorem 2.6 we get that G is solvable and it
has an abelian {p, q}-complement. So we have case (ii). �

Corollary 2.10. Let G be a p-solvable group.

(a) If csp′(G) = {1, qb, paqb}, where q is a prime distinct from p, then any p-complement
H of G satisfies H = Q × K with Q a Sylow q-subgroup and K abelian.

(b) If csp′(G) = {1, pa, paqb}, where q is a prime distinct from p, then every p-comple-
ment H of G, is either

(i) H = Q × K, with Q a Sylow q-subgroup and K abelian, or

(ii) H = QK, with Q a normal abelian Sylow q-subgroup, K abelian and
QOp(G) � G.
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Proof. Case (a) is an immediate consequence of Theorem 2.7 and case (b) is a con-
sequence of Theorem 2.9. �

3. Groups with three p-regular class sizes

In order to prove Theorems A and B, it is sufficient to show that when the set of p-regular
class sizes of a group G is {1, pa, pam} or {1, m, pam}, with (m, p) = 1, then m is a prime
power, qb. We shall prove this in Theorems 3.1 and 3.2. The main results then follow by
Corollary 2.10. Note that if a = 0, then G has two p-regular class sizes, so Theorems A
and B are immediate consequences of Theorem 2.5. Also note that if b = 0, then G has
abelian p-complements by Lemma 2.1.

Theorem 3.1. If G is a p-solvable group such that csp′(G) = {1, m, pam} with
(p, m) = 1, then m = qb for some prime q.

Proof. Take H to be a p-complement of G. We prove the theorem in the following
steps.

Step 1. For every non-central p-regular element x of G, we may assume that there
exist at least two primes q and r, distinct from p, such that r and q divide |CG(x)|/|Z(G)|.

Suppose that there exists a non-central p-regular element x ∈ G such that, for some
prime q �= p, |CG(x)|p′/|Z(G)|p′ is a q-number. On the other hand, we may assume
that there exists a non-central r-element y in G, with r distinct from p and q, since
otherwise G is the direct product of a {p, q}-group and a central factor, and so the result
follows. Therefore, r is a divisor of |CG(y)|p′/|Z(G)|p′ . Note that |CG(x)|p′ = |G|p′/m =
|CG(y)|p′ , and so we get a contradiction.

Step 2. If x is a non-central element of H such that |xG| = m, then |xH | = m.
Moreover, CH(x) = TxQx, with Qx a Sylow q-subgroup of CH(x), where q is a prime
divisor of the order of x, and Tx a normal abelian q′-subgroup of CH(x). Furthermore,
CH(x) is a p-complement of CG(x).

Let x be a non-central element of H with |xG| = m. So G = HCG(x), and consequently
|H : CH(x)| = |G : CG(x)| = m, as desired. Also, |CG(x) : CH(x)| = |G : H| implies
that CH(x) is a p-complement of CG(x). By the minimality of the class size of x, we
can certainly assume that x is a q-element for some prime q distinct from p. Let y

be a non-central {p, q}′-element in CG(x) (note that by Step 1 such elements exist).
Then CG(xy) = CG(x) ∩ CG(y) ⊆ CG(x), and so by the hypotheses, y has index 1 or
pa in CG(x). Now, we apply Theorem 2.9, so CG(x) has abelian {p, q}-complements,
and TxOp(CG(x)) � CG(x), for every {p, q}-complement Tx of CG(x). Since CH(x) is
a p-complement of CG(x), we may assume that Tx ⊆ CH(x), and, as a consequence,
Tx � CH(x). So we get the result.
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Step 3. H is an M-group.
Let x ∈ H be a non-central element. We distinguish two possibilities for the index of

x in G.
First suppose that |xG| = m. We may assume that x is a q-element for some prime

q. By Step 2 we have CH(x) = TxQx, where Tx is the normal abelian q-complement of
CH(x) and Qx is a Sylow q-subgroup of CH(x). Let y ∈ Tx be a non-central r-element
for some prime r �= q.

Assume first that |yG| = m. Then |CH(x)| = |CH(y)| and CH(y) = LyRy, where Ly

is the normal abelian r-complement of CH(y) and Ry is a Sylow r-subgroup of CH(y),
by Step 2. So Qy ⊆ Ly is the normal abelian Sylow q-subgroup of CH(y). Therefore,
x ∈ Qy and hence Qy ⊆ CH(x)∩CH(y). Also, since Tx is abelian, Tx ⊆ CH(x)∩CH(y),
which implies that CH(x) = CH(y) = Qy × Tx, and we deduce that CH(x) is abelian.

