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Abstract

This article constructs an approach to analyzing longitudinal panel data which combines topological data
analysis (TDA) and generative Al applied to graph neural networks (GNNs). TDA is deployed to identify
and analyze unobserved topological heterogeneities of a dataset. TDA-extracted information is quantified
into a set of measures, called functional principal components. These measures are used to analyze the
data in four ways. First, the measures are construed as moderators of the data and their statistical effects
are estimated through a Bayesian framework. Second, the measures are used as factors to classify the data
into topological classes using generative Al applied to GNNs constructed by transforming the data into
graphs. The classification uncovers patterns in the data which are otherwise not accessible through statistical
approaches. Third, the measures are used as factors that condition the extraction of latent variables of the
data through a deployment of a generative AI model. Fourth, the measures are used as labels for classifying
the graphs into classes used to offer a GNN-based effective dimensionality reduction of the original data.
The article uses a portion of the militarized international disputes (MIDs) dataset (from 1946 to 2010) as a
running example to briefly illustrate its ideas and steps.
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1. Introduction

Analyzing longitudinal panel data in political and social sciences is essential for addressing critical
research questions (Montfort and Oud 2010; Traunmuller, Murr, and Gill 2015; Reuning, Kenwick, and
Fariss 2019; Zheng, Lv, and Lin 2021; Ye et al. 2023; Loaiza-Maya et al. 2022; Sterner et al. 2024; Mai,
Zhang, and Wen 2018; Ferrari 2020). This type of data typically involves measurements of unit features
grouped spatially and temporally, including features of dyads and structural properties of clusters or
entire groups. When considering bilateral and multilateral relations cross-sectionally and temporally,
along with the underlying structures, longitudinal panel data not only captures these dimensions but
also incorporates relational dynamics and structural contexts, including dynamic blocks or clusters of
entities that change over time (Lupu and Greenhill 2017; Olivella, Pratt, and Imai 2022).

Several methodologies, such as Hierarchical/Multilevel Modeling, Time Series Analysis, Causal
Inference, Machine Learning Approaches, and Structural Equation Modeling (SEM), have been
employed to analyze these aspects of the data. While dyadic analysis is predominant, cluster analysis,
particularly through social network analysis, provides additional insights by accounting for correlations
within and across panels, leading to more accurate estimations of standard errors (Arellano and
Bonhomme 2023; Carlson, Incerti, and Aronow 2024). However, traditional dyadic and cluster analyses
struggle with scalability as the data size grows. They are also limited by statistical constraints, such as
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model assumptions, which become problematic with highly complex, non-linear models involving big
datasets with a large number of features.

In contrast, deep learning approaches, particularly those utilizing Graph Neural Networks (GNNs),
offer flexibility, adaptability, and scalability to handle big datasets with a huge number of parameters.
GNN s excel at capturing complex relationships within graph-structured data by iteratively aggregating
and updating information from neighboring nodes and subgraphs. GNNs are particularly effective
for learning meaningful representations of nodes, edges, and more complex structures like clusters
and blocks, capturing both local and global patterns in a data. They accommodate heterogeneous
data types (numerical, images, video, texts, etc.) and manage complex interactions between them.
GNNs, when combined with generative Al and deep learning, not only provide variables for Bayesian
models but also uncover deep patterns, enhance data visualization, improve predictive accuracy, and
strengthen interpretative power. Their scalability to large datasets with numerous features, without
prior assumptions, sets GNNs when analyzed using generative Al apart from traditional statistical
approaches. Furthermore, GNNs provide novel methods for analyzing deep-seated heterogeneities in
graph data.

The analysis of the effects of unobserved heterogeneities has been flourishing in statistical
approaches. Yet, the study of the effects of topological heterogeneities is rather lacking, especially in
social sciences. This article proposes a framework for analyzing unobserved topological heterogeneities
in longitudinal panel data by integrating generative AI, GNNs, and topological data analysis (TDA).
Every dataset has an inherent topology, often containing heterogeneities that shape how the data
explains empirical phenomena. This framework introduces a quantitative measure of topological
heterogeneities, setting them apart from other forms of unobserved heterogeneities (Ferrari 2020). The
article brings together Bayesian statistical analysis and TDA to compare the proposed measure with
conventional statistical estimates of effects. Moreover, using generative Al applied to GNNs, the article
proposes an approach to extract latent variables, in contrast with traditional methods that assume
their existence and estimate their impact (Fong and Grimmer 2023; Loaiza-Maya et al. 2022; Mai
et al. 2018; Montfort and Oud 2010; Reuning et al. 2019; Sterner et al. 2024; Traunmuller et al. 2015;
Ye et al. 2023; Zheng et al. 2021). The combination of TDA, GNN, and generative Al for analyzing
longitudinal panel data reconstructed as graphs offers new research opportunities, particularly in
political and social sciences, where data complexity demands methods beyond traditional statistical
models.

The article is structured as follows. It begins with a basic Bayesian spatial auto-regressive (SAR)
model, incorporating a sociomatrix W' representing dyadic memberships in social networks (Kenny,
Kashy, and Cook 2020; Wasserman and Faust 1994). This model establishes a framework for com-
paring the effects of measures obtained through TDA and generative Al with those from traditional
parametric models. Second, the article introduces TDA of longitudinal data and converts its results
into topological factors that are used in Bayesian statistics. Third, the article constructs a deep GNN
machine-learning topology-based classification of longitudinal panel data after converting it to graphs,
where nodes represent units of the panels and edges represent their dyadic relations, each with their
respective features. Fourth, two generative AI models within the GNN framework are presented. The
first model extracts latent factors of the data, constrained by topological heterogeneities, and shows
their accuracy in representing underlying data features. Their statistical effects are then estimated
through a Bayesian model. The second model performs data-dimensionality reduction by identify-
ing key subgraphs that are used to generate a smaller longitudinal dataset. The article shows that
such a reduced-dimensionality dataset achieves strong out-of-sample predictive performance in a
Bayesian model. The article concludes by reflecting on the implications for social science research
and a flowchart outlining the practical steps of the framework. An accompanying online supplement
provides additional details and mathematical foundations. The article uses a dataset (1946-2010) on
MIDs for illustration (Hafner-Burton and Montgomery 2006; Kinne 2013; Lupu and Greenhill 2017;
Pevehouse, Nordstrom, and Warnke 2004; Shannon, Morey, and Boehmke 2010, for details see the
supplement).
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Table 1. Bayesian estimation with sociomatrix expansion.

