A closed dimensionless linear set
By E. BesrT.
(Received 13th June, 1939. Read 3rd November, 1939.)

1. The problem which we discuss in this paper can be easily
settled for a closed plane set; after a brief introduction giving the
definitions and theorems used later we indicate how this may be
done; we then proceed to the main problem.

2. We are concerned with the measure and dimension theory of
sets of points formulated by Hausdorfil. Let 4 be any set of points
in a Euclidean space of » dimensions (n any integer); and let A(¢) be
any function of the real variable ¢, defined in some interval 0 < ¢t < ¢,
in which it is continuous, concave and strictly increasing, and such
that A(0) = 0. Given a positive number p < 1, denote by U (4, p)
any set of spheres {U,} of respective diameters {d,} such that (i) d, < p
for each r, and (ii) each point of A is interior to at least one sphere

U,. Then
lower bound X A(d,)
U (4, p)
is denoted by A — m,4, and lim (A — m,4) (which obviously exists) is

p=>0
denoted by A — m*E and is called the exferior \-measure of 4. This

exterior measure satisfies all the standard requirements of a measure
function?; if A is measurable, in particular if it is closed, we speak of

its A-measure and denote the latter by A — mA. We have further

that
(1) The union ¥V of a finite or enumerable sequence of measurable
sets 4, As, .... is measurable;
(2) The measure of the sum of a finite or enumerable sequence of
measurable sets 4,, A,, .... no two of which contain a common point
is equal to the sum of the measures of those sets, i.e. if 4;4;= 0 for
all 7, j, then

S A—mA)=A—m(E 4).

i=0 i=1

1F. Hausdorfl, Dimension und dusseres Mass, Math. Annalen, 79 (1919),
157-179.

2 (. Carathéodory, Uber das lineare Mass von Punktmengen, Gottingen Nachrichten,
1914, 404-426.
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We define the dimension of a given set 4 to be [A(z)] if and
only if
O0<A~mA <
(strict inequality must be preserved).

3. We consider first the non-linear problem. Suppose we take
the set {L,} of segments of lines where L, is the segment between the
points (1/7, 0) and (1/r, 1) on the line x = 1/r. Then take a similar
set of points 4, on each segment—similar in the sense that if, for
any 7, (1/r, y) belongs to the set, this holds for all ».  We make each
A, closed and call the similar set on the y-axis, the set 4,. Then we
define

— % 4,
r=0

If now A\ — mA, =0 then obviously A\ —m4 =0; and if A\ — m4,>0
then A\ — mAd = . Hence the set 4 is dimensionless.

4. Hausdorff proves that if we define a set 4 in the interval (0, 1)
by first omitting a length 1 —2¢ (£ <1/2) from the centre of the
interval, and then by omitting a length proportional to 1 — 2¢ from
the centres of the two remaining intervals, and so on, in a manner
similar to the derivation of the Cantor ternary set then A — m4d =1
where A (t) ={* and a = — (log 2)/log £&. It is easy to prove that if
we shrink this set 4 uniformly into an interval of length d then its
measure is d* with the same measure function; this follows directly
from the definition of the measure. For the new covering sets will
have diameters {dd,} and

A(dd,) = d* X (d,)

and we shall have a factor d* coming outside the whole expression for
the lower bound, giving our result.

Consider the interval (1/(r + 1), 1/r) on the z-axis. We form in it
the set considered in the last paragraph. Call the set E,; then its

measure will be
|: 1 j] —(log 2)/log £
r(r+1) :

We define, adding in the origin to make the set closed,
E=ZE,
1
then by the theorems of § 2, £ is measurable and

a—mE:g(a—mE,),
1
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where we denote by a — mF the measure of the set F with measure
function t*>. Hence
® 1 — (log2)/log
a—mB=3%| 1 _] .
1 Lbr(r+ 1)
If we now choose £ so that

log 2
log ¢ =%

that is, so that £ =< {, then a —mE = =, since the series is divergent.

5. We have now to prove that if we take any function 4 () then
either h — mE = o or h —mE = 0. There are two cases to consider.
i) l_lflimzkwhere0<k§oo;
>0
then by the general properties of this measure theory, since a—m#E =0 ,
h — mE = w0 also.

lim  A(t,)
t—>0 t°

(ii) = 0.

We consider this case in detail.

6. We can determine a sequence ¢, 5, {3 .... for which

hit,) <e €>0
&
and t; >t,>t;> .... and ¢, tends to 0 as n tends to . We can
cover E, with 2" intervals each of length £*/r (r 4 1) where we always
have
gngna 1
[r(r+ DI [r(r+ D)
or 2#¢me = 1, for a = — (log 2)/log ¢ by definition.
We are always able to select a sub-sequence s;, s, .... of the
ssquence ty, ¥, {3 . ... such that

Emtl < g < fm
Etl < gy < €7

The necessity of selecting a sub-sequence arises because more than
one {, may lie in between any £* and the succeeding £*+1,
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Then to form the A-measure of the set £ we must first consider

h(t) — m, B, = lower bound X & (d,).

U (4,p)

In this case the spheres {U,} become intervals of equal length and
the diameters become their length. Take p = £%~1; then

h—m, B, < 2%k (¢n+1) < 2mt1 h(s,)
since A (¢) increases with ¢ for small . Now by the definition of s,
h(sp) <e. 85 <€
since {* increases with {. Hence
h—m, B, <e. 200 = 2¢. (2£4)" = 2e.

Hence h—mE, = lim h—~mE, =0

p—>0
since e is arbitrary.

The theorems of § 2 give us
h—mE= X (h—mE,)=0.
r=1
No other case can arise since % (t) is always positive and there-
fore h—mkE is zero or infinite for all i (¢). Hence the set E has no
dimensions.
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