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CONSTRUCTIONS OF GENERAL POLYNOMIAL LATTICES FOR
MULTIVARIATE INTEGRATION

P E T E R KRITZER AND FRIEDRICH PILLICHSHAMMER

We study a construction algorithm for certain polynomial lattice rules modulo ar-
bitrary polynomials. The underlying polynomial lattices are special types of digital
nets as introduced by Niederreiter. Dick, Kuo, Pillichshammer and Sloan recently
introduced construction algorithms for polynomial lattice rules modulo irreducible
polynomials which yield a small worst-case error for integration of functions in cer-
tain weighted Hilbert spaces. Here, we generalize these results to the case where the
polynomial lattice rules are constructed modulo arbitrary polynomials.

1. INTRODUCTION

We study the problem of approximating the s-dimensional integral I,(F)

:= / F(x)dx of a function F by a quasi-Monte Carlo (QMC) rule QN,(F)
•/[o.i]«

AT-l

:= (1/iV) ^2 F(xn) using N points {x0, . . . , x^-i} from the unit-cube [0,1)3.
71=0

In this paper, we assume that the integrand F lies in a certain weighted reproducing
kernel Hilbert space. This space of functions, first introduced in [7], is based on Walsh
functions which are defined as follows (for more information on Walsh functions, see, for
example, [1]).

DEFINITION 1: Suppose that p > 2 is an integer. For a non-negative integer k

with base p representation k = K0 + K\p H 1- Kap
a with Kj 6 {0 , . . . ,p — 1}, we define

the Walsh function pwalt : [0,1) -»• C by

pwalt(x) := e
27ri(I1(C<)+-+I°+"t°)/P)

for x £ [0,1) with base p representation x = (xi/p) + (12/p2) H (unique in the sense
that infinitely many of the Xi must be different from p — 1).
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94 P. Kritzer and F. Pillichshammer [2]

For dimension s ^ 2 and vectors k = (klt...,ks) 6 Ng and x = {x\, •••,x,) e [0,1)"
we define pwalfc : [0,1)5 -»• C by

If the choice of p is clear from the context we simply write walfc or wal*.

Let a > 1, s ^ 1, and p ^ 2 be fixed. We consider functions in a weighted
Hilbert space i/wai,s,-Y> where 7 = (T,-)^:I is a sequence of real positive weights. The
idea of assigning weights to the coordinates in order to model different influence on the
integration error was introduced by Sloan and Wozniakowski [22]. The Hilbert space
#wai,»,-r i s the tensor product of spaces .ffwai™, • • •, #wai,-y. of univariate functions (see,
for example, [5, 7] for more details on the spaces ifwai^ of univariate functions). Every
function F in the tensor product space Hwai<a^ can be written as

F(x) = ^2 Fwai(fc)walfc(i), where Fwai(fc) := / F(x)wal*(x)dx.

For a natural number with p-adic expansion k = KQ + KXp -\ + Kap
a, with Ka / 0, let

ipp(k) := a. We define

\ \ iffc = 0,
r(a,7,*:) := ^

i ^p-ovpi«; otherwise,

5

and, for fc = (fci,..., A;,), we define r(a, 7, k) := fj r(a, 7J, A;<).

Then the inner product in i/wai,«,-y is defined as

(F, G)^,sn = ^ r(a, 7,

and the norm is given by ||F||wali5,7 := (Ft

It can easily be proved that ffwai,,,̂  is a reproducing kernel Hilbert space (see [7]).
For approximating the integral of a function F € i?Wai,«,7 by a QMC rule, it is

known (see again [7]) that a suitable choice of the point set {x0, . . . , XN-\} used in the
integration rule are so-called (t, m, s)-nets. A detailed theory on this topic was developed
in [14, 16]. For a recent survey article see [18].

A special construction of (t, m, s)-nets in base p was proposed by Niederreiter in [15]
(see also [16, Chapter 4.4]). Let p be a prime and let Fp be the finite field consisting
of p elements. Further, let Fp((i~1)) be the field of formal Laurent series over Fp with
elements of the form

f
<=u;
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where w is an arbitrary integer and all ti € F p . Note tha t the field of rational functions

is a subfield of Fp((a;~1)) . We further denote by Wp[x] the set of all polynomials over F p .

