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Introduction. If X is a class of groups, the class of counter-X groups is defined to
consist of all groups having no non-trivial X-quotients. The counter-abelian groups are the
perfect groups and the counter-counter-abelian groups are the imperfect groups studied
by Berrick and Robinson [2]. This paper is concerned with the class of counter-counter-
finite groups. It turns out that these are the groups in which any non-trivial quotient has a
non-trivial representation over any finitely generated domain (Theorem 1.1), so we shall
call these groups highly representable or HR-groups.

A group G is an HR-group if and only if it has no non-trivial counter-finite quotients,
or equivalently, if any non-trivial quotient GIN has a non-trivial finite quotient G/M
where JV ^ M. Examples of infinite HR-groups include Z, all abelian groups of finite
exponent, as well as the polycyclic groups. Although the class of HR-groups is quite
similar to the class of residually finite groups in that both classes consist of groups which
are rich in finite quotients, the classes are incomparable. It is possible, however, to
characterize HR-groups in terms of their finite residual (Proposition 1.4).

We begin our study by establishing the fundamental closure properties of HR-groups,
and by characterizing them in terms of quasicentral chief factors, that is, chief factors in
which conjugation by any group element is an inner automorphism (Proposition 1.3).

In Section 2 we characterize the abelian HR-groups (Theorem 2.1) as extensions of a
finitely generated subgroup, called a fundamental subgroup, by a direct product of
bounded p-groups. In addition, an arbitrary abelian HR-group can be written as a product
of a collection of certain subgroups indexed by primes (Theorem 2.3). In the torsion-free
case, these subgroups are free abelian groups of a fixed finite rank n, as is the
fundamental subgroup. Conversely, it is possible to construct a torsion-free abelian
HR-group from a collection of free abelian groups of rank n indexed by primes. In fact,
any torsion-free abelian HR-group is isomorphic to a group constructed in this manner.

The theory of nilpotent HR-groups, which is developed in Section 3, is similar to that
of abelian HR-groups. We show that any nilpotent HR-group has a finitely generated
subnormal subgroup such that the intermediate subnormal factors are torsion abelian
HR-groups (Theorem 3.5). However, torsion-free nilpotent HR-groups can have non-
isomorphic fundamental subgroups. It is shown that a nilpotent HR-group can be written
as a product of subgroups indexed by primes; again these subgroups are finitely generated
in the torsion-free case (Theorem 3.6).

The complexity of the solvable HR-groups is exposed in Section 4; little can be said
about these groups in general. However, a subclass of the solvable HR-groups yields some
interesting results, including a generalization of Gruenberg's Theorem on the residual
finiteness of finitely generated torsion-free nilpotent groups (Theorem 4.5). This subclass,
which includes the abelian and nilpotent HR-groups, consists of all solvable groups having
no quasicyclic sections.

In the final section we discuss HR-subgroups and quotients of arbitrary groups. We
obtain characterizations of the HR-radical and residual in groups with finite composition
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264 VONN WALTER

length. The subnormal structure of HR-groups is shown to be arbitrary in the sense that
any group may be two-step subnormally embedded in an HR-group (Corollary 5.9).
However, the normal structure of HR-groups is restricted. Necessary and sufficient condi-
tions for a group to be normally embeddable in an HR-group are given in Theorem 5.10.

I would like to thank Professor D. J. S. Robinson for his guidance while preparing
this paper.

1. Basic results. We now examine some properties of counter-counter-finite groups.
These groups can be characterized in terms of their linear representations. If R is a finitely
generated integral domain, then for every set yu... ,yr of distinct elements of GL(n,R)
there exists a finite field K and a homomorphism 6 of GL{n,R) into GL(n,K) such that
6(yi),..., 6(yr) are distinct ([13], p. 51).

THEOREM 1.1. Let G be a group. Then G is counter-counter-finite if and only if every
non-trivial quotient of G has a non-trivial representation over any finitely generated
domain.