Political Analysis

Variable mean sd hdi_3%  hdi_97%
Empirical variables  majpower 4.287  0.142 4.027 4.558
allies -0.676 0.121 -0.899 —0.445
contgkf 1.386 0.138 1.118 1.634
smldep —-8.060 0.244 -8.519 -7.599
Icaprat -5.234 0333  -5.874 -4.622
Igmidist -8.137 0.272 —8.648 -7.628
smldmat -4.167 0.195 —4.540 -3.819
Sociomatrix effects  p 0.153  0.007 0.141 0.166
Zero-inflation P 0.055 0.004 0.047 0.063

3

2. SAR Model

This section introduces a base Bayesian model for comparing later on the effects of the constructed
latent variables to commonly used variables in the study of MIDs. I choose a spatially-auto-regressive
(SAR) model to take into account the effects of the sociomatrix on the probability of MIDs. The SAR
model is shown in Equation (2.1):

Y=pW - Y+X -B+e, 2.1)

where X is a matrix of exogenous covariates, W is a N x N sociomatrix representing the relations
between various nodes (N dyads of states) of the network, p is a measure of the impact of social network
effects on the dependent variable, and € is an error term. To keep the computations feasible given the
very large size of the sociomatrix, I expand W in terms of powers of pW. This makes sense by choosing
p€[0,1.]in a typical SAR model and W is normalized (with components in [0,1]). As shown later, one
need not go beyond pf with p € (1,2,3,4); higher powers do not in any meaningful way affect the results
of the SAR model. Because the MID (outcome) variable is strongly zero-inflated, I use a zero-inflated
binomial distribution for the likelihood function. All priors of the Bayesian model are chosen to be
weakly informative. The vector of coefficients 3 includes the covariates of the empirical data.

Table 1 displays the results of the estimation. p has a mean of 0.153 with a 94% high density interval
[0.141, 0.166], which shows that the overall contribution of the main p term of the expansion has a small
effect on the occurrence of MIDs in the dyads, with even smaller contributions of higher powers of the
sociomatrix.

One can conclude that state membership in IOs considered as a network of relations shapes the
likelihood of MIDs in relatively moderate ways (in conformity with earlier work (Kinne 2013)). I next
construct a TDA of the data, the results of which—topological factors—will be added to the Bayesian
SAR model as moderators. The introduction is meant to be illustrative for pedagogical reasons since
TDA is not a topic that most social scientists are familiar with. The Supplementary Material provides
more in-depth and mathematical introduction.

3. TDA

TDA begins with the premise that a data considered as a whole possesses certain invariant global
properties—topological features—which constitute a signature of sorts for the data.' We first construe the
data as a point cloud, that is, a (mathematical) manifold, wherein the data points are located. Each such
manifold possesses properties of a qualitative nature which inform about its topologically connected

'For much more, see Arfi (2024) and the references therein.
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Figure 1. Examples of Cech and Rips-Vietoris simplicial complex.

and/or disconnected components. TDA uncovers this information. TDA proceeds by building high-
dimensional equivalents of neighboring graphs using both connecting pairs and (k+ 1)-uple of nearby
data points. The objects so constructed are called simplicial complexes. They are used to identify key
topological defects at various levels of dimensionality (Chazal and Michel 2021, 3). TDA therefore
effectively projects the underlying topological properties of the data manifold into a space of simplicial
complexes known as combinatorial graphs.” The nodes of these combinatorial graphs are the data
points and the edges are whatever mutual proximity and relations that we decide to focus on. The
goal of TDA is to find the invariants of this space, which are by extension a representation of the
subterranean topological invariants of the data space (Ghrist 2014). Different prescriptions are used
to build the simplicial complexes; examples of which are Rips-Vietoris, Cech, and Alpha complexes
(Hatcher 2002). Figure 1 is a schematic illustration. The red dots are the original data points, and the
colored geometric shapes are the identified simplicial complexes at different dimensions (Ghrist 2008,
Figure 2). These prescriptions uncover the underlying (qualitative) topological properties of the data.
A simplicial complex is in a sense a generalization of the notion of a graph (Ghrist 2017, 4). The study
of these simplicial complexes is called homology, and the study of the most persistent features is called
persistence homology.

I use TDA to probe how the persistent homological effects of the empirical data (taken as a whole)
change over time. Following Arfi (2024), I focus on the first three topological effects, respectively,
represented as H_0, H_1, and H_2, each with two principal components. I start with the working
proposition that these homological effects might be statistically relevant in explaining part of the
variance of MIDs data. Due to the deep structural changes that have been occurring in the international
system since World War II (for example, a rapid increase in the number of sovereign states and their
joining existing and newly created IOs), one expects important changes in the topological features of
the empirical data to be reflected in these changes.

The computation of persistent homology proceeds as follows. Using what is called a filtration
process,” we record the moments of appearance and disappearance of the topological features as we
probe the data manifold (as in Figure 1). We thus record how discernible a topological feature (such as
aloop, triangle, or tetra-pod) is as we are probing the data manifold through a process of filtration. The
more persistent topological features are, the more important for the global topology of the data manifold
they are. The information that is unearthed through filtration is saved in mathematical objects called
persistence diagrams (PDs). These objects record the existence, nature, and concentration of the invariant
topological features. They are usually visualized as a two-dimensional plot of the disappearance or death

2The theory of combinatorial graphs focuses on counting and enumerating various possible arrangements of vertices and
edges, etc. (Harris, Hirst, and Mossinghoff 2008).

