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1. Introduction. In [2] a condition, originally due to Olagunju, was given for the spectra of
certain compact operators to be on the real axis of the complex plane. Here, by using conformal
mappings, this result is extended to more general curves. The problem divides naturally into
two cases depending on whether or not the curve under consideration passes through the origin.
Discussion is confined to the prototype curves Co and Ct. The case of Co, the unit circle of
centre the origin, is considered in § 3; this problem is a simple one as the spectrum is a finite
set. In § 4 results are given for Cu the unit circle of centre the point 1, and some results on
ideals of compact operators, given in § 2, are needed. No attempt has been made to state
results in complete generality (see [2]); this paper is kept within the framework of Hilbert
space, and particularly simple conditions may be given if the operators are normal.

This work was undertaken while the author held an 1851 Overseas Scholarship. He wishes
to thank Dr F. Smithies for suggesting the problem and for his advice and encouragement.

2. Preliminary results. If H is a Hilbert space, let 3S{_H) be the algebra of bounded linear
operators in H. If Te @(H), write T* for the Hilbert adjoint of T. <&(H) will be the ideal of
compact operators in H. Let Te ^(H) and denote by ao(T) = (Xj) the non-zero eigenvalues
of T repeated according to algebraic multiplicity. T*T is a positive operator in # ( # ) and
therefore possesses a unique square root (7*7)* which is also in & (#). Write <j0 ((r*r)*) = (/ij).

If p ^ 1, ^P{H) will denote the class of operators Te<i£(H) for which £ $ < oo. Results

of [1, Vol. II, Sections X. 9 and X. 10] show that, for each p, ^P(H) is a two-sided ideal of
SS(H), and that

for Te'S^H). # \ is the trace class and ^2 the Hilbert-Schmidt class of operators in H.
If T e # ! (H) and (<t>j) is a complete orthonormal system in H, the trace of T is defined by

This series converges and is independent of the system ($y) [5, p. 353, Theorem 1; 3, p. 37,
Lemma 1]. If Te %P(H) for some p ^ 1, it follows from [4, Theorem 3] that T" e # ! (H) for
integral n ^ p; hence tr {Tn} exists for n ^ p and is equal to £ A".

ifTe^(H) and A is an isolated point of a(T), let />(A;7') denote the spectral projection
associated with X. We have the formula

^ = -^-\(zI-T)-idz,
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where y is a circle of centre X containing no other points of o{T). If X is non-zero, P(X; T) will
have a finite dimensional range [1, Vol. I, Chap. VII].

Our basic result comes from [2]. A polynomial p will be called a complex polynomial if
its coefficients are complex numbers; similarly for a real polynomial q. R will denote the real
axis of the complex plane and R+ the non-negative real axis. If n is a strictly positive integer,
we shall denote the hypothesis

" tr {T"(q(T)2} is real and non-negative for all real polynomials q "

by the symbol Q(n, T).

THEOREM 2.1. If T is a linear operator in a finite dimensional linear space, then

(i) a(T) c R if and only if Q{n, T) holds for some even n;

(ii) a(T) C R+ if and only if Q(n, T) holds for some odd n.

Proof. This follows immediately from Theorems 3.1 and 4.2 of [2], on observing that any
complex polynomial p can be written

p = q+ir,
where q and r are real polynomials.

Remark. Provided that T satisfies certain conditions, this result may be given in the
infinite dimensional case (see [2, Theorem 4.3]).

3. Circles with centre the origin. From now on we shall take H to be infinite dimensional;
the finite dimensional cases are straightforward. If Te # ( / / ) and <70(T) c Q>> °oCD is a finite
set and we write (A1; ..., Xk) for the distinct members of ao{T). Then zero is an isolated point
of a(T) and we can form the spectral projection P(0,T). The residue theorem shows that

I=P(0;T) +

and the projection

P = I-P(O;T) (1)

is of finite rank. A rotation will ensure that 1 $ <r(T); then write

and denote by F o the arc of Co in the lower half-plane.

THEOREM 3.1. IfTe <e{H) and 1 £ <J(T), then

(i) (TQ(T) C C O if and only if Q(n, PS) holds for some even n;

(ii) GO(T) c F o if and only if Q(n, PS) holds for some odd n.

