A SIMPLE PROOF OF NOETHER'S THEOREM by ROBIN J. CHAPMAN

(Received 13 July, 1994)

1. Introduction. We present an elementary proof of the theorem, usually attributed to Noether, that if L/K is a tame finite Galois extension of local fields, then \mathfrak{D}_L is a free $\mathfrak{D}_K\Gamma$ -module where $\Gamma = \operatorname{Gal}(L/K)$. The attribution to Noether is slightly misleading as she only states and proves the result in the case where the residual characteristic of K does not divide the order of Γ [4]. In this case $\mathfrak{D}_K\Gamma$ is a maximal order in $K\Gamma$ which is not true for general groups Γ . There is an elegant proof in the standard reference [2], but this relies on a difficult result in representation theory due to Swan. Our proof depends on a close examination of the structure of tame local extensions, and uses only elementary facts about local fields. It also gives an explicit construction of a generator element, and the same proof works both for localizations of number fields and of global function fields.

2. Definitions and terminology. Let K be a field equipped with a non-trivial discrete valuation. We denote its valuation ring by \mathfrak{D}_K and we let \mathfrak{B}_K be the maximal ideal of \mathfrak{D}_K . We say that K is a local field if K is complete with respect to its valuation, and its residue field $k = \mathfrak{D}_K/\mathfrak{B}_K$ is finite. We call the characteristic p of k, the residual characteristic of K. If L/K is a finite extension of local fields, then $\mathfrak{B}_K\mathfrak{D}_L = \mathfrak{B}_L^c$ for some positive integer e, the ramification index of L/K. A finite extension L/K is called tame if the residual characteristic p does not divide the ramification index e of L/K. We write actions of Galois groups exponentially, and consider Galois modules as right modules. We have the following theorem.

THEOREM 1. Let L/K be a finite tame Galois extension of local fields, and let $\Gamma = \text{Gal}(L/K)$. Then for all integers n, the fractional ideal \mathfrak{B}_L^n is free of rank one as an $\mathfrak{D}_K\Gamma$ -module.

3. Proof of Theorem 1. We begin with a lemma which will help us to simplify the problem.

LEMMA 1. If Theorem 1 is true for L' where L' is a finite unramified extension of L, then Theorem 1 is true for L.

Proof. It is clear that L' is Galois over K. Let $\Sigma = \text{Gal}(L'/K)$ and $\Delta = \text{Gal}(L'/L) \le \Sigma$ so that $\Gamma \cong \Sigma/\Delta$. As L'/L is unramified we have for each n

$$\mathfrak{B}_{L}^{n} = \mathfrak{B}_{L'}^{n} \cap L = \mathfrak{B}_{L'}^{n} \cap L'^{\Delta} = (\mathfrak{B}_{L'}^{n})^{\Delta}.$$

Now if $\mathfrak{B}_{L'}^n$ is free on α as an $\mathfrak{D}_{\kappa}\Sigma$ -module then \mathfrak{B}_{L}^n is free on $\mathrm{Tr}_{L'L}\alpha$ as an $\mathfrak{D}_{\kappa}\Gamma$ -module.

For convenience let $\mathfrak{o} = \mathfrak{D}_K$, $\mathfrak{D} = \mathfrak{D}_L$, $\mathfrak{p} = \mathfrak{B}_K$ and $\mathfrak{B} = \mathfrak{B}_L$. Fix a generator π of the o-ideal \mathfrak{p} , and let q = |k|. Let $k = \mathfrak{o}/\mathfrak{p}$, $k' = \mathfrak{D}/\mathfrak{B}$ and f = |k':k|. Let K'/K be the maximal unramified subextension of L/K, so that $\operatorname{Gal}(L/K') = \Gamma_0$, the inertia subgroup of Γ . By standard theory [5 §IV.2, Corollary 1] the inertia group Γ_0 is isomorphic to a subgroup of k'^* . Hence L is, a Kummer extension of K' and as L/K' is totally ramified we have

Glasgow Math. J. 38 (1996) 49-51.