3Filtration is a method for building a nested sequence of topological spaces. Each space in this sequence captures the
connections and disconnections between data points at a particular scale. These spaces are then converted into simplicial
complexes that simplify computation. The persistence of features of these spaces across scales reveals the underlying topological
structure of the data.
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Figure 2. PDs for four years.

versus the appearance or birth of the invariant topological features of the data manifold as we go through
the filtration.* Four such PDs are displayed in Figure 2.

For any data manifold, we usually obtain a multitude of PDs which thus form a space. This space
is then equipped with a generalized (non-Euclidean) notion of distance which makes it possible to
analyze its properties. The PDs are complicated mathematical objects to deal with, which led students
of algebraic topology to construct what is known as functional summaries of the persistent diagrams,
which are then used to process the information stored in the PDs and use it in, for example, statistical
analysis. One such functional summary is persistence image functional (Obayashi, Hiraoka, and Kimura
2018).°

PDs, such as those displayed in Figure 2, are essential tools for analyzing topological features in the
data. Points that lie on or near the diagonal line represent features that persist across multiple spatial
scales. These are considered significant and stable topological features of the data. The further a point is
from the diagonal, the more persistent it is (the diagonal line represents death moment = birth moment).

“For a more in-depth discussion, see Arfi (2024), and references therein.
>See Arfi (2024) and its online supplementary material for many more details.
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Persistence Entropy, Total MIDs, and FPCA over Years

4

10 - -
0.5
\
4 ——e— Persistence Entropy “
—4§— MIDs \
-m- FPCA | f u

Total MIDs

I

Persistence Entropy
Normalized Mean FPCA

~-0.5

-1.0

End of Cold War * ! B
1

1950 1960 1870 1980 1980 2000 2010

Year

Figure 3. Persistence entropy, total MIDs and normalized mean-FPCA.

Features with a birth moment close to 0 and a death moment close to infinity correspond to connected
components (0-dimensional features) labeled HO. Persistent topological holes in the data correspond
to one-dimensional features, labeled H1, while voids such as triangles and tetra-pods correspond to
higher-dimensional features, labeled H2.

The examination of the space of PDs is deepened by considering persistence entropy. In information
theory and statistics, entropy is used as a measure of disorder and uncertainty. High entropy indicates
strong disorder, while low entropy indicates weak disorder. Persistence entropy is used to quantify the
complexity of and uncertainty in the topological features extracted from the data. Persistence entropy
is obtained by discretizing the PDs into bins or intervals along the persistence axis (vertical axis).
The entropy is then computed based on the distribution of points in these bins. High persistence
entropy indicates that topological features are distributed more evenly across different persistence levels,
suggesting greater topological complexity or randomness in the data. Low persistence entropy suggests
that topological features are concentrated in specific persistence ranges, indicating a more structured
or ordered dataset. Therefore, persistence entropy can be used to compare different datasets or to track
changes in the topological structure of a dataset over time or across different conditions. The formula
for persistence entropy is given in Equation (3.1):

(L li
E(PD) = ;(L)log(L), (3.1)
where PD is a persistence diagram consisting of #n persistence pairs, where [; = d; — b; is the lifespan of
the i-th feature, and L = 31, J; is the total persistence (sum of all lifespans) in the diagram. To illustrate
the notion of persistence entropy, I plot in Figure 3 its variation for the illustrative data in conjunction
with the total MIDs per year in the interstate system (as well as the normalized mean of the functional
principal components (FPCA) discussed down below).

Persistence entropy steadily increases over the whole time period. The topological heterogeneities
are, therefore, becoming increasingly more diverse and their numbers are increasing over the years. The
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deep structure of the international system is. therefore, increasingly more complex and deeply more
heterogeneous in nature. As displayed in Figure 3, this concords with more MIDs in the international
system over the years; the two trends are remarkably concordant. The vertical line points to the end
of the Cold War and collapse of the Soviet Union. This corresponds to a jump in both the persistence
entropy and the total MIDs, with both more or less reaching a plateau between the end of the Cold War
and 2010. These plateaus are preceded by prior plateaus in the 1980s decade. This decade corresponds to
tumultuous changes in the international scene during the Reagan area as the architecture of the world
order once again was at stake, much like at the end of World War II. The biggest increases in both
persistence entropy and total MIDs occur (in tandem) between the end of World War II and 1980.
These decades did indeed witness an overhaul of the international system with the start of the Cold War
and its rivalry, but also with increases in the levels of cooperation through multilateral organizations
and institutions.

Another way to probe the extent to which topological heterogeneities affect the evolution of the
international system is to transform the information stored in the PDs into quantities that can be
manipulated using usual algebraic frameworks (PDs are multi-sets and hence cannot be manipulated
using usual algebra). Following closely Arfi(2024) and Wang (2016), I transform the information in the
PDs into persistence images which are then vectorized and transformed into FPCA (a generalization
of principal components analysis to functions). A persistence image represents complex information
stored in the PDs by capturing its significant features, and turning this information into a simple image
(see Supplementary Material for mathematical details). We then use PCA to reduce the dimensionality
of the vectorized persistence images and capture the main features using the top principal components,
called topological components. I choose to represent each topological component by two FPCA;
these are

HO= (HO0.1,HO02),H 1= H_1_1,H.1.2), H2= (H_2_1, H_2_2).

Figure 3 displays, in addition to entropy and MIDs, the mean FPCA which shows a decreasing trend
over the years if with some irregularities in this respect, increasing sharply at around 2003 (which,
historically, corresponds to the US invasion of Iraq) and then decreasing by the mid-decade to what
roughly is a plateau. This is roughly in accordance with the observations made on the evolution of
persistence entropy, which is not surprising since both are different functional transformations of the
topological information stored in the PDs.

