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Abstract

The ‘“‘Hartree hybrid method” has recently been employed in one-dimen-
sional non-linear aortic blood-flow models, and the results obtained appear
to indicate that shock-waves could only form in distances which exceed
physiologically meaningful values. However, when the same method is
applied with greater numerical accuracy to these models, the existence of a
shock-wave in the vicinity of the heart is predicted. This appears to be con-
trary to present belief.

In the past two decades, one-dimensional non-linear models of arterial blood flow
have received much attention. These models predict a system of non-linear hyper-
bolic equations for the velocity and pressure of the blood in the aorta, which ar¢
well suited to solution by the method of characteristics. They were originally
solved by Lambert [3] using the natural grid of characteristics, but the clumsiness
of this method has since caused it to fall into disuse. Subsequent models [1, 2, 5, 6, 7]
have featured the solution of the one-dimensional blood-flow equations by an
“hybrid method” apparently due to Hartree. The Hartree hybrid method, or
method of specified time intervals [4]), combines the features of the method of
characteristics with those of conventional finite-difference techniques, for, although
the original partial differential equations are still required to be reduced to normal
form, interpolative procedures are used to ensure that the solution is presented only
at regularly spaced lattice-points, as it would be if a straight finite-difference
solution had been attempted.
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When the Hartree scheme is applied to problems in which the dependent variables
are known to be continuous functions, the numerical results obtained show a strong
artificial diffusion whose severity depends on the grid sizes Ax and At. As these grid
sizes are reduced, convergence to the exact solution is observed. However, when
the method is applied to problems in which the solution is known to possess dis-
continuities, such as gas-dynamic problems with embedded shocks, the method will
again produce a numerical damping effect, but when the grid sizes are reduced,
convergence to the exact answer is not observed. Instead, in the approximate
vicinity of the shock, the Hartree scheme inserts large finite gradients in the
dependent variables. It can be demonstrated that these gradients may be made
arbitrarily large by choosing sufficiently small Ax and At, although, in general, the
height of the jump is not the same as its correct value. On the basis of these observa-
tions, we make the following conjecture for the limit Ax, Ar—0; the Hartree
hybrid method is incapable of correctly computing irreversible discontinuities
without the explicit introduction of “Rankine~Hugoniot” jump conditions. How-
ever, in the approximate vicinity of the irreversible discontinuity, the Hartree
method will place a reversible one. The presence of the reversible discontinuity in
the numerical results is an indication that the correct solution to the original partial
differential equations contains a shock. We now consider the possibility of shock-
waves in one-dimensional non-linear models of arterial blood flow as revealed by
the Hartree method.

The major success of non-linear blood-flow models is their apparent ability to
predict the observed steepening of the pulse from the heart as it proceeds down the
aorta. Anliker et al. [1] have claimed that, although the blood-flow equations
predict this steepening, the original signal from the heart is neither sufficiently
steep nor strong to produce a shock-wave within the physical dimensions of the
body. We shall now show that results qualitatively similar to those of Anliker et al.
[1] may be obtained when large grid sizes Ax and At are chosen, but by simply
refining the numerical mesh, the existence is made evident of a pulse close to the
heart for which the pressure and velocity gradients at the beginning of the cardiac
cycle are greatly increased. As there is every indication that these gradients may be
made arbitrarily large by further reducing the grid spacing, we are justified in
assuming that the blood-flow equations predict the formation of a shock-wave
close to the heart.

In the one-dimensional model, the flow of blood in the aorta is described by the
continuity and momentum equations
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subject to a constitutive relation of the form
A = A(p,x), )]

where u(x, t) and p(x, ) are the velocity and pressure of the blood inside the vessel,
p is the density of blood and A is the cross-sectional area of the aorta. The function
¥(p, x) is designed to simulate the outflow of blood from the aorta into discrete
side-branches, and f(u, 4) is chosen to model the effect of frictional forces. We
choose to retain the equations in their dimensional form, to facilitate comparison
with the results of other authors.

The characteristics of equations (1)—-(3) are

dx
—_— =yt
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along which the compatibility conditions
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apply, where the wave-speed ¢(p, x) is defined as

A 3
olp:) = [p(aA/a'p)J ‘ ©

The plus sign in equation (4) applies to the forward running RQ characteristic in
Fig. 1, and the minus sign to the backward running SQ characteristic. In Fig. 1, it
is assumed that the values of ¥ and p are known at the points 4, C and B, and the
aim is to find their values at the point Q, thereby marching the solution forward
to the next time step. It is first necessary to compute the values of » and p at the
points R and S, and for the Hartree method of first-order accuracy, this may be
achieved by using equations (4) and linear interpolation. To first order, the
following formulae for ¥ and p at the points R and S are valid;

up = ul—(u+c), 0] +uy O(utc),
Pr=pll—(u+c) 0] +P4 B(u+ ).,

@)
ug = yfl +(u—c), 01— ug 8(u— ),

Pbs= pc[l +(u_c)c 0] —Pgp B(u_c)c’

where 0 = At/Ax.
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Fig. 1. Rectangular lattice and characteristics in the Hartree scheme.

These results are derived in detail elsewhere [6,7]. Equations (5) must now be
integrated along the RQ and SQ characteristics and solved for u and p at the point
Q. This yields

ug = Hup+ug+(pr—prg)pcl+fAt,

94 ®
Po = ¥pr+ps+(ug—ug) pc.l—pc, [g (a’)p +% ‘/’} . At.

