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ON CHARWATS THEORY OF MOTION OF
TRACERS IN PLANAR VORTEX FLOWS
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Abstract

The motion of small, near neutrally buoyant tracers in vortex flows of several types is
obtained on the basis of Charwat's mathematical model, which is highly non-linear.

The solution method in the non-degenerate case expresses the squared orbital radius r1

as a product AA*, where the complex number A satisfies a second-order linear differential
'factor equation', generally with variable coefficients. The angular coordinate is expressed
in terms of \o%(A*/A). Solid-type rotation and sinusoidally perturbed solid-type rotation
correspond respectively to constant coefficients and sinusoidal coefficients. The former
exactly yields a scalloped spiral tracer motion; the latter yields unstable tracer motion as
t -> oo except when the perturbing frequency and amplitude are rather specially related to
the flow and tracer parameters. Free vortex motion is somewhat degenerate for this
solution method but can be partially analyzed in terms of solutions of a generalized
Emden-Fowler equation. The method can be used for other planar flow problems with a
symmetry axis.

1. Introduction

Visualization of fluid flows by following the motion of tracers—small, neutrally
buoyant particles—has long been practiced. The use of laser holography has
enhanced the feasibility of this approach to the more complex flows, including
vortex flows. Charwat [1] has discussed the experimental and theoretical aspects
of tracer motion in planar vortex flows. He obtained many properties of the
motion (expressed in polar coordinates) for two cases: "solid-body" vortex flow
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176 R. B. Leipnik [2]

and "free" vortex flow. However, he did not obtain complete solutions, in either
case.

Rather similar (but much simpler) non-linear equations appear in the theory of
the motion of a charged particle, or a pair of charged particles, in a time-depen-
dent solenoid (cylindrically symmetric magnetic field). These were solved [3, 6] by
a method based on a Riccati equation and complex numbers. An adaptation of
this method is used in this paper. In Section 2, the solenoid case is reviewed for
insighi into the method. Section 3 contains the Charwat equations and the first
stage of the solution.

Section 4 completes the solution in the non-degenerate case, where "separation
of powers" succeeds. The solid-body vortex is a special example. In Section 5, a
complete explicit solution in elementary terms is obtained both for the radial and
angular transient behaviour. Charwat's qualitative results are supported entirely.
In addition, a transient damped periodic scalloping, with all harmonics present,
of both the radial and angular coordinates is noted.

Section 6 takes up the degenerate case and shows that a generalization of the
non-degenerate technique is necessary. The free vortex motion is easily seen to be
degenerate and reduces to an equation of Painleve studied by Gambier (Ince [4]
and Fowler [2]). For a special initial condition, the equation reduces further to a
form discussed in Section 2.

Section 7 goes beyond the two cases introduced by Charwat to the situation of
a periodically perturbed flow. In the special case of a single harmonic, the
reduced Charwat equations specialize to damped Mathieu equations and hence,
by a further transformation, to undamped Mathieu equations. As is well-known,
Mathieu equations possess an infinite family of parametrical 'islands' of stability,
set in a 'sea' of instability. The motion of the tracers will in general be chaotic,
unless the perturbation frequency v and amplitude h are suitably related to
quantities appearing in the unperturbed motion. Conditions on v, so that the
solutions fall in the first stability island, are developed.

2. Motion of particles in a time-dependent solenoid

If e, m are the charge and mass of a pair of particles acting under a potential
<£(/•) in a uniform but time-dependent magnetic field B, then

mdp/dt - e(p X B)/c - 2$'{r)r/r, (l)

where p is the relative velocity and r the relative position. If the *3-axis is parallel
to B, and the x2-axis is normal to the initial relative position r0, the equation (1) is
simplified in rotating coordinates x\ = j / , , x'2 = y2, where the rotation velocity is
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[ 3 ] Tracers in planar vortex flows 177

the Larmor velocity w/2 = e | B |/(2 me). The result is

d-q/dt = d2y/dt2 = - (u2/4 + 2$'(r)/mr)/y,

d2r3/dt2 = dp/dt = -2#{r)r3/mr. (2)

The first equation has the invariant (y X i j ) B / 5 =y>\i)2 ~ yiVx — C. Intro-
ducing polar coordinates^, = y cos 6, y2 = y sin 6, we find

y2d = C, y+(2<t>'(r)/r + w2/4)y = C2/y\ (3)