For a given integer m ^ 1 and dimension s ^ 2, choose / G Fp[a:] with deg( / ) = m, and

let gi,...,g,£ Wp[x]. We define the m a p <j>m : Wp{{x~1)) ->• [0,1) by

^l=w ' i=max(l,u;)

Let n G {0,1,. . . ,pm — 1} with p-adic expansion n = no + n\p -\ 1- nm-\pm~l. With
such an n we associate the polynomial

m-l

Then the point set P(g, f) is defined as the collection of the pm points

m(x)gi(x)' JJe[o,i) ,
f{x) J . - . ^ l f[x)

for 0 ^ n < pm — 1. Due to the construction principle, P(g,f) is often called a poly-
nomial lattice and a QMC rule using the point set P(g, f) is often called a polynomial
lattice rule (modulo / ) . The vector g is called the generating vector of P{g,f) or the
generating vector of the polynomial lattice (rule), depending on the context. Note that
the generating vectors g in the construction principle for polynomial lattice points can
be restricted to the set

0GGp,m:={AGFp[x]:deg(/i)<m}',

which is what we shall assume in the following.
Using a more general terminology, the construction principle for polynomial lattice

rules outlined here yields polynomial lattice rules of rank 1. For the precise definition of
the rank of polynomial lattice rules, see, for example, [11, 13]. We refer the interested
reader to a number of further papers in which polynomial lattice rules in different settings
are studied [3, 4, 9, 10, 11, 12, 13, 17, 19].

If we use a point set P with N points for QMC-integration of functions from Hvai<a^,
we define the worst-case error by

eKa{P):= sup \I,(F)-QNt,(F)\.
FH

In this paper we study the worst-case integration error of polynomial lattice rules. In
[5], Dick, Pillichshammer, Kuo and Sloan studied the construction of polynomial lattice
rules for those cases where / is an irreducible polynomial over Fp. Here, we wish to gen-
eralise their results to the case where / is not necessarily an irreducible but an arbitrary
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polynomial over Fp. In particular, we are going to give an existence result for polyno-
mial lattice rules modulo arbitrary polynomials with small worst-case integration error.
Furthermore, we outline a component-by-component (CBC) construction of polynomial
lattices such that their worst-case error is small. The idea of a CBC construction of point
sets with low worst-case integration error is mainly due to Sloan and his collaborators,
see, for example [8, 20, 21].

In [5], the authors also studied the integration of functions in certain Sobolev spaces
(see [5, 7]) and gave construction algorithms for randomised polynomial lattice rules
modulo irreducible polynomials with low mean square worst-case integration error with
respect to these function spaces. We remark that our general results for the Hilbert space
#wai,s,-r c a n easily be transferred to the case of Sobolev spaces as well.

2. PRELIMINARIES

We summarise some notation and results that will be needed throughout the pa-
per. Here and in the following section we always assume p is a prime. For arbitrary
k = (ki,..., ks) and g = (gi,..., g,) in Fp[i] ' , we define the vector product

fe • 9 := Ylki9i-
t=i

and we write g = 0 mod / if / divides g in fp[x]. Furthermore, we define for / e Fp[ar],

deg(/) = m,

G;,mU) •= {h 6 Fp[x] : deg(h) < m,gcd(h,f) = l } .

For / , g € Fp[x] we write from now on simply (/, g) instead of gcd(/, g) for the greatest

common divisor of / and g.

Further, as above, we often associate a nonnegative integer k = KQ + Kip H h Kip'

with the polynomial k(x) = KQ + K\X H KKJX' € Wp[x] and vice versa. In this sense we

have tl>p(k) = deg(fc).

The following lemma was shown in [5].
LEMMA 1 . Let f € Fp[i], deg(/) = m, and let g G G'pm. Then the squared

worst-case error for integration in i/wai,*,-? using the polynomial lattice P(g, f) satisfies
the equation

where V := {fc € ¥p[x]' \ {0} : k • g = Omod / } is the so-called dual net (or dual

polynomial lattice) ofP(g,f).