In the next section, I augment the list of covariates (representing the empirical data) with two
homological factors—H_1_1 and H_1_2—which are the two first FPCA corresponding to the one-
dimensional topological effects (one-dimensional loops). The question is whether these topological
effects are statistically relevant for explaining part of the variance in the posterior distribution of the
dependent variable, MID.

4. SAR Model with Topological Factors as Moderators

Because topology reflects global properties of the data, it makes sense to consider topological effects
as moderators used to probe how micro-level features (covariates) are conditioned by macro-level
topological properties. To this end, the SAR model Equation (2.1) is modified as follows:

Myars ny ny
i = ZXiJ' (ZH,—kék) + ZH,—ka, moderation effects

j=1 k=1 k=1
i :’y,--i—(1+pW+p2W2+p3W3+p4W4)~Xi-ﬁ
y; ~ ZerolnflatedBinomial (1), Nops, sigmoid (7;) ), (4.1)

where ¢ are the coefficients for topological effects; § coefficients for moderation terms; H is the matrix
of moderators/topological factors (dimension: N x ny), with the rest of the quantities defined as before.
A Bayesian estimation leads to the results in Table 2 (just showing the topological effects).
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Table 2. Model with sociomatrix and topological moderator effects.

Variable mean sd hdi_3% hdi_97%
Topological effects H_1_1 -5.124 0.357 —5.760 —4.421
H_1_2 —10.284 0.585 -11.378 -9.198
Moderator effects 6_HI11 2.388  0.184 2.056 2.748
6_H12 5.022 0.344 4.346 5.635

H_1_1 and H_1_2 have strong negative effects with high credible intervals not including zero,
indicating important negative relationships. The moderator effects 6x11 and x12 show strong positive
effects, suggesting important positive relationships between these moderators and the dependent
variable.

I compare the results of this model to a bare model (with no sociomatrix and no topological effects)
using the Expected Log Pointwise Predictive Density (ELPD) measure (Vehtari, Gelman, and Gabry
2017) (see Supplementary Material). The model containing the sociomatrix and topological effects as
moderators is ranked highest. This is not surprising since topological effects are global characteristics
of the data considered as a whole and are thus expected to shape the analysis of the data (given the
rough comparison of the evolution of total MIDs and persistence entropy in the previous chapter). This
suggests that specifying topological effects as moderating linear predictors is an adequate way to put
to work the topological information unearthed through TDA. However, the topological information
extracted via TDA and stored in the topological measures can also be put to work in other more
versatile ways. In the remaining parts of the article, I show that specifying the role of topological effects
differently does indeed demonstrate their importance to the analysis—that is, using them as classifying
and conditioning factors of the data to uncover patterns within the data and to probe its deep latent
features. This is done using deep machine learning and generative Al analysis.

5. Deep GNN Analysis

As shown in many studies social networks and other structures such as blocks and clusters play
important roles in the analysis of longitudinal panel data. I propose that GNNs take this to new levels. To
this end, I restructure the data as a set of graphs, with one graph per each yearly panel, (in the empirical
illustration, states are nodes and their mutual relations as edges). The nodes can have many attributes
(just two in the illustration: being a major power and being involved in a number of MIDs). The dyadic
relations between nodes are taken as multiple attributes of the edges (such as joint memberships in
I0s and other features in the illustration). This approach makes it possible to consider simultaneously
nodes and their dyadic relations (edges) in the same framework, each with its multiple attributes. In
conventional graph analysis (such as social network analysis), edges can have weights which reflect the
strength of the relations between nodes. Using GNNG, allows us to include neighborhood and cluster
relations between nodes and how these entities communicate in a graph to influence one another. This
implies that not only are we including dyadic relations, but also more complicated relations. This is
captured through the process of attention (called graph attention network [GAT]) as explained later
(and more so in the Supplementary Material).’

I carry out the analysis by constructing three GNN models, one for node classification and recon-
struction, one for graph classification, and one for graph generation. Node classification is within
each graph with the values of the dependent variable (MID) taken as classification labels. This node
classification paves the way for identifying latent factors, which are then used as covariates in a
Bayesian model. The construction of these latent variables is done under a regularization (conditioning)

® Attention mechanisms assign different weights to different nodes in a neighborhood based on their relations with other
nodes and their attributes. The attention mechanism are modelled as learnable weights.
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Figure 4. GCN model (Kipf and Welling 2017).

scheme using a discretized version of the topological factors obtained through TDA in Section 2. The
regularization process is the GNN generalization of the moderation conditioning process considered
earlier in the article. Classification of graphs uses the topological factors as labels for graphs which paves
the way for a topology-based clustering of graphs. The third is a GNN model which offers a process of
graph generation that allows us to zero-in on the most important subgraph of each graph (as explained
down below), the effects of all such subgraphs on the occurrence of MIDs are then estimated through a
Bayesian model.

5.1. GNN Models

GNNs s are a generalization of neural networks to graph data (Labonne 2023). GNNs encode repre-
sentations of nodes and edges that depend on the graph structural properties, as well as node and
edge features. A GNN functions through neural message passing which passes information between
nodes and is updated through the neural networks. One of the most versatile forms of GNNG is the
Graph Convolutional Network (GCN) architecture (Kipf and Welling 2017). This is an adaptation of
Convolutional Neural Networks (CNNs) usually used for deep learning about images and texts to graphs
(Zhou et al. 2020). A GCN is specifically defined with a layer-wise propagation rule, which usually is a
non-linear function that updates node and edge features by aggregating the features of their neighbors.
GCNss efficiently leverage the graph structure by performing convolutions, thereby enabling effective
feature extraction for tasks like node classification and embedding, edge embedding and prediction,
and graph embedding and classification. In this article, I first use a deep GNN model which includes
multiple layers in the model propagation as shown in the generic example of Figure 4.