If we replace the spatial dependence of <j>'(r)/r by a time dependence, through an
iterative procedure [3], we can reduce the problem to

y26 = C, y + Q2y/A - C2/y\ (4)

where C is a constant and fl is time-dependent.
The Ansatz

y = Ay/A + iC/y (5)

yields

y = (A/A - A2/A2)y + (A/A - iC/y2)y

= (A/A - A2/A2)y + (A/A - iC/y2)(Ay/A + iC/y) = Ay/A + C2/y\

(6)
Thus (4) is satisfied, provided that

A + Q2A/4 = 0, (7)

a differential equation for A which resembles (4) except that
(a) the non-linearity on the right is removed,
(b) A is not necessarily real-valued.
Now from (4) and (5), y = Ay/A + iyH/y = (A/A + id)y, so y/y = A/A +

id, which integrates to>> = KAe'e. At 6 = 0, j> = A so K = 1 and

y = Ae">. (8)

Since 8 and y are both real,

y2 - AA*, e'e = (A*/A)W2. (9)

Thus the complex solution of (7) readily yields the real quantities y and 6. The
non-linear equation has been exactly solved in terms of a simple non-linear
function of the solution of a linear differential equation. This is true whether fi is
constant or time-dependent. The result has implications for diffusion and conduc-
tivity of plasma in strong magnetic fields, but it is the mathematical technique
which is of interest now.

https://doi.org/10.1017/S0334270000004008 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004008


178 R. B. Leipnik [4]

2. Equations of motion of tracers

In the notation of Charwat [1], the equations of motion of a tracer particle in
polar coordinates are

f- ru2 = -S{dP/dr)f/pf + SB{uf- r ) , (10)

rw + 2ur = -S(dP/d0)f/rpf+ SB(vf- «r), (11)

where

S = Pf/Pp, B = 9vf/{2a2).

Here gravity is neglected, and the gradient terms are due to pressure on the
particle surface [12, 4]. The drag force is taken to be Stokesian. If the specific
pressure gradients are radially symmetrical,

(dP/dd)f/P/ = 0, (dP/dr),/pf = R, (12)

where R, & depend on r (and on /, since this does not invalidate the method to be
used). Similarly, we can allow uf and ty to depend on / to a certain extent. Hence
the equations become

?-r<*2 = SR(r) + SB(uf-t), (13)

rio + 2ur = ~S@(r)/r + SB(vf - cor). (14)

Multiplication of (14) by r yields

(r2u)' = r2u + 2urr = -S@(r, t) + SB(vfr - r2co), (15)

a first-order differential equation in r2u.
Integration from time tQ = 0 yields

r2u = r£uoe-BSt + Se-BSl f'[Bv/(t])r(tl) - ©(/•(*,) , tx)\e
BShdtx. (16)

Hence

rw2 = r-3e-2BS^r2Uo + SJ'(BV/r - e)eBS"dt^. (17)

Elimination of co from (13) with the help of (17) yields

r + SBr = r-3e-2BS'{r0
2co0 + S f'(Bvfr - ®(r))eBSl< dtx)

\ Jo J I

-SR(r) + SBuf, (18)

an integro-differential equation for r. Note the resemblance to (4). Equations
(15)—(18), not used by Charwat, provide the point of departure of this paper.
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1S1 Tracers in planar vortex flows 179

3. The solution method

We try the Ansatz

t = F{t)r + i[d{t) + e{t)j'x(r{tx), tx)f{tx) dtx)/r, (19)

where d, e, x,f, F are to be determined. The coefficient of \/r in (19) is patterned
after the coefficient of 1/r3 in (18).

If F,d,e,f,x are well-behaved, then

(t)f(t)X(r))/r

/r2 + Fr + Ft. (20)

r = ( j

j

Substitution for r from (19) yields

x} /r3

+ eXf\/r

+ [F2 + F+ SBF]r. (21)

Comparison with (18) yields, if S(Bvf - R) ¥= r'3N(t) for some N(t),

d + ef'xfdti = e-BS<(ro
2coo + SJ'(Bvfr - @)eBSl> dtx), (22)

for the coefficient of r'1. The case S(Bvf — R) = r3N(t) is degenerate as the
"separation of powers" fails.