Now we assume that |yG| = pam. Then by the minimality of |CG(y)| we have CG(y) =
PyRy × Ky, where Py and Ry are some Sylow p-subgroup and r-subgroup of CG(y),
respectively, and Ky is abelian. On the other hand, since CG(xy) = CG(x) ∩ CG(y) ⊆
CG(y), the minimality of |CG(y)| implies that CG(xy) = CG(y) ⊆ CG(x). So we may
assume that Ry ⊆ Tx and, consequently, Ry is abelian. Hence, Ry × Ky is an abelian
p-complement of CG(y). Also CG(y) ⊆ CG(x), whence every p-complement of CG(y) is
a p-complement of CG(x). Now, from the fact that CH(x) is a p-complement of CG(x)
we get that CH(x) is abelian.

Suppose that |xG| = pam. First we assume that there exists some non-central p-regular
element α such that CG(x) � CG(α). So |αG| = m. Since CH(x) is a p′-subgroup of
CG(α), there exists g ∈ G such that CH(x) ⊆ CHg (α), where CHg (α) is a p-complement
of CG(α). By the above argument, CHg (α) is abelian, whence CH(x) is abelian too.

Suppose that there exists no non-central p′-element α such that CG(x) � CG(α).
Hence, we may certainly assume that x is an r-element for some prime r �= p. So we
can write CG(x) = PxRx × Kx, where Px and Rx are some Sylow p-subgroup and
r-subgroup of CG(x) and Kx is abelian. By Step 1 there exists a non-central q-element
w ∈ Kx for some prime q /∈ {p, r}. Thus, CG(wx) = CG(x)∩CG(w) = CG(x) ⊆ CG(w),
which implies that CG(x) = CG(w), by the hypotheses. On the other hand, we have
CG(w) = PwQw × Lw, where Pw and Qw are some Sylow p-subgroup and q-subgroup of
CG(w) and Lw is abelian. So Rw ⊆ Lw is the normal abelian Sylow r-subgroup of CG(x).
Hence, CG(x) has abelian p-complements. Consequently, every p′-subgroup of CG(x) is
abelian and, in particular, CH(x) is abelian too.

Step 4. For every non-central element x ∈ H, m is a divisor of |xH |. In particular, if
H is a normal subgroup of G, then the theorem follows.

Let x ∈ H be a non-central element. Since CH(x) is a p′-subgroup of CG(x), there
exists g ∈ G such that CH(x) ⊆ CHg (x), where CHg (x) is a p-complement of CG(x).
On the other hand, m = |G : CG(x)|p′ = |Hg : CHg (x)|. Therefore, m divides |xH |, as
desired. If H is a normal subgroup of G, then |xH | divides |xG| for every non-central
element x ∈ H, and by the fact that m is a divisor of |xH | we get that cs(H) = {1, m};
thus, by applying Ito’s Theorem on groups with two class sizes (see [9, 33.6]), we obtain
that m is a prime power.
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Step 5. Conclusion.
As we proved in Step 3, H is an M-group. So by applying the classification of finite

M-groups (see [13, Theorem 9.3.12]), we have the following possibilities, each of which
leads either to the fact that m is a prime power or to a contradiction.

• Assume that H = A × Q, where A is abelian and Q is a q-group, for some prime
q. Let x be an element in Q \ Z(H). So |xG| is a {p, q}-number, whence m is a
q-power, as desired.

• Assume that H is non-abelian and has a normal abelian subgroup N of index q for
some prime q distinct from p. Notice that N � Z(H), and hence, if x ∈ N \ Z(H),
then |xG| is a {p, q}-number, whence m is a q-power.

• Suppose that H/Z(H) is a Frobenius group, with Frobenius kernel K/Z(H) and
Frobenius complement L/Z(H), where K and L are abelian. It follows that cs(H) =
{1, |K/Z(H)|, |L/Z(H)|}, and so, by Step 4, m = 1, the theorem is trivially true.

• Suppose that H/Z(H) is a Frobenius group, with Frobenius kernel K/Z(H) and
Frobenius complement L/Z(H), where K is abelian and L/Z(H) is a q-group for
some prime q. It is easy to see that cs(H) = {1, |L/Z(H)|, |K/Z(H)| |xL| : x ∈
L \ Z(H)}, and so, by Step 4, m is a q-power.

• Assume that H/Z(H) ∼= S4, and V/Z(H) is the Klein 4-group, where V is non-
abelian. Then for every x ∈ H \ Z(H) we have that CH(x)/Z(H) is a maximal
cyclic subgroup of H/Z(H) (see [13, p. 521]). One can then easily obtain cs(H) =
{1, 6, 8, 12}, whence m = 2 by Step 4.

• Let H/Z(H) ∼= PSL(2, qh) for some prime q. Note that Z(H) = Z(G)p′ . By
Lemma 2.4, if x is a p-regular element in G such that |xG| = m, then x ∈ Op′(G).
Therefore, Op′(G)/Z(H) is a non-trivial normal subgroup of PSL(2, qh), so H =
Op′(G) is a normal subgroup of G, and the result follows by Step 4.