Proof. If G is counter-counter-finite and G/M is a non-trivial quotient, then there
exists a non-trivial finite quotient G/N where M < N. The permutation representation of
G/M on the cosets of N gives rise to a representation of G/M by permutation matrices
with entries from any domain. The converse follows easily from the above result in
[13]. •

It is easy to see that the class of counter-finite groups and the class of HR-groups are
both o-closed classes. Both classes are also p-closed. We give the result in the HR case;
the proof in the counter-finite case is similar.

LEMMA 1.2. If N < G and N, G/N are both HR-groups, then G is also HR.

Proof. Assume that G/L is a counter-finite quotient. Then G - LN and N/(L D N)
is counter-finite. Thus N < L and G = L. •

A normal factor H/K of a group G is said to be quasicentral in G if each element of
G induces by conjugation an inner automorphism of H/K. It follows from the definition
that a normal factor H/K is quasicentral if and only if G/K is the direct product of H/K
and CG/K(H/K) with Z(H/K) amalgamated ([2], p. 6). Thus a quasicentral factor is
central precisely when it is abelian. Quasicentrality will be important when we consider
normal embeddings in Section 5.

PROPOSITION 1.3. (i) Let H/K be an infinite chief factor of an HR-group G. If H/K is
quasicentral, then it is central.

(ii) Let G be a group satisfying max-n, the maximal condition on normal subgroups.
If every quasicentral infinite chief factor of G is central, then G is an HR-group.

Proof, (i) If H/K is a non-central quasicentral infinite chief factor of G, then
Z(H/K) must be trivial. Therefore, G/K is the direct product of H/K and CCiK{H/K),
which implies that G has an infinite simple quotient. This is impossible.

(ii) If G g HR, then by max-n there exists an infinite simple quotient G/M. Then
G/M is a non-central quasicentral infinite chief factor of G. •

The proof of Theorem 2.1 will show that a free abelian group of infinite rank is not
an HR-group. Conversely, a countable extra-special p -group is HR but not residually
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finite. Therefore the class of HR-groups and the class of residually finite groups are
incomparable.

PROPOSITION 1.4. Let G be a group with finite residual R. Then G is an HR-group if
and only if G/R is an HR-group and R has no proper normal supplements in G.

Proof. If G E HR, then G/R e HR. If N is a proper normal supplement of R, then
GIN is a non-trivial HR-group, so it has a non-trivial finite quotient G/M. Therefore
R^M, which contradicts the assumption that G = RN. Conversely, if the conditions are
satisfied and GIL is counter-finite, then G = RL. Thus L = G, so G s HR. •

If G = Z © 0 , then Q is the finite residual R. Thus even though G/R is an HR-group,
G is not. Therefore the condition that R have no proper normal supplements cannot be
removed in general.

2. Abelian HR-groups. In this section we shall study abelian HR-groups with the
aim of classifying these groups as well as giving methods for constructing them. All groups
will be written additively in this section.

An abelian group is counter-finite if and only if it is divisible. Therefore an abelian
group is an HR-group if and only if it has no non-trivial divisible quotients if and only if it
has no quasicyclic sections. Clearly Zp. and Q will be our basic examples of abelian
counter-finite groups; examples of abelian HR-groups include finitely generated abelian
groups and bounded abelian groups.

We now show that ab.elian HR-groups have the structure described in the
introduction.

THEOREM 2.1. An abelian group G is an HR-group if and only if it has a finitely
generated subgroup X such that G/X is a direct sum of bounded p-groups for distinct
primes p.

Proof. If G is a p -group, then G e HR if and only if it is equal to a basic subgroup B.
However, B has no non-trivial divisible quotients if and only if it is bounded.

In the torsion case G is a direct sum of its p-primary components Gp, as is any
quotient of G. Therefore G has no non-trivial divisible quotients if and only if each Gp is
bounded.

Finally assume that G is an abelian HR-group. If A' is a subgroup of G generated by a
maximal linearly independent set of elements of infinite order, then X must be finitely
generated since G has no Zp- sections. Since G/X is a torsion abelian HR-group, G has
the desired form. The converse is clear. •

COROLLARY 2.2. A subgroup of an abelian HR-group is an HR-group.

If G is a group, H a subgroup of G, and n a collection of primes, then we define

Gn(H) = {g e G:l(g)g e H for some positive ;r-number l(g)}.