Generally, there are three types of layers: input, hidden, and output. These layers are chosen
depending on the task at hand. In this article, I choose as the basic GNN layer for purpose of graph
classification what is known as GAT to incorporate not only node features but also (as explained before)
various edge features. GATs make use of attention processes to give neighboring nodes varying weights
depending on their relative relevance in the graph (Zhou et al. 2020), with the weights learned during
the training phase. This enables the model to zero in on the most relevant information in the graph.
GAT thus dynamically enhances the ability of the model to capture highly complex interactions in
graph-structured data. I specifically use the EdgeGATConv layer (see Supplementary Material) as the
base for constructing three different architectures geared, respectively, toward (a) graph classification
using topological labels, (b) conditioned extraction of latent features, and (c) graph generation.

5.2. Graph Classification
The topological information stored in the FPCA is discretized into four categories which are then used to

classify the graphs into four topological classes through supervised deep machine learning.” The list of

From now and onward, I only consider the H1 component of topological effects, which corresponds to topological loops.
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graphs is split into training and testing sets of graphs.® The goal is to calculate the accuracy of predicting
graph distribution after training the GNN classification model.

Having trained and saved the model, we can use the saved model to examine, for example, how the
membership probabilities in topological classes change from graph to graph, that is, how the topological
structure of the international system of states evolves from year to year.

Figure 5 displays the yearly proportions of topological classes. The colors indicate the different
topological classes from the data. The boundaries between the class probabilities change over the years,
which means that the topological structure of the international system varies over the years, with most
variation occurring between the mid-1960s and the late 1980s, the latter corresponding to the end of
the cold war, with Class 0 being predominant by far. During these twenty years or so the international
system saw many changes in addition to the re-ignition of the cold war. We then see important shifts in
the boundaries, with Class 3 gaining in membership whereas the others shrinking, if moving toward
stabilization, during the 1995-2010 period, with Class 2 being the dominant. The few years in the
aftermath of the cold war, which witnessed much instability in world order, are manifested in the sharp
variation of the probabilities for the four classes, with Class 3 being dominant during that period.

So far, these plots have been done using the predictive power of a graph classification model.
However, the basic layers of the model utilize, as explained before, the attention mechanisms, the weights
of which can be learned. These weights are edges weights (not nodes) and hence we can use them to
extract some useful information concerning how edge importance is propagated in the neighborhoods
(which is what the attention mechanism focuses on). I first look at the global picture by focusing on the
whole set of graphs (that is, from 1946 to 2010). Figure 6 shows how the maximum attention weights

8See Supplementary Material for the distribution of the true values of the graph labels.
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Figure 6. Max attention weights, persistence entropy, and MIDs.

vary in conjunction with persistence entropy and total MIDs in the system (all three have been spline-
smoothed for comparison clarity purposes).

The time trends of the three quantities are quite similar in general. This signifies that the attention
mechanisms are also able to capture the dynamics in terms of MIDs, much like persistence entropy
does. Persistence entropy is a measure of topological disorder, total MIDs per year can be understood
as a measure of political disorder in world politics, the evolution of both is roughly speaking picked up
by the maximum attention weights of the edges (relations between states). The upward behavior of the
total MIDs curve is not captured by either the persistence entropy or the attention weights.’

Second, we can also zoom in by finding which edges have the top k attention weights in any single
year (graph). Plotting these, we obtain Figure 7 which displays, at the top, the subgraphs with the eight
highest attention weights for 1985 and 2010. The number displayed in the edges are the normalized
attention weights between the respective nodes (states). Not only does the structure of the subgraph
change but also the nodes (states) composing the subgraphs. The lack of an edge between any two
nodes means that there isn’t any meaningful attention propagation between them. Remember that these
attention mechanisms provide information on which edges are important in their neighborhoods, and
how information is passed through the neighborhood. Edge-level attention focuses on assigning weights
to edges rather than nodes. This is particularly, useful in scenarios where the relationships between
nodes (represented by edges) carry different levels of importance. In the empirical illustration, much
information consists of features of the edges in a graph, and hence attention weights allow us to learn
the importance of these features in the model, both locally and globally. The bottom two plots represent
the subgraphs for the same eight states with the normalized number of shared IOs as a weight (red)
in 1985 and 2010. These I0-sharing membership weights are not learned; they are computed from the
sociomatrix. The attention weights are optimally learned, which means that they capture the dynamic
relations as the neural networks are fired throughout training, that is, they reflect the dynamic and
highly complex short and long “range” correlations in the data across the neural networks. While not
done in here, attention weights can be used for classification as well as prediction purposes. They can

9Perhaps including other topological components such as (H_1_2 and H_2_1) might be able to rectify this.
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Figure 7. Subgraphs with top eight attention and 10s-sharing weights.

also be used to draw heatmaps of the various topological classes as a function of time, thereby providing
useful information on the evolution of the system of graphs.

All results obtained in this section, used the TDA-generated topological measures as “classification
labels”. In the next section, I construct a model which uses the topological effects as a constraint that
conditions the space of latent factors. This is an extension of the idea of using topology effects as
moderators in the Bayesian model as explained earlier.

5.3. GNN-Extracted Latent Features

Analysis of latent factors is used in statistical analysis to reduce dimensionality, improve model
accuracy, and uncover relationships not immediately observed, using tools such as Confirmatory Factor
Analysis (CFA) and SEM. Latent factors are important for understanding causality by controlling
for unobserved con-founders, thereby leading to more precise conclusions. Because GNNs handle
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Figure 8. Conditioned ARGVA model with the topological conditioning done through embedding: Zx ¢ — Z.

well high-dimensional data and capture intricate, non-linear, and complex relationships by learning
representations that fall within the graph’s topology, they are particularly, suited for detecting latent
factors, thereby providing insights into the underlying structure that traditional methods might miss.
This is due to the internal iterative and dynamic training and validation processes built into the
GNN models. This section puts into play these strengths of GNN models to unearth latent factors of
longitudinal panel data.