Hence, from (22),

f=eBS(, X(r,t) = Bvf(t)r-e(r,t), (23)

with no restrictions on ty or 0 (as yet); a surprising result.
Since d + SBd = e + SBe = 0, the coefficient of r"1 in (21) reduces to iexf =
(.Thus, from (18),

S(Buf - R) = iS(Bvfr - ®)/r + (F2 + F + SBF)r. (24)

Now F is independent of r, but not necessarily real-valued, so we write

F2 + F+ SBF = SG(t) = S(Gi + iG2), (25)
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180 R. B. Leipnik 16]

where GX,G2 are undetermined. But from (24), on equating real and imaginary
parts, we find

Buf-R = rGx(t), (26)

Bvfr - & =-r2G2(t) = x- (27)

Thus we can consider pairs uf(t), R(r, t) and ty(O> ©(r> 0 which satisfy the
conditions (26) and (27) for reasonably general G-,(.') and G/yt).

4. Reduction to linear differential equations

A Riccati equation of the type (25) can be resolved by the Bernoulli substitu-
tion F = A/A, resulting in

A + SBA = SG(t)A. (28)

Here A is analogous to the A employed in Section 1. Note as before that the
non-linear equation has been replaced by a linear equation (28). The simple
substitution A — We'BSl/2 yields the equation

W- (SB)2W/4 = SeBS"2G(t)W. (29)

Obviously, the full resources of classical variable coefficient theory can be applied
to this problem, after G(t) is chosen. Once A (or W) is determined, then F is
known. This brings us back to the Ansatz (19).

Since x(r, 0 = Bvfr - 0 = -r2G2(t) from (27), we have

r = Fr + ie-BS\r2v0 - sfr2G2e
BS'< dtx ) / r . (30)

The squared distance variable 8 = r2 yields the equation

8 = 2FS + 2ie-BS'lS0u0 - sf'8G2e
BSt> dt, \. (31)

Note that setting t - 0 in (31) yields 80 = 2/"(0)80 + 2/80w0. Since So, w0 and So

are real, we see that F(0) is complex-valued as expected. Also, from (31),

8 = 2F8 + 2F8 + 2ie-BS'(-S8G2e
BSl)

-2iBSe-BSti80(o0 - sf'8G2e-BSt> dtt). (32)

Elimination of the integral term between (31) and (32) yields

8 + {BS - 2F)8' = 2(F + BSF - iSG2)8, (33)

another linear second-order equation with variable coefficients. Since F + BSF =
SC7, + iSG2 - F2, the coefficient of 8 can also be written as 2(SG, - F2).
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[ 71 Tracers in planar vortex flows 181

Since F need not be simple, even when G(t) is simply chosen (or, alternatively,
when R , 6, uf, ty are simple), the solution of (33) will not be pleasant. Again,
however, the resources of the classical theory are available. Recall that, just as real
coefficients d o not imply real solutions, so also complex coefficients do not forbid
real solutions (if the coeffficients are suitably related). Fortunately, the solid-type
rotat ion case of Charwat [1] can be completely solved from the above, as shown
in the next section.

5. Solid-type rotation

The case of solid-type rotation, qualitatively resolved by Charwat [1], is defined
by

M / = 0 , vf=ufr- Ksr,

0 = (dp/99) f/pf =0, R = (9p/dr)f/P/ = rfr = K2r. (34)

Thus

Buf-R = -K2r = K?,(r), G,(0 = -A,2,

Bvfr - 0 = BKsr
2 = -r2G2(t), G2(t) = -BKS. (35)

This fits into the standard case, and can be completely solved. From (25), we have

F + F2 + SBF = SKS(~KS - iB) = constant. (36)

Setting F = A/A yields, as in (28), the linear system

A + SBA + SKS(KS + iB)A = 0. (37)

Clearly (SB)2 ¥= 4SKS(KS + iB), unless B = 0 and SKS = 0, so the solution of
(37) takes the form

A =Aie
Pi' + A2e

p*',

where

Pl, p2 = (-SB ± ]/{SB)2-4SKs(Ks + iB

= SB/2±(a + ip), (38)

where o, B are real.
Note that Charwat's "more practical" case SB/2 > Ks\fS exactly corresponds

to the positivity of real part of the radicand of (38).
It follows that

F = {p^e"'1 + p2A2e»>')/ (Ale"'t + A2e>*'), (39)
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182 R. B. Leipnik (8)

and 8 = r2 satisfies the equation

8 + (BS - 2F)8 = 2(F + BSF - iSBKs)8, (40)

a linear equation with complicated variable coefficients.