If G is an abelian group, then Gn(H) is a subgroup of G containing H.

THEOREM 2.3. Let G be an abelian HR-group and let {ATJ,. . . ,*„} be a maximal
linearly independent set of torsion-free elements of G. If X = {xu... ,xn), then:

(i) G = (
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(ii) GP(X) n (Gq(X) :qe^q^p) X;
(iii) if G is torsion-free, then the GP(X) are free abelian groups of rank n and

\GP(X):X\ = pe(-p) where e(p) is a non-negative integer.

Proof. GP{X)IX is the /^-primary component of G/X, so (i) and (ii) follow from the
Primary Decomposition Theorem. Since GP(X)/X E HR it must be bounded with
exponent pe(p). If G is torsion-free, the map r:Gp(X)-*X defined by r(g) =pe(p)g is an
injective homomorphism, which gives (iii). •

COROLLARY 2.4. Let G be a torsion-free abelian HR-group of rank 1 with 1(G) =
(hi,h2>...). Then G is an HR-group if and only if every ht is finite.

When G is a torsion-free abelian HR-group we shall call the subgroup X defined in
Theorem 2.3 a fundamental subgroup of G. Any two fundamental subgroups of a
torsion-free abelian HR-group are free abelian groups of the same rank.

Now we want to consider torsion-free abelian HR-groups of rank n > 1. If G is such a
group, Theorem 2.3(iii) shows that G can be written as a product of free abelian groups
GP(X) of rank n. Conversely, given a collection of free abelian groups {Xp :p e 0*}, of
rank n, we shall give a method to construct a torsion-free abelian HR-group. It can be
shown that any torsion-free abelian HR-group is isomorphic to a group constructed in this
manner. The structure of these groups can be much more complicated than for
torsion-free abelian HR-groups of rank 1.

Let Xp be a free abelian group of rank n > 0 and let e(p) be a non-negative integer
for each prime p. Then pe(p)Xp is a free abelian subgroup of rank n, as is any choice of Yp

such that pe(p)Xp< Yp<Xp. Equivalently, we can choose YP<XP such that Xp/Yp is a
finite p-group. All such Yp are isomorphic. Fix a collection of subgroups {Yp:p e &} and
isomorphisms npq: Yp^> Yq subject to the conditions

TP,r = ^q,r^P,q and nPJ> = the identity map.

Identify Xp with a subgroup of © Xp and consider the subgroup 5 = {-yp +
ps3»

n
P,q(yP)'-yP

 e YP\ p , q s 2P) of © Xp. It can be shown that

%xp)ls
is a torsion-free abelian HR-group and that any torsion-free abelian HR-group is
isomorphic to a group of this form.

Now we would like to give examples to show that torsion-free abelian HR-groups can
have a complex structure.

PROPOSITION 2.5. Let V = Qa © Qb be a two-dimensional vector space. Assume that

{PuP2i- • •}. {<7i.?2. • • •}. W ore sets of distinct primes. If we define E0 = (—:i = l,2,...),
\Pi I

Ei = (—:;' = 1,2,...) and G = \E0, E\, ), then G is an indecomposable torsion-free
\q/ / \ r I

abelian HR-group of rank 2.
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Proof G is clearly a torsion-free abelian group of rank 2 and G e HR by Theorem
2.1. The set {EO,EX} is a rigid system of groups, so G is indecomposable by [3, vol. 2,
p. 124]. •

Before proceeding, we note that there are continuously many non-isomorphic groups
G of the above form. To illustrate the construction mentioned above we show how to
construct a group of the form G(XP, Yp, nPtq) isomorphic to the group G in Proposition
2.5. Let Xp. = (aPi, bp), Xq = (aq., bq), Xr = (ar, br) be free abelian groups of rank 2 with
subgroups Yp. = (p,aPi, bp), Yq. = (aqj, qjbq), Yr = (r(ar + br) - br, br). If the isomorphisms
npq are defined by

PiaPi

then G = G(Xp,Yp,KpJ.