This section extends a model called Adversarially Regularized Graph Variational Auto-Encoder
(ARGVA) architecture (Pan et al. 2018), to extract latent space features conditioned with the TDA
features. The two key aspects of this model are for being adversarial and a variational auto-encoder,
plus the important role that regularization plays overall. A generative GNN model can additionally be
specified by imposing a topological constraint on extracting latent variables by adding a regularizer to
the process of propagation through the various neural networks. This is based on the argument that a
latent variable must be conditioned by the deep seated topological properties of the observed data since
it is generated in the same manifold as the observed data, the deep properties of which are reflected in
the TDA-unearthed topological factors. The model is schematically represented in Figure 8, where
represents the topological effects constraint and Z the latent variables.

The model effectively encodes the structure, node, and edge contents of a graph into a compact
representation-embedding. The embedding is moderated by the topological effects (¢). The embed-
ding is then submitted to a decoder which is trained to reconstruct the input graph structure. The
intermediate latent representation is internally forced to match a learnable probability distribution
through an adversarial training (discriminator) module. We then jointly optimize the graph encoder
learning and adversarial regularization to obtain the best graph embedding in a lower dimensionality
compact and continuous feature space (from a latent space with, for example, 64 dimensions to a
two-dimensional space in this article because the illustration has two features per node/state), while
preserving the information about the graph structure, topological constraint, and node and edge features
into the embeddings (Pan et al. 2018; Zhang et al. 2017)."" T use EdgeGATConyv as the base layer in the
encoding, decoding, and discriminating phases, which includes both node and edge features in the
computation as well as attention mechanisms. The Encoder, Decoder, and Discriminator qua neural
networks are constituted of large numbers (100) of these layers stacked together, with thousands of
learnable parameters. Formally, the neural networks are instantiated through so-called weights, which

10See Supplementary Material for a short mathematical summary of this architecture, (Pan et al. 2018).
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Figure 9. KDE of latent space PCA components in year 2010.

is what is learned in the training (see Supplementary Material for mathematical details) and then saved.
Once the latent space is learned, I use PCA to reduce the high-dimensionality space into two principal
components. To preserve the structure of the original data, the model learns separately the latent space
features for each graph (year). We are working not with whole graphs (as in the classification model of
the previous section) but rather with data within each graph as the task is to reconstruct each graph data
separately to generate latent variables that are faithful for every panel of the data. I, thus, split the nodes
and corresponding edges into training, validation, and testing subsets in each graph.

Figure 9 displays the KDE (Kernel Density Estimation) for year 2010 (as an illustration) for each for
the two possible values (0,1) of the MID variable disp for training and testing data. The overall shapes for
both latent space features are not that different going from training to testing data for both values (0,1)
of the MIDs. The variability in the latent factors between the two values (0,1) of the MIDs suggests a
possible statistical correlation between MID and the latent factors. This will be probed using a Bayesian
model as done in previous sections.

As a second illustration, consider the question of nodes (states) memberships in the topological
classes (clusters), and how it changes over the years. We can plot the time variation of the cohesion of all
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Figure 10. Cluster cohesion over time.

clusters, where cohesion indicates how close the nodes within the same cluster are to each other. We can
then compare its trending behavior, for example, to the variation of MIDs, as shown in Figure 10, which
displays spline-smoothed plots of both the cohesion measures of the clusters and the MIDs measure
over time. The plot provides a visualization of the dynamic relationship between international system
cohesion and military disputes. It suggests that while global disputes increased with rising cohesion
during the mid-20th century, the relationship became more complex towards the end of the century,
with some clusters maintaining or increasing cohesion even as overall disputes declined. During the
1946-1965 period, three clusters (0,2,3) show increasing cohesion, which coincides with an increase
in the number of MIDs. Cluster 1 remains almost constant until about 1980. This suggests that as the
international system became more cohesive, possibly due to alliances or blocs at the beginning of the
Cold War and as many formerly colonized states achieved independence and leaned toward either side
of the Cold War. It is also the era when conflicts intensified such as in the Korean war, Vietnam war,
and a number of wars of independence. From 1985 to 2010, after the peak of the Cold War, the number
of MIDs declines, and we observe varied cohesion trends across clusters. Three clusters (1,2,3) display
a maximum and then decline between 2000 and 2010, whereas Cluster 0 reaches a local minimum
and then bounces back upward. The decline in MIDs matches the behavior of clusters (1,2,3). This
corresponds to the end of the Cold War, followed with a decrease in large-scale international disputes.
The differing cohesion trends seem to indicate different regional dynamics or new forms of international
cooperation, or conflict.

Figure 11 displays the cluster membership probabilities for six states around the world. The USA and
RUS (Russia) plots show relatively stable membership probabilities across different clusters, indicating
their central roles in global systems that persist over time. For instance, after 1960 the USA remains con-
sistently likely to belong to all four clusters, with some variation. Similarly, Russia has high membership
probabilities in Clusters 0 and 2, with a noticeable transition period in the early 1990s, likely reflecting
the post-Soviet domestic and geopolitical changes. The China plot displays a more dynamic shift
between clusters, especially after the early 1970s, which correspond to the period around the People’s
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Figure 11. Probabilities of state membership in four clusters.

Republic of China became more active internationally during the “rapprochement” with the US. The
UK, NIG (Nigeria), and BRA (Brazil) plots exhibit more fluctuation in cluster membership, indicating
that their roles or the nature of their international interactions are more variable or influenced by
regional and global changes. Nigeria and Brazil, for example, have periods where they shift significantly
rapidly between different clusters, likely reflecting changes in their respective regional influences and
external relations.