Proof. If a(T) is a finite set, the projection P defined by (1) exists and is of finite rank.
The one-one transformation

71 _ V \ - 1
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maps C0) r 0 in the z-plane onto R, R* in the w-plane (respectively). We have

a(T) = (^)u(O),

*(S)
and

by the spectral mapping theorem [1, Vol. I, Chap. VII]. Hence

a(PS) =

and the operator PS is of finite rank; hence its trace exists. Observing that <ro(T) c Co, Fo

(resp.) if and only if a(PS) c R, R+ (resp.), we complete the proof by applying Theorem 2.1
to the operator PS.

Remark. The projection P may be calculated from the formula

where y is a sufficiently small circle with centre the origin.
For the case of a compact normal operator we shall need the following lemmas.

LEMMA 3.2. If(tu ..., tn) is a set of non-zero real numbers such that

th = ». (2)
7 = 1

and £ t) = n, (3)
;=i

then tj= 1 (1 g y ^ n ) .

Proof. (3) may be regarded as being the equation of a sphere of centre zero and radius
•Jn in n dimensional Euclidean space. Then (2) is the equation of the tangent plane at the point
(1, 1, ..., 1) on the sphere and this point of contact is unique.

LEMMA 3.3. If(tj)f=l is a set of non-negative real numbers and if

where p^O, then only a finite number of the t/s are non-zero and these are all equal to one.

Proof. If, for any j , tj> 1, by choice of k we can make

which contradicts the hypothesis. Hence tj ^ 1 for eachy. Now
00 CO
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i.e.

£t/l-0) = 0, (4)
1

and the individual terms on the left side of (4) are non-negative; hence they must all be zero
and tj = 0 or 1 for each / It follows that p is an integer and that p of the t/s are one and the
rest zero.

THEOREM 3.4. If T is a compact normal operator in H, the following conditions are each
necessary and sufficient for (T0(T) c Co:

(i) the non-zero eigenvalues ofT, repeated according to multiplicity, are n in number, and

t r{rT} = tr{(r*r)2}=n;
(ii) tr{r*T} exists, and

tT{(T*T)k}=p (k = 1 , 2 , . . . ) ,

where p^ 0.

Proof. In both cases, the necessity of the condition is obvious. To prove the sufficiency,
we note that, since tr {T*T} exists,

} £ ,
j

and the results follow from Lemmas 3.2 and 3.3 with tj = \Xj \2.
As the next theorem shows, these operators have a simple structure.

THEOREM 3.5. If T is a compact normal operator in H, then aQ (T) c Co if and only if there
is a finite dimensional subspace M of H such that M and its orthogonal complement M1 are
invariant under T, T restricted to M is unitary and T restricted to ML is zero.

Proof. If ao(T) = Co, then ao(T) = (A;)?, and

T = £ XJ4>J ® $j,

using the notation of [3], where (<̂ y)" is an orthonormal system. Let the subspace spanned by
j)"= 1 be M. Then M is invariant under T and the restriction of T to M is unitary. If

hence T\\/ = 0, and T restricted to M1 is the zero operator.
The converse is obvious; hence the proof is complete.

4. Circles passing through the origin. The problem of a circle of this type may be reduced
to the case of Ct by a suitable rotation and magnification. Let us denote by I \ the arc of Cj in
the lower half-plane and write
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THEOREM 4.1. If"T'e%V{H)for somep ^ 1 and2$o(T),then

(i) a(T) C CX if and only if Q(n, S) holds for some even n^p;

(ii) <r(T) c r t if and only if Q(n, S) holds for some odd n*zp.

Proof. The one-one transformation

w=f(z) = iz(2-zy1

maps Cu r \ in the z-plane onto R, R+ in the w-plane, respectively. If aQ(T) = (A,), the spec-
tral mapping theorem implies that co(S) = (/(A)); hence a(T) c C1,F1 if and only if
a(S) <= R, R+ respectively.

Now Setf^H); thus tr {5"} exists for integral n^p and the theorem is proved by
applying the infinite dimensional version of Theorem 2.1 to the operator S.

If 2 6 a(T) let P(2;T) be the associated spectral projection and write o2(T) for a(T) with
the eigenvalues equal to 2 omitted. If

Q = I-P(2;T),

we have <r(QT) = a2(T), and QTe<%p(H). The result for this case is obtained by putting
S =f(QT) in Theorem 4.1.

Again, if T is a compact normal operator, we get a simple condition.

THEOREM 4.2. IfT is a compact normal operator in H, a(X) c Q if end only if

Proof. Let GQ(T) = (Ay); then there is an orthonormal system ($y) in H such that

and

Thus the hypothesis is equivalent to

XJXJ=ZJ+XJ 0 = 1 , 2 , . . . ) ,

i.e.

\Xj-l\ = l 0 = 1,2, •--)•
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