3. Nilpotent HR-groups. In this section we study the structure of nilpotent
HR-groups, obtaining characterizations that bear a strong resemblance to the results for
abelian HR-groups in Section 2. Despite this similarity, the theory of nilpotent HR-groups
is inherently more complex, as is shown by the existence of non-isomorphic fundamental
subgroups in torsion-free nilpotent HR-groups.

Although the first two lemmas deal with solvable and abelian groups respectively,
they will have applications here.

LEMMA 3.1. Let G be a solvable group. Then G is an HR-group if and only if Gab is
an HR-group.

Proof. The necessity is clear. Conversely, the solvability of G implies that any
non-trivial counter-finite quotient GIM has a non-trivial abelian quotient GIN. Therefore

•
LEMMA 3.2. / / Gj and G2 are abelian HR-groups, then G1®G2 is an abelian

HR-group.

Proof. From Theorem 2.1 we know that G, has a finitely generated subgroup N{ such
that GJNi is a direct sum of bounded abelian p-groups. Then G1 <S> G2 has a subgroup
R = (x®y;x e.Nu or v eJV2>, and G/R is a direct sum of bounded abelian p-groups.
Since R is a sum of a finite number of HR-groups, it follows that G1 ® G2 E HR. •

LEMMA 3.3. Let G be a nilpotent group. Then the following conditions are equivalent:
(i) G e HR;
(ii) y,(G)/yl+1(G)eHR for alii;
(iii) G has no quasicyclic sections.

Proof, (i) ̂  (ii) Clearly Gab e HR. Since G is nilpotent, there exists an epimorphism
from Gab®.. .®Gabto y,(G)/yI+1(G) by [9, p. 127].
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(ii) ̂  (i) This follows from the P-closure of HR.
(ii)<=>(iii) This is clear. •

COROLLARY 3.4.(i) A subgroup of a nilpotent HR-group is HR.
(ii) Let G = Dr Gp be a nilpotent torsion group. Then G is an HR-group if and only

pe3»
if the p-component Gp has finite exponent for each prime p.

THEOREM 3.5. Let G be a nilpotent group. Then G is an HR-group if and only if it has
a finitely generated subgroup X and a subnormal series X = Ho <1 . . . < / / „ = G such that
Hj+x/Hj is a torsion abelian HR-group for i = 0 , . . . , n - 1.

Proof. If G has such a series, then G e HR. Conversely, assume that G is a nilpotent
HR-group. Lemma 3.3 implies that each factor •y,(G)/y,+i(G) is an abelian HR-group.
By Theorem 2.1 y,(G)/y,+i(G) has a finitely generated subgroup Xj/yi+}(G) =
te<iT/+1 (£*)>• • • .§<,T'i-n(C')) such that yi(G)/X, is a torsion abelian HR-group. Let X be
generated by all the gtj. Then X = Xyn(G) ^ . . . S Xyx{G) = G is a series with the desired
properties where n + 1 is the nilpotent class of G. •

If G is a nilpotent HR-group, we shall call a subnormal series of the form described
in Theorem 3.5 a nilpotent HR-series for G.

The fundamental subgroups of a torsion-free abelian HR-group are all free abelian
groups of a fixed finite rank. It is important to note, however, that the fundamental
subgroups of a torsion-free nilpotent HR-group need not be isomorphic. If G = (a,b,c;
[a,c] = [b,c] = 1, [a,b] = c), then G is a torsion-free nilpotent HR-group. Since G is
finitely generated, it is the fundamental subgroup of itself. However, X = (a2, b2, c) is also
a fundamental subgroup of G, and G ¥= X.

Although the fundamental subgroups of a torsion-free nilpotent HR-group need not
be isomorphic, they are quite similar. If X and Y are fundamental subgroups of a
torsion-free nilpotent HR-subgroup G, then they both have the same Hirsch number.
Also, X fl Y is a common subgroup of finite index, so they have the same nilpotent class.

In Theorem 2.3 we saw that an abelian HR-group could be written as the product of
certain subgroups GP(X) for p e $P. If G was torsion-free, we saw that the GP(X) were
finitely generated. We shall establish similar results for nilpotent HR-groups after some
preliminary results.