• Finally, assume that H/Z(H) ∼= PGL(2, qh) for some prime q. Note that Z(H) =
Z(G)p′ . Since Op′(G) can be assumed to be a proper non-central subgroup of H,
we deduce that Op′(G)/Z(H) ∼= PSL(2, qh). Therefore, any class size of PSL(2, qh)
divides a p-regular class size of G and, consequently, their least common multiple,
which is |PSL(2, qh)|, divides m. Let x ∈ H \ Z(G), such that |xG| = m; we
then have |xH | = m. Since |PSL(2, qh)| = |Op′(G)|/|Z(H)| divides m, there exists
an integer t such that |Op′(G) : Z(H)|t = m = |H : CH(x)|. This implies that
|CH(x) : Z(H)|t = |H : Op′(G)| = 2, and so t = 1. Therefore, |H/Z(H)| =
|H/Op′(G)| |Op′(G)/Z(H)| = 2m. Let y be a non-central element in H. There
exists g ∈ G such that CH(y) ⊆ CHg (y), where CHg (y) is a p-complement of
CG(y), so m = |G : CG(y)|p′ = |Hg : CHg (y)|. Taking into account that Z(H) ⊂
CH(y) ⊆ CHg (y) ⊆ Hg and 2m = |Hg/Z(H)|, it follows that CH(y) = CHg (y),
so m = |Hg : CH(y)| = |H : CH(y)| for every y ∈ H \ Z(H). By Ito’s Theorem
on groups with two class sizes, m is a prime power, which contradicts the fact that
|PSL(2, qh)| divides m. �
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Theorem 3.2. Let G be a p-solvable group and suppose that csp′(G) = {1, pa, pam}
with (p, m) = 1. Then m = qb for some prime q.

Proof. We will proceed by minimal counterexample to prove that m is a prime power.
Let G be a group of minimal order satisfying the hypotheses and such that m is not a
prime power. Notice that if w is a p′-element of index pa, then by minimality of its index,
w certainly can be assumed to be a q-element for some prime q �= p. For the rest of the
proof, we will fix the prime q and a q-element w of index pa. Let H be a p-complement
of G such that H ⊆ CG(w).

Step 1. If y ∈ H is a q′-element, then |yH | = 1 or m. As a consequence, H = QR×A,
where Q and R are Sylow q- and r-subgroups of H, respectively, and A is abelian, and
m = qbrc with b, c > 0 for some prime r �= p, q.

Let y be any q′-element of H. Then CG(wy) = CG(w) ∩ CG(y) ⊆ CG(w), so by the
hypotheses y may have index 1 or m in CG(w). Now, since CG(w) = HCG(wy) and
CH(wy) = CH(y), it follows that |H : CH(y)| = |CG(w) : CG(wy)| = 1 or m. If every
q′-element of H has index 1 in H, then H has a central q-complement. Therefore, every
element of H is centralized by a {p, q}-complement of G, so its index is a {p, q}-number
and m would be a power of q, a contradiction. Therefore, both numbers, 1 and m, appear
as indexes of q′-elements in H, so we can apply Theorem 2.5. Since we have assumed
that m is not a prime power, this completes the step.

Step 2. If x is an s-element for any prime s �= q, p and y is a q-element such that both
x and y have index pa, then CG(x) = CG(y)g for some g ∈ G.

Let H1 be a p-complement of G contained in CG(y). It is clear that there exists some
g ∈ G such that Hg

1 ⊆ CG(x). Then yg ∈ CG(x) and, clearly, |CG(x) : CG(ygx)| must
be equal to 1 or m. As m is a p′ number, we can take Px to be a Sylow p-subgroup of
CG(x) such that Px ⊆ CG(ygx). In particular, we have Px ⊆ CG(yg). By considering
the orders, Px is a Sylow p-subgroup of CG(yg) and thus CG(yg) = Hg

1Px = CG(x), as
desired.

Step 3. Every s-element of G has index 1 or pam in G for any prime s �= p, q. Also, for
every s-element x, we have CG(x) = PxSx ×Tx, where Px and Sx are a Sylow p-subgroup
and a Sylow s-subgroup of CG(x), respectively, and Tx is abelian.

Suppose that ρ is a non-central s-element such that |ρG| = pa. Then by the last step
we have CG(w) = CG(ρ)g for some g ∈ G.

Let z ∈ H be an element of prime power order. If (o(z), q) = 1, then, by Step 1, we
conclude that the index of z in H is 1 or m. Let z be a q-element. Since z ∈ CG(w) =
CG(ρ)g, we conclude that CG(zρg) = CG(z) ∩ CG(ρg) ⊆ CG(ρg). Therefore, |CG(ρg) :
CG(zρg)| = 1 or m, and as a consequence CG(ρg) = HCG(zρg). Now it is easy to see
that |zH | = |H : CH(z)| = |CG(ρg) : CG(zρg)| = 1 or m.