The question remains how the sum over all k 6 V can be computed or at least
bounded effectively, such that we can search for polynomial lattices with low worst-case
integration error. The following lemma gives an answer to this problem, provided that
the generating vector g satisfies some additional conditions.
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LEMMA 2 . Let P(g, f) be a polynomial lattice modulo f e TFp[x], deg(/) = m,
with generating vector g € (G* m( / ) ) s . Then

E r("> -r> *) < i l i t 1 + 2cv>°ri + E r<a> 7, *),

where Cp,a := (p - 1)/(1 - p1"0) and V := {k E G£m \ {0} : A: • g = 0 mod / } .

PROOF: The result follows by the first part of the proof of [2, Lemma 2], and [16,
Lemma 4.40], and by noting that the generating matrices of P(g, / ) are regular provided
tha t 9 € (G; i m ( / ) ) s . D

Lemma 2 implies that if one wants to obtain upper bounds on the worst-case inte-
gration error of P(g, f) with deg(/) = m and g € (G*m(/))s, it is sufficient to consider
the term 5Z r(^,7,k).

For short, we denote the sum Yl r(a
I7)*:) by Sa<y(g, f) in the following. Using

fc€Z>*
the same arguments as in [6, Section 4] one can show that

where x = (xi,..., x,) and for any x = £i/p + (,2/p2 H and 7 > 0 we have

' 1 + ^a-iTffe-n (cvAP{i°-1){a-l) - 1) - 1) if f 1 = • • • = Cio-i = 0 and

Xp,m,y(X) = ' £,io ^ 0 with 1 < i0 ^ m,
'"Y

1 + -rrn~cT>,Q(P ~ 1) otherwise,

where Cp,a is as in Lemma 2. Hence Sa^(g,f) can be computed in (9(spm) operations.

3. EXISTENCE RESULTS AND CONSTRUCTION ALGORITHMS FOR POLYNOMIAL

LATTICES MODULO ARBITRARY POLYNOMIALS

The following lemma gives, for a polynomial / G Fp[i] with deg(/) = m, a bound on
the average of San(g,f) over all vectors g e (G'm(/))*. From this result we are going
to deduce that polynomial lattice rules with "low" worst-case error must exist.

LEMMA 3 . Suppose that m ^ 1, s ^ 2, and f 6 Fp[x] with deg(/) = m. Then

lG. \f)\> E s°«te>/) * J
where CpiO is defined as in Lemma 2.
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P R O O F : The proof is based on ideas from [16, Proof of Theorem 4.43]. Without
loss of generality, we may assume that / is monic. First observe that |(?pim(/)| = 0P(/),
where <f>p(f) is the analogue of Euler's totient function for the field Fp[i] (see [16, p. 77]).
We have

1

= (£(7)F E E' /»eGj,m\{o} i=i
gh=0 mod /

E;,m(/))«
h-9=0 mod /

If /i = 0, then n r(a> 7t> ^t) = 1 and

53 i = Km\' = &,(/))*.
/» 9=0 mod /

Therefore,

( i '

"GGi m X—1 fl€(G* (y))*
h-fl=0mod /

For all h G G'p<m,

where Xp is defined as in [16, p. 78]. We obtain

53 x
;,m(/))«

h 9=0 mod /

= E 11^,7,,^ E E X^

= ̂  E E E ^(^-^11^.

«€Gp,m »
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with

*-(iW)= £ £ Xp{-hg)r(ani,h).
J

Now

thus£ f[r(at7«,W £ 1
»e(G;,m(/))'
hflSO mod /

( ) ~ E

Let pP be the Mobius function on the multiplicative semigroup Sp of monic polynomials
over Fp. Note that /xp is multiplicative. For fixed v € Fp[a;] with 0 < deg(u) < m we
obtain

S€G,,,m

l\f 96Gp,m

<|

o6G p , d e ! ( / / 0

where, in the last step, we changed I into / / 7 . Applying [16, (4.51)] to the innermost
sum, we obtain

l\f
l\vh

l\f h€Gp,m
l\vh

Now I divides vh if and only if / / ( / , v) divides h\ thus

'1/
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where, for an a € Sp dividing / , we put

E{i)(a,f)= £ r(o,7i,fc)-
a\h

If a = / , then E^(a, f) = r(a, y{, 0) = 1. Now let a ̂  / ; then

E{i){a,f) = l+ ^2 r(a,ji,ab).