 $L = K'((u\pi)^{1/e})$ where $e = |\Gamma_0|$ and u is a unit in $\mathfrak{D}_{K'}$. We now put $u = \zeta v$ where ζ is a root of unity, and $v \equiv 1 \pmod{\mathfrak{B}}$. As e is coprime to p, then v is an eth power in K'. Hence the unramified extension $L' = L(\zeta^{1/e})$ satisfies $L = K''(\pi^{1/e})$ where $K'' = K'(\zeta^{1/e})$ is unramified over K. By Lemma 1 we may assume that $L = K'(\pi^{1/e})$ where K' is unramified of degree f over K, and e divides $a^f - 1$.

With these assumptions we see that Γ is a semidirect product. Let $\eta \in K'$ be a primitive eth root of unity and let $\rho = \pi^{1/e}$. It is plain that the set of K-conjugates of ρ in L is $\{\eta^j \rho : 0 \le j \le e\}$. The K'-automorphism γ of L defined by $\rho^{\gamma} = \eta \rho$ is a generator of Γ_0 . We also define a K-automorphism φ of L, as follows; its restriction to K' is the Frobenius automorphism of the unramified extension K'/K, and $\rho^{\varphi} = \rho$. It is now clear that

$$\Gamma = \{\varphi^i \gamma^j : 0 \le i < f, 0 \le j < e\}.$$

By Nakayama's Lemma (see e.g., [3, Chapter 1, §2, Theorem 2.3]) it suffices to show that $\mathfrak{B}^n/\pi\mathfrak{B}^n$ is a free $k\Gamma$ -module, as any free generator of this module will lift immediately to a free 0Γ -generator of \mathfrak{B}^n . Now

$$\mathfrak{B}^n/\mathfrak{R}^n = \mathfrak{R}^n/\mathfrak{B}^{n+e} = k'\bar{\rho}^n \oplus k'\bar{\rho}^{n+1} \oplus \ldots \oplus k'\bar{\rho}^{n+e-1}.$$

Let $a = \tilde{\rho}^n + \tilde{\rho}^{n+1} + \ldots + \tilde{\rho}^{n+e-1}$. We calculate

$$a^{\gamma'} = \sum_{i=n}^{n+e-1} \bar{\eta}^{ij} \bar{\rho}^i$$

and so, by the invertibility of the Vandermonde matrix, the elements $a, a^{\gamma}, a^{\gamma^2}, \ldots, a^{\gamma^{e^{-1}}}$ are linearly independent over k'. Note that $a^{\varphi} = a$.

Let α be a normal basis for k' over k, i.e., the elements $\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{l-1}}$ are linearly independent over k. (Such an element exists by the normal basis theorem [1, Chapter 5, Theorem 7.5].) I claim that αa is a free generator of $\mathfrak{B}^n/\pi\mathfrak{B}^{n+e}$ as a $k\Gamma$ -module. It suffices to prove that the set $\{(\alpha a)^{\delta}: \delta \in \Gamma\}$ is linearly independent over k. We first note that

$$(\alpha a)^{\varphi^i \gamma^j} = \alpha^{q^i} a^{\gamma^j}.$$

It follows that if $\beta_{i,j} \in k$ with

$$\sum_{i=0}^{f-1}\sum_{j=0}^{e-1}\beta_{i,j}(\alpha a)^{\varphi^i\gamma^j}=0,$$

then

$$\sum_{j=0}^{e-1} \left(\sum_{i=0}^{f-1} \beta_{i,j} \alpha^{q^i} \right) a^{\gamma^j} = 0.$$

The inner sum vanishes for all j by the k'-linear independence of the $a^{\gamma'}$, and so each $\beta_{i,j} = 0$ as the $\alpha^{q'}$ are linearly independent over k. This concludes the proof.

REFERENCES

1. P. M. Cohn, Algebra, vol. 3 (2nd ed.) (Wiley, 1991).

2. A. Fröhlich, Galois module structure of algebraic integers (Springer, 1983).

NOETHER'S THEOREM

 H. Matsumura, Commutative ring theory (Cambridge University Press, 1986).
E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung, J. Reine Angew. Math. 167 (1932), 147–152.

5. J.-P. Serre, Local fields (Springer, 1979).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF EXETER EXETER EX4 4OE UK