Recall that if H is a subgroup of a group G and n is a collection of primes, then
Gn(H) = {g e G; g'te) e H for some positive ^-number l(g)}. It follows from [12, p. 14]
that if G is nilpotent, G^(H) ^ G. If G is a nilpotent HR-group, then the nilpotent
HR-series shows that for any prime p there exists a positive integer m such that gpm e X
for all g e GP(X).

THEOREM 3.6. Let G be a nilpotent HR-group with fundamental subgroup X. Then
(i) G = (Gp(X):peSf>);
(ii) GP(X) n (Gq{X):p eV,q #/>> = X;
(iii) Gp(X)Gq(X) = Gq(X)Gp(X) for all p e fr,
(iv) If G is torsion-free, then GP(X) is finitely generated for all p G 9>.
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Proof, (i) Given g e G, there is a positive integer m(g) such that gm(g) e X. If

m(g) = pV • • • P°" and /, = ̂ ^ , then gheGpf,X). Since g = g"''>+- +ft»'" we see that

(ii) Certainly X < G^*) D <G,(A"):g e @, q ¥>p). If y e C(A") n (Cq(X):q E ^ , ? ^
), then there exist a p-number /: and a p '-number / such that yk e X and y' e X. Then

(iii) Let K = {q,p}. Then Gp(X)Gq(X) c Gn{X). Given x e G^X) we know that
/ « ' E I for some r, s >0. Now A: = xbq'xap\ But j " ' e G , ( X ) and xbq' zGp{X), so
G^(A') g Gp(A')G,(Ar), which implies the result.

(iv) We shall induct on the nilpotent class of G. If G has nilpotent class ^ 1 , the
result follows from Theorem 2.3(iii). Now assume that the result holds for all groups of
nilpotent class c ^ l and let G have class c + 1.

Let X = Ho <...<Hn = G be a nilpotent HR-series for G. if G = GIZ(G), then G
is torsion-free and

X = XZ(G)/Z(G) <...< HnZ(G)/Z(G) = G

is a nilpotent HR-series for G. We know that GP(X) is finitely generated by induction.
But GP{X)Z{G)IZ(G) < GP(X), so it is also finitely generated. Thus we need only show
that GP(X) n Z(G) is finitely generated. There exists an integer m such that gpm e X for
all gsGp(X). Since Gp(X)nZ(G) is torsion-free, the map 9:GP(X) n Z(G)-+ X n
Z(G) defined by 0(g) = gpm is an injective homomorphism. Thus Gp(A') n Z(G) is finitely
generated. D

4. Solvable HR-groups. In Sections 2 and 3 we saw that it was possible to
characterize abelian and nilpotent HR-groups in terms of a series involving a finitely
generated subnormal subgroup and intermediate torsion abelian HR-factors. From these
results we saw that the classes of abelian and nilpotent HR-groups were closed under the
formation of subgroups. We also noted that torsion-free abelian and torsion-free nilpotent
HR-groups could be built up from collections of finitely generated subgroups. Unfortun-
ately, the structure of solvable HR-groups can be quite complicated, so that no such
results are possible. A subclass of the solvable HR-groups will, however, yield some
interesting results.

We begin by pointing out that the center of a solvable HR-group can be any
countable abelian group. By a result of Philip Hall [9, p. 402], we know that if A is any
non-trivial countable abelian group, there exist 2*1 non-isomorphic 2-generator groups G
such that G" = Z(G) = >1) and G/Z(G) has trivial center. Lemma 3.1 implies that any
finitely generated solvable group is an HR-group, so we see that it is possible to find
solvable HR-groups with divisible centers. Therefore we cannot say much about solvable
HR-groups in general. For this reason we shall consider a subclass of solvable HR-groups.

Let G be a group. If all the normal subgroups of_G; are HR-groups, we shall call G an
HR-group. Clearly any nilp_otent HR-group is an HR-group, and polycyclic groups are
also examples of solvable HR-groups.