Now we shall prove that m is a prime power, which is a contradiction. By Step 1
we have that H is solvable, which means that there must exist some prime q such that
Z(H)q < Oq(H). If every r-element of H is central in H for every prime r dividing |H|
distinct from q, then m is certainly a q-power. So, let x be a non-central r-element of
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H for such a prime r. We take Q to be a Sylow q-subgroup of CH(x). Let us consider
the action of Q × 〈x〉 on Q0 = Oq(H). We claim that CQ0(Q) ⊆ CQ0(x). In fact, if
z ∈ CQ0(Q) is non-central in H, then 〈Q, z〉 � CH(z) < H. However, by the above
paragraph, |CH(z)|q = |CH(x)|q = |Q|, so, in particular, z ∈ Q ∩ Q0 ⊆ CQ0(x) as
claimed. We apply Thompson’s P × Q-Lemma to get x ∈ CH(Oq(H)), and thus show
that every Sylow r-subgroup of H lies in CH(Oq(H)) for every r �= q. This means
that |H : CH(Oq(H))| is a q-number. However, if we take w ∈ Oq(H) \ Z(H), then
CH(Oq(H)) ⊆ CH(w) and, consequently, m is a q-number too, as desired.

Now let x be a non-central s-element, in which case we have |xG| = pam. If y is an
{s, p}′-element in CG(x), then CG(yx) = CG(y) ∩ CG(x) = CG(x) ⊆ CG(y), which
implies that CG(x) = PxSx × Tx, where Px and Sx are some Sylow p-subgroup and
s-subgroup of CG(x), respectively, and Tx is abelian.

Step 4. Every non-central {r, p}′-element has class size pa. As a consequence, G is a
{p, q, r}-group.

First we claim that every q-element has class size 1 or pa.
Suppose that α is a q-element of index pam. Take a p-complement H1 of G such that

CH1(α) is a p-complement of CG(α). Note that α ∈ H1. By using Step 3, there exists
a non-central r-element β ∈ G such that |βG| = pam. Hence, |CG(α)| = |CG(β)| and
|CH1(α)/(Z(G) ∩ H1)|r = |CG(β)/Z(G)|r > 1. So we conclude that there exists a non-
central r-element γ ∈ CH1(α), whence |γG| = pam. Moreover, CG(αγ) = CG(α)∩CG(γ),
and by the maximality of the index of α and γ, we conclude that CG(α) = CG(γ) =
CG(αγ).

Now consider the action of 〈α〉 × 〈γ〉 on Oq(H1) and Or(H1) and, by Lemma 2.3, we
deduce that Oq(H1) × Or(H1) ⊆ CG(α) = CG(γ). In particular, γ ∈ CH1(F (H1)) ⊆
F (H1), since, by Step 1, H1 is a solvable group that can be described as H1 = Q1R1×A1,
where Q1 and R1 are some Sylow q- and r-subgroups of H1, respectively, and A1 is
abelian. Therefore, γ ∈ Or(H1).

Now we shall show that R1 ⊆ CG(α), which provides a contradiction, since α has
index pam, which is divisible by r.

Let η ∈ R1 be a non-central r-element. Then, by Step 3, CG(η) = PηRη × Tη, where
Pη and Rη are some Sylow p-subgroup and r-subgroup of CG(η), respectively, and Tη

is abelian. So CH1(η) ⊆ (Rη × Tη)x for some x ∈ CG(η). Since |H1 : CH1(η)| = m =
|G : CG(η)|p′ , by Step 1 we deduce that |CH1(η)| = |CG(η)|p′ . Therefore, CH1(η) =
(Rη × Tη)x. By changing the notation we may assume that CH1(η) = Rη × Tη. Now we
consider the action of Rη ×Tη on Or(H1) by conjugation. We claim that COr(H1)(Rη) ⊆
COr(H1)(Tη).

If z is a non-central element in COr(H1)(Rη), then 〈Rη, z〉 ⊆ CG(z) and, since
|CG(z)|r = |CG(η)|r = |Rη|, we deduce that z ∈ Rη and hence z ∈ COr(H1)(Tη). So
it follows that COr(H1)(Rη) ⊆ COr(H1)(Tη). Now, by using Thompson’s P × Q-Lemma,
we have Tη ⊆ CH1(Or(H1)) ⊆ CH1(γ), which implies that α ∈ Tγ = Tη, where Tγ is the
{r, p}-complement of CG(γ), and so α ∈ CG(η) and hence R1 ⊆ CG(α), as we claimed.

Now let g be any {r, p}′-element of G, which can be assumed to belong to H. Then
we have g = gqz, where gq is the q-part of g and z is an element in A. Since z ∈ CG(gq)
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and gq has index pa in G, we deduce that there exists t ∈ G such that z ∈ Ht ⊆ CG(gq).
So z ∈ At and, by the fact that At is central in Ht, we have Ht ⊆ CG(z). Then
Ht ⊆ CG(z) ∩ CG(gq) = CG(g), which implies that |gG| = 1 or pa.