We have

_ 7.p-adeg(o) V^ p-adeg(6)

6,40

deg(//o)-l

= 7.p-adeg(a)(p_1) J - ^(1-
*=0

o(l-a)deg(//o)

= 7iP-Qdeg(o)(p-i)^—T——r

Note that, if a = / , then deg(//a) = deg(l) = 0, so in this case

_(l-o)deg(//o) _ i

p t - - l = 0 -

Thus, for all a € Sp dividing / , we have

. , . p(l-a)deg(//a) _

/) = i+7P-od<«w(p i r

Applying this formula with a = -J^, we obtain

11/

fl/ -^' v v - - i '

'1/
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-, P ~ 1
 n-<» deg(J/(J,«))

(>
'1/ l\f

l\f

For short we write
H(VJ) := ^

'1/
and

'1/

From these we can write

where Cp,a := (p - 1)/(1-p1"").
For v 6 Fp[z] with 0 ^ deg(u) < m, we have H^(v, / ) = 0 as in [16, pp. 82f.], and

so we obtain

Thus,

,m t = l

where Jp(v,f) := H(v,f)/<f>p(f). Let us now analyse H(v,f). First note that H(v,f) is
multiplicative in / .

In the following, let 6 be a monic, irreducible polynomial over Fp. We define eb(v) as
the largest integer z such that b* divides v. From the definition of the Mobius function,
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it follows that

H(v,bk) =p(l-<»)<ieg(6*)padeg((6*,v)) _ pU-a)deg(i>*-i)padeg(«>'-',u)

Hence, if et,{v) ^ k, it follows that H(v, &*) = 0. Otherwise, we have

H(v,bk) =pae«(';)

In the following, we assume / = bhl • • • bkt, where the polynomials bj are monic, irreducible
and pairwise distinct. From our observations, we obtain

\{[H{v^) ifei»<
H(v, f) = < j=i

0 otherwise.

We now define

Hi{f) := <AP

«€Gp,m

«6Gp,
()

Now,

( 0 > ; ) 1

deg(o)<m-Ej=1deg(6V)
, - l t

E
l ,=0

We have
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Hence

1 1 = O l t = l 7 = 1

i,=0

li=0 It=l 3=1

-<Pp(J) 1 1 (ia-l)deg(6J) _ ! •
;=1

We arrive at

.7=1

J = l F

\(l -

(ta-l)deg(t/) _

' p(ta-l)deg(6,) _ i

x TTpdeg(6*J )(l-i)p»(l-a)deg(6^) (p(<a-l)deg(6*-*)

Therefore,

This means

3 1

f6Gp,m >=1 uC{l,...,3},U7^0

< — V -v c|u|
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On the other hand,

This yields the result. D

THEOREM 1. Suppose that p is prime and f € Fp[x] with deg(/) = m > 1 and
a > 1. Then there exists a vectorg € (G*m(/))s such that

I/A

(11(1 + 7 ^ , ^ -

for any I / a < A ^ 1.

PROOF: This result follows from Lemma 3 together with the fact that for all
A G (I /a , 1] we have

where 7A = {if)j^i, which in turn follows from Jensen's inequality which states that
, s A

for a sequence (at) of non-negative real numbers we have (5Za*) ^ Ylak-> f°r anY

0 < A $ 1. D
Theorem 1, together with Lemma 1 and Lemma 2, implies the existence of generating

vectors g yielding polynomial lattices with squared worst-case integration error of order
p-am+e for a n v £ > Q Furthermore we remark that the bound on the worst-case error can
be made independent of the dimension if ]T) 7̂  < 00. This is known as strong tractability,

see [22]. For a more detailed (strong) tractability discussion of this problem just follow
the proof of [5, Corollary 4.5]. Now we introduce an algorithm that provides a way of
finding such vectors explicitly. The algorithm is based on a component-by-component
construction.

ALGORITHM 1. Given a prime number p, a dimension s, an integer m ^ 1 and weights

7 = hj)m-
1. Choose a polynomial / e Fp[x] with deg(p) = m.
2. Set g{ = 1.
3. For d = 2 ,3 , . . . , s, and g\,..., p^_1 found in the previous steps, find

9d € G;,m(/) by minimising the quantity Sa^((g{,... ,g*d_vgd),f) as a
function of g^.