LEMMA 4.1. Any subgroup of a solvable HR-group is an HR-group.
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Proof. Let G be a solvable HR-group and choose H-&G. We know that each factor
Gc)/G(.+i) is a n abelian HR-group, so (G( On/ / ) / (G< l + 1 )n / / ) is an abelian HR-group.
Therefore H e HR. •

The next result characterizes solvable HR-groups by their sections.

THEOREM 4.2. Let G be a solvable group. Then the following conditions are
equivalent:

(i) G is an HR-group;
(ii) G is poly-(abelian HR);
(iii) G has no non-trivial quasicyclic sections.

Proof, (i) =£> (ii) is clear.
(ii)=>(iii) Since G is a poly-(abelian HR) group, any subgroup, and hence any

section, of G must be HR. Therefore G has no non-trivial quasicyclic sections.
(iii) ̂ > (i) If H < G, then Hab e HR. Therefore Lemma 3.1 implies that H G HR. D

PROPOSITION 4.3. The class of solvable HR-groups is the smallest s, P, and o-closed
class containing Z and all direct products of bounded abelian p-groups.

Proof. Clearly the class of solvable HR-groups contains the smallest class with these
proper. Conversely, the smallest class_with these properties contains all poly-(abelian HR)
groups, so it contains all solvable HR-groups. •

From these simple results we can already see that solvable HR-groups form an
interesting class of infinite solvable groups with finite torsion-free rank; it does not appear
to have been previously studied.

We shall now investigate the structure of solvable HR-groups. If G is a solvable
HR-group, the abelian sections of G have finite torsion-free rank. By [8, vol. 2, p. 131] we
see that G/T e S1( where T is the maximum normal torsion subgroup of G. The following
theorem collects some other properties of GIT.

THEOREM 4.4. Let G be a solvable HR-group with maximum normal torsion subgroup
T. Then

(i) G/T is an extension of a torsion-free nilpotent HR-group by a finitely generated
abelian-by-finite group;

(ii) G/T is locally poly cyclic;
(iii) there is a finite set of primes n such that G/T is a residually finite n-group.

Proof, (i) Since G/T e S] its Fitting subgroup F/T is a torsion-free nilpotent group
and G/F is polycyclic and abelian-by-finite by [8, vol. 2, p. 169].

(ii) If X/T is a finitely generated subgroup of G/T, then X/T e HR and X/T G SJ.
Thus X/T is a solvable minimax group by [8, vol. 2, p. 176], and hence polycyclic since it
contains no quasicyclic sections.

(iii) Since G/T e S] and the center of the Baer radical is reduced the result follows
from [8, vol. 2, p. 138]. •

Before proceeding we make a few remarks about Theorem 4.4. If the Sylow
p-subgroups of T have bounded exponent and G/T satisfies the conditions in (i), then G
is a solvable HR-group. The result jn_(ii) cannot be extended to G since the standard
wreath product ZpwrZ is a solvable HR-group that is not locally polycyclic. A countable
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extra-special p-group is a solvable HR-group which is not residually finite, so (iii) also
cannot be extended to G.

We conclude this section by establishing a type of residual property of torsion-free
nilpotent HR-groups.

THEOREM 4.5. If G is a torsion-free nilpotent HR-group, then G is residually a finite
p-group for all primes p.

Proof. By Corollary 3.4(i) it follows that G E HR. We therefore know that G has
finite abelian section rank and Z(G) is ^-reduced since it is an HR-group. Thus the result
follows from [8, vol. 2, p. 135]. D

Theorem 4.5 gives a generalization of the well-known theorem of Gruenberg: If G is
a finitely generated torsion-free nilpotent group, then G is residually a finite p-group for all
primes p.

5. Highly representable subgroups and quotients. We now wish to characterize the
HR-radical and residual in groups with finite composition length. The HR-radical of a
group G, which we denote by HR(G), is locally HR but need not be HR since a free
abelian group of infinite rank is not HR. The following property will be useful for
characterizing the HR-radical.

We say that a group G is purely infinite if each subnormal composition factor of G is
infinite. It follows from the definition that a group is purely infinite if and only if each of
its subnormal subgroups is counter-finite. The connection between HR(G) and purely
infinite quotients of G is shown in the next result.