Therefore, by Step 3 and the above argument, we get that every s-element of G is
central for every s �∈ {p, q, r}. Hence, the {p, q, r}-complement of G is central, and so by
minimal counterexample we conclude that G is a {p, q, r}-group.

Step 5. Let Pw be a Sylow p-subgroup of CG(w). Then any p′-element of G centralizes
some conjugate of Pw.

Let h be any p′-element of G, which can be assumed to belong to H ⊆ CG(w).
We factorize h = hrhq with hr ∈ R and hq ∈ Q. As we proved in Step 3, hr has
index 1 or pam. Assume first that hr has index pam. Since hr ∈ H ⊆ CG(w), we
conclude that CG(whr) = CG(hr) = CG(h), which implies that CG(h) ⊆ CG(w). But
|CG(w) : CG(h)| is m and we obtain that CG(h) contains some Sylow p-subgroup of
CG(w), and consequently h centralizes some conjugate of Pw. Therefore, we may assume
that hr is central in G, whence h can be assumed to be a q-element. Thus, by applying
Step 4, h has index pa. Since by Step 3 any r-element of G has index 1 or pam, we
can choose an r-element t ∈ CG(h) of index pam. By minimality of the order of the
centralizer of t in G, we have CG(th) = CG(t), so CG(t) ⊆ CG(h). On the other hand,
t lies in some p-complement Hg ⊆ CG(wg) and similarly CG(t) ⊆ CG(wg). Moreover,
|CG(wg) : CG(t)| is necessarily m, so some conjugate of Pw must lie in CG(t) and,
therefore, also in CG(h) and this case is finished.

Step 6 (Op(G) = G). Suppose that Op(G) < G. Let ρ be a p-regular element of
Op(G) such that |ρG| = pa. We have

|G|
|Op(G)|

|Op(G)|
|COp(G)(ρ)| =

|G|
|CG(ρ)|

|CG(ρ)|
|COp(G)(ρ)| .

Let Pρ be a Sylow p-subgroup of CG(ρ). The fact that |CG(ρ) : COp(G)(ρ)| is a p-number
implies that

|G|
|Op(G)|

|Op(G)|
|Op(G) ∩ CG(ρ)| =

|G|
|CG(ρ)|

|Pρ|
|Pρ ∩ Op(G)| =

|G|
|CG(ρ)|

|PρO
p(G)|

|Op(G)| ,

and thus
|Op(G)|

|COp(G)(ρ)| = pa |PρO
p(G)|

|G| = pk,

where k � 0.
By Step 5 there exists g ∈ G such that P g

w ⊆ CG(ρ). Since |CG(ρ)|p = |CG(w)|p, that
is, Pρ is G-conjugate to P g

w, we deduce that pk is constant in the above equation for any
element ρ of index pa.

Now, let ρ be a p-regular element of Op(G) with |ρG| = pam. So we can write ρ = ρrρq,
where ρr and ρq are the r-part and q-part of ρ, respectively. By Step 4, ρr cannot be
central. Thus it is easy to see that CG(ρ) = CG(ρr). Hence, we may assume that ρ is an
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r-element. There exists g ∈ G such that ρ ∈ CG(wg) and hence CG(ρ) ⊆ CG(wg). Then
|CG(wg) : CG(ρ)| = m. As (m, p) = 1, we have CG(wg) = CG(ρ)COp(G)(wg) and

|Op(G) : COp(G)(ρ)| = |Op(G) : COp(G)(wg)| |COp(G)(wg) : COp(G)(ρ)|
= pk|CG(wg) : CG(ρ)|
= pkm.

Therefore, the set of p-regular class sizes of Op(G) is {1, pk, pkm}. If k �= 0, then by
minimal counterexample m is a prime power, which is a contradiction. Thus, k = 0 and
{1, m} are the p-regular conjugacy class sizes of Op(G). This forces m to be a {p, q}-
number by Theorem 2.5, which is a contradiction by Step 1.

Step 7. There exists N a proper normal subgroup of G such that the index |G : N |
is a p′-number and Z(G) ⊆ Opp′(G) ⊆ N .

First we show that Opp′(G) < G. Otherwise, G has a normal Sylow p-subgroup P .
Then G = PH, and it is easy to see that CG(h) = CP (h)CH(h) for all h ∈ H. This
implies that

|G : CG(h)| = |P : CP (h)| |H : CH(h)|,
which is 1, pa or pam. Therefore, |H : CH(h)| is 1 or m for every h ∈ H. By Itô’s
Theorem on groups with two class sizes [9, Theorem 33.6], m is a prime power, which is
a contradiction. Hence, Opp′(G) < G.

Take N to be the maximal proper subgroup in the upper pp′-series of G and note that
the index |G : N | is a p′-number, since Op′

(G) < G by Step 6. Moreover, it is obvious
that Z(G) ⊆ Opp′(G) ⊆ N < G.