This equation is reminiscent of (37), so let us try a solution of the form

8 = Aw, (41)

where F = A/A.
Substitution of (41) into (40) and multiplication by A yields

A(Aw)"+ A{BS - 2A/A)(Aw)'

-2A2(A/A - A2/A1 + BSA/A - iSBKs)w = 0. (42)

Collecting terms in w, w, w we find

0 = A2w + (BSA2 - 2AA + 2AA)w

+ (AA + BSAA - 2A2 - 2AA + 2A2 - 2BSAA + 2A2iSBKs)w.

(43)

On substitution of A from (37), (43) reduces exactly to

A2[w + BSw + (SK2 - iSBKs)w] = 0,

so that w satisfies

w + BSw+ (SKs)(Ks-iB)w = 0, (44)

whose form closely resembles (37).
In fact, the solution is w = wle

qi' + w2e
qi' where

qltq2= (-SB ± ]/(SB)2 - 4SKS(KS - iB)

= -SB/2 ±(a-iP), (45)

where a, B appeared already in (38).
If SKSB ¥" 0, then a ^ 0, B =£ 0. Take a > 0 without loss of generality. Then

8 = Aw = {Axe
p'' + A2e

p*')(wie'"' + w2e"2')

= e-BSt(Axwxe
2at + A2w2e-2al + Axw2e

2lfit + A2w^-2'^). (46)

Since 8 = r2 > 0, it follows that

{Axwx)* = Axwx > 0 , (A2w2)* =A2w2>0, (Aiw2)* = A2wt.

Setting

Ax=\Ax\e'e\ A2=\A2\e
ie>,

5, - Axwx, 82 - A2w2,
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[9 ] Tracers in planar vortex flows 183

we find

8 = r
2 = e-SB'[ry

al + r2e'2al + 2r,r2cos(tf, - 62 + 28t)]. (47)

This defines a "scalloped" spiral motion, with a fixed scalloping frequency 2/?,
and with an exponentially damped scalloping amplitude. Three cases are obvious:

(i) 2a = SB,S = r2 = r2 + e-
SB\r2

e-
2at + 2r1/2cos(01 - 62 + 2Bt)). Here the

radius decreases in an oscillatory fashion from

r0 = (r2 + r2
2 + 2r,/2cos(0, - 0 2 ) ) ' / Z

at / = 0 to fx — r, at / = oo, yielding a stable limit cycle,
(ii) 2a < SB, / • - > 0 a s f - > o o , r - > o o a s / - » -oo, also stable as t -• oo.
(iii) 2a > SB, r - > o o a s f - > o o , r ^ O a s i - ^ -oo, ie. instability.

More detailed information can be gleaned, following Charwat, from the relative
radial rate q = r/r = 8/2 8 and the angular velocity

SJ'(Bvfr - @)eBSl'dt,\

( + sf^BKs8(ti)eBS»dtiy (48)

But clearly

)eBSt*dtx = r2(e2al - l ) / 2 « - r2
2{e-

2a' - l ) / 2 o

+ (2r,/-2/2i8)[sin(<?1 -02 + 2&t)- sin(0, - 82)]. (49)

As / -» oo, u -+ r2SBKs/(2arf) = SBKs/2a, and as / -> -oo,

w -> -r2
2SBKs/(2ar2

2) - -SBKs/2a. (50)

Thus « is the ratio of two damped oscillatory expressions with the same
scalloping frequency 2B. Similarly, q is a ratio of two damped oscillatory

a =

•'o

expressions and
In fact,

so that

q^a

Explicitly,

tends to a

log(r2e2°"

- BS/2

Umit

+ r2

as t

as t ->

e-2"' 4

-» - o o ,

oo and as / -i

• i r . i iCOsK

q ^> -a -

• - 00 .

- »2 + 2)30)

- 5S/2 as r oo. (52)

F 2 = (5J5)2 - 4SK2. (53)
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184 R. B. Leipnik [10]

Repeated squaring and rearranging shows that SB/2 \ a according as S ^ 1,
so that the three cases (i), (ii), (iii) can be recategorized as

(i) S = 1, r -» rx, w -> Ks, q -* 0 as/->oo,

(ii) S > 1, r -» 0, w -> SBKs/2a > Ks, q-> a - SB/2 < 0 as / -> oo,

(iii) S < 1 , r->oo, w -» SBKJla < Ks, q -» a - S5/2 > 0 a s / ^ o o .

(54)

Physically, the asymptotic results are obvious, but the transient scalloping
motion is a little surprising.