THEOREM 5.1. Let G be a group satisfying min-sn, the minimal condition on
subnormal subgroups. Then G/HR(G) is the largest purely infinite quotient of G.

Proof. In proving that G/HR(G) is purely infinite we may assume that HR(G) = 1.
If G is not purely infinite, then there is a subnormal subgroup H that is minimal with
respect to being non-counter-finite. Let H = Ho < //, < . . . < Hn = G. Suppose that
HR(//,) = 1 and let L be a normal HR-subgroup of //,-_,. Then L is subnormal in G, so it
has only finitely many conjugates in G since G satisfies min-sn [8, p. 385]. Therefore (LHi)
is HR and L < HR{H,) = 1. Since HR(G) = 1, induction onn-i implies that HR{H) = 1,
so H g HR. Thus H has a non-trivial counter-finite quotient H/N. The minimality of H
implies that N is counter-finite, whence so is H, which contradicts our choice of H. It
follows that G is purely infinite.

Now assume that G/J is purely infinite and that M is a normal HR-subgroup of G.
then M/(MC\J) is HR and counter-finite, s o M c y . Therefore HR(G) < / . •

COROLLARY 5.2. Let G be a group with finite composition length. Then HR(G) is
simultaneously the maximum normal HR-subgroup of G and the minimum normal
subgroup of G with purely infinite quotient.

It is important to note that HR(G) need not be an HR-group even when G satisfies
mm-sn. Section 5 of [2] provides an example of such a group.

We now wish to examine the HR-residual a group G which we denote by HR*(G).
Before proceeding we give an example to show that HR is not an R0-closed class.
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Let H be an HR-group such that Z(H) is non-trivial and divisible; such groups have
been constructed by Philip Hall [9, p. 402]. Define G = H X H and let Hx = {(h, l):h e H},
H2 = {Q.,h):heH}, D ={(h,h):h e H) be subgroups of G. If G = DZ(HX) = DZ{H2),
then Z{Hy) and Z(H2) our normal in G. Clearly G/Z{HX) and G/Z(H2) are HR and
Z(//,) n Z(//2) = 1, but G is not HR.

However the following lemma shows that it is useful to discuss the HR-residual in
groups satisfying max-«.

LEMMA 5.3. Let G be a group satisfying the maximal condition on normal subgroups.
If M and N are normal subgroups of G such that G/M and GIN are HR-groups, then
C/(MnJV) is an HR-group.

Proof. Without loss we can assume that M D N = 1. If GIL is a non-trivial
counter-finite quotient, then G = LM = LN. We can further assume that L n M = 1. Then
[L,M] = [N,M] = 1, so M<Z(G). Since G/L-M is counter-finite, M i s a divisible
central subgroup of G. But G has max-n, so M has max, and therefore is finitely
generated. Thus M must be trivial, which contradicts our choice of L. •

COROLLARY 5.4. If G is a group with finite composition length, then G/HR*(G) is an
HR-group.

Our immediate goal is to provide a characterization of the HR-residual analogous to
that for the HR-radical. First we need to define a technical property of normal subgroups
which is similar to one used in [2].

Let si denote the following property of normal subgroups N of a group G: all
non-trivial G-quotients of N are infinite and each G-simple quotient of N is quasicentral
in G.

PROPOSITION 5.5. In any group G there exists a unique largest normal subgroup with
property si.

Proof. Let {N,},e/ be a chain of normal subgroups of G having property si and let U
be the union of the chain. If U/V is a finite G-quotient, then £/<N,V for some i. Thus

U/V £ fy./(N(. n V), which shows that U = V. If U/V is a G-simple quotient, the same
argument shows that U/V must be quasicentral in G. Thus U has si and Zorn's Lemma
implies there is a normal subgroup M that is maximal with respect to having si.

If N< G has si, then we claim that MN has si. This will imply that JVsMandM
will have the desired properties. If MN/L is a finite G-quotient, then M/(M n L) must be
trivial. Hence MN = L. A G-simple quotient of MN is isomorphic with such a quotient of
M or N. The result follows. •

Let p(G) denote the normal subgroup of Proposition 5.5. We now use this subgroup
to characterize the HR-residual in groups with finite chief length.