Step 8. If Q is a Sylow q-subgroup of H, then QOp(G) � G, Q � H and Q is abelian.
Moreover, R̄ = R/Z(G)r has exponent r, where R is a Sylow r-subgroup of G.

As we proved in Step 4, every q-element of G has class size 1 or pa. So, by using
Theorem 2.9, G has an abelian Sylow q-subgroup Q, and QOp(G) � G. Also, by using
the fact that Q ⊆ H, it easily follows that Q � H, as required.

Now we shall show that R̄ = R/Z(G)r has exponent r. Let x ∈ H \ QZ(G)r. Then
we factorize x = xrxq, where xr and xq are the r-part and q-part of x, respectively.
Note that xr /∈ Z(G)r. So CG(x) ⊆ CG(xr), and if we also take into account that xr

has index pam in G, we conclude that CG(x) = CG(xr). Therefore, CH(x) = CH(xr),
whence |xH | = m, by using Step 1. Now we apply Isaacs’s Theorem on groups having a
normal subgroup such that the class sizes of the elements not in the normal subgroup are
equal (see [10]). So we conclude that H/(QZ(G)r), which is isomorphic to R̄, is cyclic,
or has exponent r. However, Z(R) = Z(G)r and R cannot be abelian by Lemma 2.1, so
we conclude that R̄ has exponent r.

Step 9. If η is a non-central r-element of G, then CG(η) = Pη ×〈η〉Z(G)r ×Qη, where
Pη and Qη are the Sylow p-subgroup and q-subgroup of CG(η), respectively.

We may assume that H is a p-complement of G, such that CH(η) is a p-complement
of CG(η). So by Step 3, CH(η) = Rη × Qη for some Sylow r-subgroup Rη and Sylow
q-subgroup Qη of CG(η). Hence by the fact that Q�H, Rη acts on Q. Since Q is abelian
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and this action is coprime, it follows that Q = [Q, Rη] × CQ(Rη) (see, for example,
[9, Theorem 14.5]). On the other hand, we consider the action of R̄η = Rη/Z(G)r

on [Q, Rη], and we claim that this action has no fixed points. Otherwise, there exist
x ∈ [Q, Rη] and y ∈ Rη such that xȳ = x. Therefore, xy = x, and as a consequence
x ∈ CG(y) = PyRy × Qy, where Py and Ry are some Sylow p-subgroup and Sylow
r-subgroup of CG(y), respectively, and Qy is abelian, by Step 3. Since x is a q-element,
it is obvious that x ∈ Qy. On the other hand, from the fact that y ∈ Rη, we conclude
that Qη ⊆ CG(y), and so Qη = Qy, by considering the order equality. Thus x ∈ Qη, and
consequently x ∈ CQ(Rη). Hence, x ∈ [Q, Rη] ∩ CQ(Rη) = 1, and our claim is proved.
So it is well known that R̄η is cyclic or is a generalized quaternion group. By considering
Step 8, R̄η is cyclic of order r, and therefore Rη = 〈η〉Z(G)r, so the result follows by the
obtained fact in Step 3, that is, CG(η) = PηRη × Qη, where Pη is a Sylow p-subgroup of
CG(η).

Step 10. R̄ = R/Z(G)r has order r2, and consequently it is elementary abelian.
Let N be the normal subgroup introduced in Step 7 and let M be a maximal normal

subgroup containing N . Recall that |G : N | is a p′-number. We shall show that |G/M | =
r. In Step 8 we proved that QOp(G) � G. So it is easy to conclude that QOp(G) ⊆
Opp′(G) ⊆ N . As a consequence, |G : N | is an r-number. Therefore, |G : M | is an
r-number, and since G/M is simple, it follows that |G/M | = r.

In the following we shall show that mr = r, and so, by using Step 9, it is obvious that
|R̄| = r2, whence R̄ is abelian and, as a consequence of Step 8, elementary, as desired.

Let x be a non-central p-regular element of M . Then

|G|
|M |

|M |
|CM (x)| =

|G|
|CG(x)|

|CG(x)|
|CM (x)| .

Let us consider a Sylow r-subgroup Rx of CG(x); the above equality then becomes

|G|
|M |

|M |
|CM (x)| =

|G|
|CG(x)|

|Rx|
|Rx ∩ M | =

|G|
|CG(x)|

|RxM |
|M |

and we have the following equality:

|M |
|CM (x)| =

|G|
|CG(x)|

|RxM |
|G| .

First suppose that |xG| = pa. Therefore, Rx is a Sylow r-subgroup of G, whence
G = RxM . So the above equation implies that |xM | = |xG| = pa.