Building on these results, I now consider a Bayesian model that includes all empirical variables, the
expanded SAR variables, the topological effects, and the latent variables. The latter are construed as
moderators much like the topological effects (with a similar specification in the model equation). The
modified model specification of the augmented SAR model Equation (5.1) is as follows:

Nyars ny ny
Yi= Y Xy (ZH,-kék) + Y Hi(x, topological moderation effects
j=1 k=1 k=1

Myars ny, ny
wi= Y Xj (ZL,-kOk) + > L&, latent-space moderation effects

1\t k=1
ni=vitwi+(1+pW+ W2+ ' W2 1 p'W?) . X;. 8
yi ~ ZerolnflatedBinomial (1), Nobs, sigmoid(7;) ), (5.1)

where & are the coefficients for latent-space effects; @ coefficients for moderation terms; L is the matrix
of moderators/latent factors (dimension: N x n;), with the rest of the quantities defined as before in
Equation (4.1). A Bayesian estimation leads to the results in Table 3.

I compare these results and all other estimations using the ELPD measure (Vehtari et al. 2017). The
all-inclusive model and the model including the sociomatrix and topological effects are very close to
one another with a 0.3% difference in the elpd_loo measure. This is not surprising as we see on Table 3
that the mean for the latent variables and moderators are very small and the HDI intervals both include
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Table 3. All encompassing model.

Variables mean sd hdi_3% hdi_97%
Empirical variables  majpower 1.077  0.191 0.721 1.439
allies -2.808  0.204 -3.179 —-2.413
contgkf 0.866 0.163 0.553 1.161
smldep —7.297 0.247 -7.762 -6.837
Icaprat -3.072 0.341 -3.707 —2.450
Igmidist -7.138 0.304 -7.723 —6.585
smldmat -4.001  0.220 —-4.410 -3.593
Topological effects H_1_1 -5.125 0.359 —-5.785 —4.447
H_2_1 —-10.269 0.586 -11.319 -9.156
Onn1 2.389 0.185 2.051 2.740
S 5.013  0.347 4.350 5.641
Latent variables LO —0.006 0.985 —1.848 1.855
L1 0.011 1.017 -1.790 2.023
6 0.011 1.004 -1.931 1.851
0, —-0.005 0.989 -1.831 1.853
Sociomatrix P 0.080 0.009 0.063 0.097
Zero-inflation P 0.085 0.008 0.071 0.099

zero value.'" However, they both perform much better than the bare and SAR models. Continuing the
task of probing how to make use of the information about topological heterogeneities, I introduce next
another GNN model used to optimally reduce the dimensionality of data.

5.4. GNN-Based Dimensionality Reduction of Data

This section proposes an approach that radically reduces the dimensionality of data, while still preserv-
ing essential properties of the original data. It is based on a GNN classification model with topological
factors taken as graph labels for graphs and MIDs values as node labels.

The entry point to building this approach is an off-shoot to the question of explaining the decisions
underpinning the learning process in GNN models, a very active area of research (Agarwal et al.
2023; Zhou et al. 2020). SubGraphX model addresses this issue by constructing an algorithm that finds
subgraphs of a graph that are most influential in a model’s predictions using a Monte Carlo Tree Search
(MCTS) based strategy; that is, finding subgraphs, when removed, most significantly affect the output
of the GNN model. This clearly makes it a good candidate for dimensionality reduction of complex data.
This idea is formalized in Equation (5.2).

Score(S) = %};L(y,f(G\S;H)). (5.2)

S represents a candidate subgraph, G\S denotes the graph G excluding the subgraph S, y is the ground
truth label (which in the illustration corresponds to MID values, (0,1)), f denotes the GNN with
parameters 6, and L is a loss function measuring the discrepancy between the GNN output and the

This suggests that the Bayesian approach is not best suited for putting to work the unearthed latent space variables. They
do indeed provide other kinds of insights on the properties of the data as discussed earlier in the section.
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Figure 12. Most important subgraphs for four years.

ground truth. The importance of each subgraph is evaluated using Shapley values as scores.'” Subgraphs
with higher scores are considered more influential on the output of the GNN, and, therefore, good
explainers of the behavior of the model performance.

To illustrate, Figure 12 displays four such subgraphs obtained for different years."” The basic layer-
architecture of the GNN model that I use to generate the subgraphs is similar to the one used in the
previous section. The saved trained model is deployed to find the most important subgraphs for each
year. I then convert these sugraphs into a longitudinal panel data the size of which will be much smaller
(1118 instead of 240,273 for the original data). The generated data is then used to estimate the basic
Bayesian model defined before. The results are displayed in Table 4.

2wikipedia contributors 2024.

BThe weights on the edges of the subgraphs indicate the number of shared international organizations. The color of the
nodes (countries shown with abbreviated names) indicate the number of disputes that the node is involved in divided by the
total number of disputes in the set of dyads at a specific year. The colorbar on the right side of each subplot is the corresponding
scale for this.


https://doi.org/10.1017/pan.2025.10019

https://doi.org/10.1017/pan.2025.10019 Published online by Cambridge University Press

Table 4. Bayesian estimates with SubGraphX-generated data.

Political Analysis

19

Variables mean sd hdi_3% hdi_97%
Generated variables  majpower 9.362 5900  -20.390 0.020
allies -8.082 1.931 -11.801 -5.053
contgkf -2.620 4.111 —8.849 6.192
smldep -5.861 2.617 —10.642 -1.508
Icaprat 1.431 3.512 -2.812 7.376
Igmidist -4.151 2.085 -8.110 -0.976
smldmat —15.948 4.614 —24.708 -7.707
Zero-inflation P 0.205  0.060 0.098 0.320

ROC Curve using Empirical Data as out-of Sample Data
Accuracy = 0.994

1.0 4

0.8

0.6 1

0.4 4

True Positive Rate

0.2 4

0.0 - —e— AUC =0.75

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 13. ROC curve using empirical data as testing data.