6. Degeneracy

When S(Buf— R) = r~3N(t), the reduction of Section 4 fails and the seem-
ingly simpler equation

f + BSr = r~3Ar(0 + e-2*5'(r0
2co0 + s/"'(Z?tyr - 0 ) e

B " ' d t ^ , (55)

results. The Ansatz (19) now fails. The more complex Ansatz

r = F_,r + i(d(t) + e(t)o(r, t))/r + f FK{t)r'K, (56)

leads to a sequence of differential equations for F_,, F2, All but the first are
linear, but with variable coefficients, depending on the previous / " s . The free
vortex case is a specially simple degenerate case, and can be carried somewhat
further.
Free Vortex

For the free vortex,

uf=0, vf = Kp/r, 0 = 0, R = Kl/r\ (57)

so that

S(Buf -R) = -SK2
p/S = N{t)/r\

Bvfr - 0 = BKp = constant, (58)

which is a degenerate case.

https://doi.org/10.1017/S0334270000004008 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004008


1111 Tracers in planar vortex flows 185

Thus (55) reduces to

f + BSf = r-3H(t),

H{t) = Ho + Hxe-BSl + H2e-2BSl,

Ho = K2(\ - S), Hx = 2Kp{rfaQ ~ * , ) .

H2 = (r2
Uo - Kpf. (59)

In the variable 8 = r2, (59) becomes

8 - 82/28 + BS8 = 2H(t)/8, (60)

an equation of the classic Painleve-Gambier type, discussed in Ince [4]. Unfor-
tunately, with the above choice of H(t), it is not one of the 50 types which have a
known first integral in closed form, many of which define new (Painleve-Gambier)
transcendants.

However, if either (a) S — 1 (neutral buoyancy) or (/?) Kp — ro
2«o or (y)

Kp = 0, which yield respectively (a) Ho = 0, (0) HX=H2 = 0, or (y) Ho = # ,
= 0, the equation (59) reduces to an Emden-Fowler equation, repeatedly studied
by Fowler [2]. This follows from using an exponential substitution r = e'BSt in
(59). The result, if G(T) = /•(/), is

G\T)G"(T) = (\/BS)(H0/T + Hx + H2T). (61)

With the help of (59), the cases (a), (/}), (7) can each be put in the Fowler form

6"{x) + x°6" = 0, (62)

with n = -3 and a — -1 (case (a)), a — 0 (case ()8)) and a = 1 (case (y)).
Fowler's own discussion is only for n > 0 but the analysis is similar for n < 0.

Note that

«o(*)=±[xO-x)]"I/V, (63)
is a special solution, where x — (<* + 2)/4, provided that 0 < x < 1-

Hence write 0 = 80(x)v(x) and obtain the equation

x2v" + 2Xxv' - X(l - x)(v ~ v-3) = 0. (64)

The substitution^ = logx, u(y) — v(x) yields

u" + (2X - 1)K' - (x - X2)(" - «") = 0. (65)

The results are, according to Fowler, similar in the three cases (a) x = h (ft)
X — 2>(Y)X = 1- They afe markedly simpler when x — 2. s m c e then the equation
(65) reduces to

U" - u/4 = - 1 / 4 M 3 , (66)

which is of the type solved in Section 2, if we take fl = / and C = i/2. In all
cases, the results are sensitive to the initial conditions.
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186 R. B. Leipnik [12]

7. Factorization and sinusoidal perturbation

The tracer motions in solid-type rotation involve only G(t) — constant and
thus could have been deduced by methods of greater simplicity, based on writing
the Charwat equations in the plane rectangular form

x + SBx - SxGAt) = S(\ X k)G2(0> (67)

and so in the complex form

z + SBz - SzG(t) = 0, (68)

where G — (7, + iG2, z = x] + ix2, and k is normal to the (xu x2) plane.
When G(t) is non-constant, the rectangular form is somewhat less effective,

relative to the polar form, as is well known from the theory of Prufer transforma-
tions.