THEOREM 2 . Suppose that p is prime and f e ¥p[x] with deg(/) = m ^ 1.
Suppose (g{,...,g*) G (G*,m(/))* is constructed by Algorithm 1. Then for all

d=l,2,...,swe have
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for a« A € ( l / o , l ] .

PROOF: Without loss of generality, we may assume that the polynomial / is monic.

We prove the result by induction on d = 1 , . . . , 5.

Since g* = 1 and since there is no polynomial fe e GPifn \ {0} such that k = 0

(mod / ) , it follows that SOi7(gJ, / ) = 0. Hence the bound holds trivially for d = 1.

Assume we have already shown that

for d ^ 1 and any I/a < A ^ 1.

We have

Sa,y{(9\9d+l),f) =

fcg'+fcd+iSd+iHO (mod / )

where

As g*d+l is chosen such that SOi7((g*, 5<t+i), / ) is minimised and since Sa<7(g', f) is inde-
pendent of g<t+i it follows that for all gd+i £ G*pm{f) and all A > 0 we have

and therefore together with Jensen's inequality we obtain for all I / a < A ^ 1,

I/A

We now consider

M : = r 7 n E E r(aA,y, (*,**«))
JM+i6G;,m(/)

fcB*+td+lS,|+lS0 (rood / )

E
(mod/)
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Since 

we have 

E 1 = £ i £ xp£{k.9'+kd+l9)) 
9 i+ i€G; , m ( / ) j e c ; , m ( / ) y « e G p , m 

kfl'+fcj+iSd+^O (mod / ) 

x ( E E ^ 7 d

A

+ 1 , f c ) ^ ( y ^ ) 
^*€Gp,m 96G;,m(/) 

Let 

y ( " . / ) = E E r(aX,ri+l,k)Xp(jkg). 
fc€Gp,m 9 6 G ; > m ( / ) 

Then we have 

Y(0J) = Mf) E r M . T i f i , * ) 
fc€Gp,m 

and from the proof of Lemma 3 we know that 

Y(v, f) = Mf) + -rd+iCp,axH(v, f), 

where 

H{vJ) = 

i\f 

H ( ^ / ) = E ^ ( y ) p ( 1 _ Q A ) d e g ( ' ) p a A d e g ( ( ' ' , ' ) ) -

Thus 

M = - £ r ( a A , y , f c ) i j E ^ ( j * ^ ) 
*6G^,m « € G p > m 

+7Tn4r E r (aA, 7 \ fc ) r (0 , / ) 
0 P(/)Pm ^ 

fc€Gg,m

 F « 6 G p , m fc€G^^ 

«€Gp,m\{0} fc6G^,m 

+ ^ ¿ 7 * ^ E > - ( a A , y , f c ) E H(v,f)Xp(jk 
vpviP fceG^_ «eGp, m \{0} 
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Since

pm

we have

where

General polynomial lattices

) *

=i E

:= 5Tni7 d A + l C p-o A E
t,6Gp,m\{0}

Now we consider

»€Gp,m\{0}

As XP((v/f)k • 9*)| = 1 for all » € Gp,m we have |T ( / ) |
proof of Lemma 3) and therefore we have

r («A f 7 \* )

and

4E
fceG^+^

^ E

= i E
We have

and

107

1 (see the
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where Cj,^ = (p - 1)/(1 - p1"0*). Hence

M ^ ^

From the induction hypothesis together with another application of Jensen's inequal-

ity we obtain

', 9'd+l), f) ^ [-^ I[(l + 7 ^ ) J

i=i rj

4. CONCLUSION AND OUTLOOK

In this paper, we show the existence of general polynomial lattices with squared
worst-case integration error in the space #Wai,s,-r of order p-"m+e (e > 0). The bound is
independent of the dimension if a certain condition on the weights holds. We also give a
component-by-component algorithm for the construction of such point sets.

Another possible algorithm for the construction of the generating vector g could be
a Korobov-type algorithm, at least for special cases, for example, if / is the product of
two different monic irreducible polynomials. Such algorithms were also studied in [3] in
a different setting. We remark that directly transferring the observations in [3] to the
setting considered here does not seem to be possible. Therefore, we leave the examination
of Korobov-type algorithms open for future work.
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