Now suppose that |xG| = pam. We factorize x = xrxq, where xr and xq are the r-part
and q-part of x, respectively. By Step 4, xr is a non-central element. Then CG(x) =
CG(xr) ∩ CG(xq) ⊆ CG(xr), and by the fact that xr has class size pam by Step 3,
it follows that CG(x) = CG(xr). Also, by Step 9, the Sylow r-subgroup of CG(xr) is
Rxr = 〈xr〉Z(G)r, which is a subgroup of M , since xr ∈ M . On the other hand, the
equality CG(x) = CG(xr) implies that Rxr is the Sylow r-subgroup of CG(x), that is,
Rx. So RxM = M and, consequently, |xM | = pam/r.

Thus csp′(M) = {1, pa, pam/r}, and by minimal counterexample it follows that m/r

must be a prime power, whence mr = r, and this completes the step.
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Step 11. NG(Px) = CG(Px)Px, where Px is the Sylow p-subgroup of CG(x) for every
non-central r-element x of G.

In the following, we will show that NG(Pw) = CG(Pw)Pw, where Pw is a Sylow
p-subgroup of CG(w). Then by using the fact that there exists some t ∈ G such that
Px = P t

w, for every r-element x of G, which is a consequence of Step 5, our claim will be
proved.

First we show that G =
⋃

h∈G(CG(Pw)Pw)h ∪ N , where N is the subgroup that is
mentioned in Step 7. Let g be a non-central element of G and write g = gpgp′ . If gp′ ∈
Z(G) ⊆ N , then, since gp ∈ N , it follows that g ∈ N , as required. If |gG

p′ | = pa, then
by applying Lemma 2.4 we get gp′ ∈ N , and similarly we conclude that g ∈ N . So we
may assume that |gG

p′ | = pam and write gp′ = gqgr, where gq and gr are the q-part
and r-part of g, respectively. Therefore, gr /∈ Z(G), by Step 4, and since CG(gp′) =
CG(gq)∩CG(gr) ⊆ CG(gr), we conclude that CG(gp′) = CG(gr). By using Step 5, there
exists h ∈ G such that Ph

w ⊆ CG(gr) = CG(gp′), whence gp′ ∈ CG(Pw)h. On the other
hand, gp ∈ CG(gr), and by the fact that Ph

w is the only Sylow p-subgroup of CG(gr) by
Step 9, we conclude that gp ∈ Ph

w. Thus we have g ∈ (CG(Pw)Pw)h, as required.
The above equality implies that

|G| � |G : NG(CG(Pw)Pw)|(|CG(Pw)Pw| − 1) + |N |,

and as a consequence

1 � |CG(Pw)Pw| − 1
|NG(CG(Pw)Pw)| +

|N |
|G| .

We set |NG(CG(Pw)Pw)| = n. If CG(Pw)Pw < NG(CG(Pw)Pw), then

1 � 1
2

− 1
n

+
1
2
,

which is a contradiction. Therefore, NG(CG(Pw)Pw) = CG(Pw)Pw, and so it is easy to
obtain NG(Pw) = CG(Pw)Pw, as desired.

Step 12. Let R be a Sylow r-subgroup of H. Then there exists a Sylow p-subgroup
Pw of CG(w) such that R ⊆ CG(Pw).

Let x ∈ R be a non-central r-element. Since R ⊆ CG(w), we obtain CG(wx) =
CG(w) ∩ CG(x), so we conclude that CG(x) ⊆ CG(w). Therefore, there exists a Sylow
p-subgroup of CG(w), say Pw, such that Pw ∈ Sylp(CG(x)).

Now let α ∈ R be a non-central element. Since R/Z(G)r is abelian, we have [x, α] ∈
Z(G). It follows that xα = xz for some element z ∈ Z(G). Therefore, CG(x)α = CG(x)
and so α ∈ NG(CG(x)) and we deduce that α ∈ NG(Pw). Therefore, by using the
previous step we get α ∈ CG(Pw)Pw. By the fact that CG(Pw) is a normal subgroup
of NG(Pw) = CG(Pw)Pw whose index is a p-number, we conclude that it contains all
p′-elements of NG(Pw). In particular, α ∈ CG(Pw), and so R ⊆ CG(Pw), as required.
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Step 13. G is r-nilpotent.
Set Ḡ = G/Z(G)r. Also, in the following we use T̄ = T/Z(G)r. Take R to be a Sylow

r-subgroup of G. We shall show that

Ḡ =
⋃

h̄∈Ḡ

CḠ(R̄h̄) ∪ N̄ ,

where N is the normal subgroup mentioned in Step 7.
Let g = gpgp′ be an element of G. If gp′ ∈ Z(G), then ḡ ∈ N̄ . So assume that

gp′ �∈ Z(G). If |gG
p′ | = pa, then by Lemma 2.4 we have gp′ ∈ Opp′(G) ⊆ N , so ḡ ∈ N̄ .