The factorization 8 = Aw carried out in the case G(t) — constant in Section 5
is valid generally. To see this, note that if S = Aw, and F = A/A, then by (33)

0 = (Aw)'+ (BS - 2A/A)(Aw)'- 2Aw((A/A)' + BSA/A - iSG2)

= Aw + 2Aw + Aw + BS(Aw + Aw) - 2(A2/A)w - 2Aw

-2Aw + 2(A2/A)w - IBSAw + 2iAwSG2

= Aw- Aw - BSAw -f BSAw + 2iAwSG2

= Aw(w/w + BSw/w + iSG2 - 5(7,)

-Aw(A/A + BSA/A - iSG2 - 5G,). (69)

Substitution of (28) yields

0 = A{w + BSw- SG*(t)w). (70)

The initial condition 80 — 2(F(0) + iuo)So from (31) et seq. yields the relation

w0w0-A(0)/A(0) = 2iUQ. (71)

The problem remains of solving

A + BSA = SG{t)A,

(and so its conjugate for w) under the relevant assumptions on G{t). An
interesting non-trivial case is G(t) periodic, a Hill condition, of which only
G(0 = S1 + '£2 + h{cosvt + ih2sin vt yields well-understood behaviour. This
can be viewed as a 'parametric' perturbation of solid-type rotation, effected by
vibration about the axis of the container of the fluid or pulsation of the container
boundary, provided that g, = -Kj and g2 = -BKS.
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113 ] Tracers in planar vortex flows 187

The solutions can be expressed in terms of the solutions of the standard
Mathieu equation

y" + (al-2qcos2z)y = 0. (72)

These Mathieu functions traditionally enter fluid mechanics in connection with
the sloshing of water in a flat-bottomed elliptical tub. They also appear in
mechanical, electrical, and electromagnetic systems (McLachlan [7]). The variety
of types of Mathieu functions is daunting—10 unmodified types and 10 modified
(solutions of y" — (a, — 2^cosh2z)^ = 0). For the unmodified case, of interest
here, 8 of the types are stable—

cem(z,tf), sem(z,q), cem+p(z,q),

fem(z,?), &m(z,q), sem+p(z,q),

fekm(z,-q), gekm(z,~q)

—and two are unstable—ceum+fl(z, q) and ceum+)i(-z, q). In this MacLachlan
classification, 'unstable' means unbounded as z -» +oo, and m is a positive
integer.

The instability results from initial conditions which yield an admixture of
stable and unstable types, as will usually occur unless (q, a,) lies in a stability
region. These resemble a stack of infinitely long moustaches tending to zero width
along asymptotes, and increasing in height and width with increasing a, and q.
For a, < .O4<72 the stability regions become quite slender, and for a, > 2.5q2, the
instability regions become quite slender. In between those two parabolas, the
instability and stability zones are of about equal size. The first stability region
includes the origin in (q, a,) space.

When G(t) = q} + /i, cos vt with qx and /i, real, (28) becomes

A + BSA = SA(gx + h] cos vt). (73)

On taking vt = r, A(t) — u(r), we find

u"(r) + (BS/v)u'(r) = {S/v2){qx + hxcosr)u{r).

Now let

K=BS/v, c=Sgt/v
2, d=ShJv2

so that

u" + Ku' = (c + dcosr)u. (74)

The substitution u = e'Kr/2v yields

v" + (-c- K2/4-dcosr)v = 0. (75)

Assuming \d\< 1 and \K\= O(\d\), a refined first-stable-zone estimate for u
(Jordan and Smith [5], Section 8.7) requires that (-c - 1/4)2 > (d2 - K2)/4.
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Since c = Sgx/v
2, d = Shx/v

2, K = BS/v, the inequality becomes

S2(g? ~ h2/4) + v2(Sgl/2 + B2S2/4) + v*/\6 > 0. (76)

This is certainly satisfied for large | g, | or large v, for fixed h,, S and B.
A rough envelope of the higher stability zones is provided by a, = -c — K2/4

> .04(2d)2, or -Sg, - (BS)2/4 > .\6{Shx/vf. Since Charwat's 'more practical
case' requires SK2 < (BS)2/4, and solid rotation implies g, K2, it follows
from these conditions that -Sgx — (BS)2/4 < 0, so that the motion does not lie
in the rough stability envelope. Each stability zone has a long tail not included in
the rough envelope, so that stability cannot really be excluded without a detailed
examination. However, it is plausible that most combinations of S, g, h, B, Ks

and v will result in instability and irregular tracer motions under periodic
parametric perturbations.

8. Conclusion

The asymptotic results both for the solid body and free vortex cases are
physically obvious: particles more dense than the fluid will be forced outward.
Coriolis forces induce the spiralling. The transient damped scalloping with a fixed
scalloping frequency is a little surprising, but resembles some minor rotating
oscillatory phenomena found elsewhere in fluid mechanics and ionospheric
charged particle motions. It may be mathematically related to the ropy motions
observed in the recent fly-by of the rings of Saturn. The instability under
sinusoidal 'parametric' perturbation (except for high frequencies, etc.) is hardly
surprising.
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