THEOREM 5.6. / / G is a group with finite chief length, then HR*(G) = p(G).

Proof. First we shall show that HR*(G) has si, which will imply that HR*(G) ^
p(G). Let R = HR*(G). Since G has finite chief length, G/R e HR. If R/N is a finite
G-quotient, then G/N e HR, so R=N. Now suppose that R/M is an infinite G-simple
quotient. Then G/M g HR by the minimality of R, so there is a non-trivial counter-finite
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quotient G/L where M^L. Since R/M is G-simple and R^L, we conclude that
RDL = M. Since G = LR, we have G/M = L/M x R/M, which shows that R/M is
quasicentral in G. Thus /? has si.

Now assume that R ¥=J = p(G). Since G satisfies max-n, there is an infinite G-simple
quotient J/K where R^K. By definition J has si, so 7//C is quasicentral in G, and hence
is central by Proposition 1.3 since G/R s HR. Therefore J/K is an infinite abelian simple
group, which is impossible. •

COROLLARY 5.7. Let G be a group with finite chief length. Then HR*(G) is
simultaneously the maximum normal subgroup with property si and the minimum normal
subgroup whose quotient in G is an HR-group.

The following result shows that the subnormal subgroups of an HR-group can be
arbitrary.

THEOREM 5.8. If H is an arbitrary group and K is an HR-group containing an element
of infinite order, then the complete wreath product HwrK is an HR-group.

Proof. Let G/N be a non-trivial counter-finite quotient. Then G = BN where B is the
base group. Let x s K have infinite order, and write x = bn (b e B,n sN). Then n = 6"'x
and N contains [B,n]. We claim that [B,n] = B. To show this it suffices to prove that
given deB, there exists ceB such that d = [c,n] = [c,b~lx] = c~i(cb~')x. Take k-
components (k e K) to get

This is an infinite linear system for ck over H. To solve it choose a left transversal T to (x)
in K. For each t e T assign c, arbitrarily in H, then use (*) to solve back and find c^. It
follows that B < N and G/N e HR, so G = N. •

COROLLARY 5.9. An arbitrary group H is isomorphic to a 2-step subnormal subgroup
of an HR-group H*. If H is solvable of derived length d, then H* is solvable and has
derived length d + 1.

It turns out that there are restrictions on the normal subgroups of HR-groups. We
shall say that a group H satisfies condition S3 if there exists an HR-subgroup X of Aut(//)
such that for any non-trivial counter-finite A"-quotient H/M, some element of X induces
an outer automorphism of H/M.

THEOREM 5.10. (i) / / H is a normal subgroup of an HR-group and Hab is an
HR-group, then H satisfies condition S3.

(ii) If H is a group satisfying condition $&, then H is isomorphic with a normal
subgroup of an HR-group.

Proof, (i) Let H<G, where G e HR, and put X = G/CC(H) considered as a
subgroup of Aut(//). Assume that H/M is a non-trivial counter-finite quotient with
M < G. If H/M is quasicentral in G, then Proposition 1.3(i) implies that H/M is central.
Hence H' ^ M. But Hab e HR, so H = M, contradicting our choice of H/M.

(ii) Assume that H satisfies S3. If X^Aut(H) has the required property, define
G = Hy\X. If G/L is a non-trivial counter-finite quotient, then G = HL. Therefore
G/L — H/(HC\L), which is a non-trivial quotient of H, and HDL is A'-admissible
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because KG. Since G = HL and [H,L]<HDL, every element of G, and thus of X,
induces an inner automorphism of H/(H fl L), contradicting the assumption that H
satisfies condition 58. Hence G e HR, and of course H < G. •

COROLLARY 5.11. (i) / / H is a finitely generated group, then H is isomorphic with a
normal subgroup of an HR-group if and only if H satisfies Sft.

(ii) If H is an infinite simple group, then H embeds normally in an HR-group if and
only if H is not complete.

In light of Corollary 5.11(ii) it is important to note that there are many infinite simple
groups that are not complete (see [6]).
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