Thus we assume that |gG
p′ | = pam with gp′ = gqgr, where gq and gr are the q-part and

r-part of g, respectively. So gr �∈ Z(G), and we deduce that CG(gp′) = CG(gr) ⊆ CG(gq).
There then exists h ∈ G such that gr ∈ Rh ⊆ CG(gq), whence ḡq ∈ CḠ(R̄h̄). Moreover,
ḡr ∈ CḠ(R̄h̄), since R̄h̄ is abelian. We conclude that ḡp′ ∈ CḠ(R̄h̄). On the other hand,
there exists a Sylow p-subgroup Pw of CG(w) such that R ⊆ CG(Pw), by Step 12. So
gr ∈ Rh ⊆ CG(Pw)h, which implies that Ph

w is the Sylow p-subgroup of CG(gr), and by
Step 9 we have gp ∈ CG(Rh), and hence ḡp ∈ CḠ(R̄h̄). So ḡ ∈ CḠ(R̄h̄), as desired. Thus,
we have proved that

Ḡ =
⋃

h̄∈Ḡ

CḠ(R̄h̄) ∪ N̄ .

This implies that
|Ḡ| � |Ḡ : NḠ(CḠ(R̄))|(|CḠ(R̄)| − 1) + |N̄ |,

and hence

1 � |CḠ(R̄)| − 1
|NḠ(CḠ(R̄))| +

|N̄ |
|Ḡ| .

We set |NḠ(CḠ(R̄))| = n. If we assume that CḠ(R̄) < NḠ(CḠ(R̄)), then we obtain the
following contradiction:

1 � 1
2

− 1
n

+
1
2
.

Therefore, NḠ(CḠ(R̄)) = CḠ(R̄) and consequently NḠ(R̄) = CḠ(R̄). Now, by using
Burnside’s Theorem (see, for example, [12, 10.1.8]), we get that Ḡ is r-nilpotent. So G

is r-nilpotent too, as required.

Step 14. Final contradiction.
Let R be a Sylow r-subgroup of H. By Step 12 there exists a Sylow p-subgroup Pw of

CG(w) such that R ⊆ CG(Pw), whence R ⊆ NG(Pw). On the other hand, by Step 13,
G has a normal r-complement K, and so it is obvious that K ∩ NG(Pw) is normal in
NG(Pw). Hence, R acts coprimely on K ∩ NG(Pw). By coprime action properties, there
exists an R-invariant Sylow p-subgroup of NG(Pw), say P1. Note that Pw is a normal
subgroup of NG(Pw) and so Pw is contained in P1. Hence, Pw ⊆ P1 ⊆ P for some Sylow
p-subgroup P of G, and consequently P1 = NP (Pw).

Note that NP (Pw)/Pw is non-trivial. Otherwise NP (Pw) = Pw, and Pw would there-
fore be a Sylow p-subgroup of G, which is impossible because |wG| = pa and a > 0. We
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claim that R̄ = R/Z(G)r acts fixed-point-freely on

ÑP (Pw) = NP (Pw)/Pw,

and so, by a well-known result, R̄ is either cyclic (which is impossible) or a generalized
quaternion group, which contradicts Step 10.

Suppose that x̃t̄ = x̃ for some x ∈ NP (Pw) and some t ∈ R. We can assume that x

belongs to CP (Pw) since, using Step 11, we have NP (Pw) = CP (Pw)Pw. Then [x, t] ∈ Pw.
In particular, [x, t] centralizes x and t. Moreover, as x is a p-element and t is an r-element,
we have 1 = [x, to(t)] = [xo(t), t] = [x, t]o(t). However, [x, t] is a p-element, and this implies
that [x, t] = 1, that is, x ∈ CG(t). By the fact that t ∈ R ⊆ CG(Pw), we deduce that Pw

is the only Sylow p-subgroup of CG(t), and so x ∈ Pw, that is, x̃ = 1, and the action is
fixed-point-free, as desired.

�

Examples. In the following we give some examples of the cases of Theorems A and B.

• Let G = Z5 � Q8 be the semidirect product of the group Z5 = 〈x〉 acted on by the
quaternion group Q8 = 〈y, z : y4 = 1, y2 = z2, yz = y−1〉 such that xy = x−1 and
xz = x. Then it is easy to see that the set of 5-regular conjugacy class sizes of G is
equal to {1, 2, 10}. This provides an example of a group described in Theorem A.

• Let G = (Z7 × Q8) � Z3, and further let Z7 = 〈x〉, Q8 = 〈y, z : y4 = 1, y2 =
z2, yz = y−1〉 and Z3 = 〈w〉, where xw = x2, yw = z5 and zw = z3y. One can
easily check that the set of the conjugacy class sizes of 3-regular elements of G is
{1, 3, 6}, which is an example of case (i) of Theorem B.

• The group Γ (8), whose set of 7-regular class sizes is exactly {1, 7, 28} (see, for
example, [9, p. 147]), provides an example of case (ii) of Theorem B.
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