To test the robustness of this model, I run an out-of-sample predictive check using the original
empirical data (minus the data for those dyads that are included in the SubgraphX-generated data
to avoid overfitting). I use the ROC AUC curve to display the results shown in Figure 13. The AUC
value indicates a 75% chance that the model will be able to distinguish between a random positive
and a random negative example. The accuracy level is 99.4%. Given that the SubgraphX-generated
longitudinal panel data has just 1118 obervations as compared to 242,000 observations of testing data,
the predictive power is quite impressive."*

“These results can be improved by running the classification code for a much longer number of epochs and increasing the
Shapley threshold value of the SubGraphX code from 100 to much higher values—see the docstring in the corresponding code
file for more details.


https://doi.org/10.1017/pan.2025.10019

https://doi.org/10.1017/pan.2025.10019 Published online by Cambridge University Press

20 Badredine Arfi

6. Conclusion

This article introduces a pioneering approach to analyzing longitudinal panel data by integrating TDA,
generative Al, and GNNS, offering a glimpse into the vast potential of these methods in social sciences.
The framework presented here, while illustrated with a subset of the MIDs data, is highly transportable
and ready for application to the full dataset, including a much broader range of variables.

The versatility of this approach extends beyond the binary nature of the dependent variable used
here. The models can be easily adapted for multi-categorical or continuous dependent variables, making
the framework applicable to various types of longitudinal data. The transformation of dyadic data into
graphs, while advantageous, is not essential; non-dyadic data can also be effectively analyzed using
GNNE.

While this article focused on numerical, structured data, the GNN models are equally capable of
handling heterogeneous data types, including text, images, audios, videos, and more. This adaptability
is supported by Python packages like PyG and DGL, which seamlessly integrate different data types
within what is known as heterogeneous graphs.

A key advantage of GNNs and deep learning models is their ability to be trained, saved, and deployed
for predictions on new data as well as used to generate synthetic data which very tightly resembles the
original data; all of which can be done by constructing an automation code of the entire analysis pipeline.
This makes it possible to develop user-friendly applications for broader use while maintaining access to
the underlying code for customization and extension.

TDA was used to examine the effects of topological defects in the illustrative MIDs data by converting
TDA-extracted topological information into numerical data through persistence images, which in turn
were transformed via functional principal analysis (FPCA). However, persistence images can also be
directly used in generative Al and GNN models qua images (this is currently a work of mine in progress)
without the need for FPCA. The GNN models proposed here can straightforwardly analyze data
composed of numerical structured data, persistence images, and other types of data such as symbolic
pictures and mimics.

The methods outlined here are not limited to graph and node classifications; they also extend to edge
(link) classification and prediction, which are crucial for developing recommendation systems.

More generally, the new methodology, integrating TDA, generative Al, and GNNs, can be applied
to various research-areas of political science to build policy recommendations. Below are some, if very
brief, suggestions on how one might leverage this approach.

. Voter Behavior Analysis: GNNs can be used to analyze voter behavior by integrating data from
various sources, including social media, polling data, and historical voting records. TDA can
identify underlying topological structures in voter networks, uncovering deep-seated political
affiliations and trends. This approach could inform targeted campaign strategies or identify
emerging voter concerns.

. Partisan Dynamics: The methodology can examine the evolving structure of partisan alliances in
Congress, identifying key nodes (influential legislators) and edges (coalition patterns) that could
be targeted to foster bipartisan cooperation. Democrats, Republicans, and Independents can be
construed as types of nodes, and caucauses can be construed as different types of edges; all of
which with a a variety of features.

« Regime Stability Analysis: TDA and GNNs can be used to compare political regimes across
countries by analyzing longitudinal data on governance, economic indicators, and civil unrest.
This can help identify structural (topological) factors that shape regime topological cohesion and
stability (or instability), providing insights for understanding the logic of interventions in fragile
states.

. Social Movements: The topological structures of social movements across different countries can be
analyzed using TDA, combined with GNNs to model how these movements evolve and interact
with state structures. Social movements and states will be construed as different types of nodes
with a variety of idiosyncratic features. Social unrest or promoting democratic engagement can
then be analyzed via TDA, and generative Al can be deployed to predict new outcomes.
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Figure 14. Flowchart steps.

. Conflict Prediction and Prevention: GNNs can model the network of international alliances and
conflicts by integrating historical data, economic indicators, and diplomatic ties. TDA can identify
latent topological features that signal potential conflicts, allowing policymakers to model forward-
looking strategies through generative AI models.

. Diplomatic Strategy: The methodology can develop sophisticated diplomatic strategies by analyzing
the relational dynamics between states in different regional contexts. Different types of nodes
such as states, regional organizations, informal partnerships, alliances, and economic actors with
a variety of interactions would make it possible, using generative Al, to model the impact of
diplomatic actions on bilateral relations, alliance formations, and regional stability, etc.

The ideas proposed in this article are just the tip of a huge iceberg. TDA and generative-AI GNN
models open new avenues of research not charted before in social sciences. Going beyond political
science, much has been done with TDA and GNNs. However, very few have considered the framework
suggested in this article. Having said this, the methodological framework has broad applications across
diverse scientific domains. In sociology, TDA could capture persistent patterns in social stratification
networks, GNNs could classify community structures, and generative AI could model social mobility
pathways. In neuroscience, TDA could identify topological features in brain connectivity patterns,
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while GNNs could classify different cognitive states, and generative Al could infer missing neural
connections. In financial markets, TDA could detect market regime changes through topological shifts
in asset correlations, GNNs could classify trading patterns, and generative Al could help predict systemic
risk propagation. In epidemiology, TDA could uncover hidden structures in disease transmission net-
works, GNNs could classify outbreak patterns, and generative Al could generate possible transmission
scenarios. In climate science, TDA could identify persistent topological features in climate networks,
GNNs could classify weather patterns, and generative Al could help fill gaps in spatial-temporal data.
The framework’s unique combination of topology-aware feature extraction, graph-based learning, and
generative modeling makes it particularly valuable for complex systems, where both structural patterns
and their evolution need to be understood and predicted.
Figure 14 details all steps undertaken in this article to make its case.
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