The algorithm described by equations (7) and (8) constitutes the first-order Hartree
hybrid scheme, and is stable provided that the classical Courant-Friedrichs-Lewy
condition is satisfied.

The functions ¢(p, x), A(p, x) and J(p, x) used in the present problem were all
taken from reference [1], and apparently represent approximations to physiological
data obtained from experiments performed on dogs. The Poiseuille formula for the
viscous force on steady flow in a pipe [1] was chosen as the expression for f(u, 4).
At the proximal boundary, a periodic volume flow rate similar to that used by
Anliker ez al. [1] was specified, whilst the distal boundary condition was satisfied
by utilizing the concept of peripheral resistance [1]. The length of the aorta was
chosen to be 100 cm, and the quiescent initial conditions p = 25 mm Hg and
u = 0cm/sec throughout the entire aorta were used to start the computation,
which was then allowed to continue until a total of three cardiac cycles had been
completed. It is assumed here that the results obtained at the third cardiac cycle
may be seen as representative of the steady-state behaviour of the system, and,
indeed, there appears to be an approach with increasing number of cardiac cycles
to a limiting behaviour similar to that at the third cardiac cycle. In view of the
large amount of computing time required to run this problem with fine numerical
grid spacing, however, the computation was not continued for this case beyond
the third cycle. It is of some interest to speculate as to whether it is possible in
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general to begin with arbitrary initial conditions and to achieve a steady-state
situation by computing a large number of cardiac cycles, for if, as is suggested in
the present note, the equations of motion predict the existence of a shock-wave in
the aorta but the numerical solution technique does not adequately account for the
shock, then it is not clear that a steady-state situation will ever be reached with
large time. Alternatively, if a steady-state situation is achieved, as appears to be
the case in the present example, it is doubtful that this will reflect the true steady
state which presumably is predicted by the differential equations of motion.
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Fig. 2. Pressure—time profiles for the third cardiac cycle at the postions x = 0, 20, 50, 80, 100 cm

along the aorta as predicted by the one-dimensional blood flow model. The broken lines are the

graphs obtained with coarse grid spacing, the solid lines are those obtained with fine grid
spacing.
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Fig. 2 (cont.)

The results for two different values of grid spacing are shown in Figs 2 and 3, for
the third cardiac cycle, and for the five different positions x = 0, 20, 50, 80, 100 cm
along the aorta. The graphs obtained with the coarse grid spacing Ax = 2.0cm,
At = 0.001 sec (shown as broken lines in Figs. 2 and 3) are qualitatively similar to
results presented by Anliker et al. [1] and give the impression that, although wave-
steepening is evident, the possibility of shock formation is indeed remote. However,
the more accurate graphs, obtained with Ax = 0.25 cm, At = 0.000125 sec (shown
as solid lines) indicate the existence of greatly increased pressure and velocity
gradients at the beginning of the cardiac cycle, which, by virtue of the preceding
conjecture, may be taken as being indicative of the presence of a shock. The
difference between the the results obtained with the coarse and fine grid spacings is
greatest close to the heart, at x = 20 cm, but the graphs become more similar as
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one proceeds toward the distal boundary, at x = 100 cm. This would appear to be
due to the effects of numerical diffusion which become more significant the further
a signal from the heart propagates down the aorta. The existence of a shock has
been confirmed by independently calculating the physical characteristics of the
present problem and observing that these coalesce in the vicinity of the heart,
signifying shock formation. Details of this work will be presented in a future
publication of the author. As shocks are not actually observed in the aorta under
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Fig. 3. Velocity-time profiles for the third cardiac cycle at the positions x = 0, 20, 50, 80 100 cm
along the aorta as predicted by the one-dimensional blood flow model. The broken lines are the
graphs obtained with coarse grid spacing, the solid lines are those obtained with fine grid spacing.
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Fig. 3 (cont.)

normal circumstances, we must conclude that the original equations (1), (2) and (3),

together with the formulae for ¢,  and f used in this study, do not adequately
represent the situation existing in large arteries.

References

[1] M. Anliker, R. L. Rockwell and E. Ogden, “Nonlinear analysis of flow pulses and shock
waves in arteries”, Z. angew. Math. Phys. 22 (1971), 217 and 563.

[2] E. Jones, “A mathematical model for nonlinear analysis of flow pulses utilizing an integral
technique”, Z. angew. Math. Phys. 24 (1973), 565.

[3] J. W. Lambert, *“On the nonlinearities of fluid flow in nonrigid tubes™, J. Franklin Inst.
266 (1958), 83.

{4] M. Lister, “The numerical solution of hyperbolic differential equations by the method of
characteristics”, in Mathematics for digital computers (New York: Wiley, 1960).

[51 J. A. Rumberger and R. M. Nerem, “A method-of-characteristics calculation of coronary
blood flow™, J. Fluid Mech. 82 (1977), 429.

{6] V.L. Streeter, W. F. Keitzer and D. F. Bohr, “Pulsatile pressure and flow through disten-
sible vessels”, Circulation Res. 13 (1963), 3.

[7] V.L. Streeter, W. F. Keitzer and D. F. Bohr, “Energy dissipation in pulsatile flow through

distensible tapered vessels™, in Pulsatile blood flows (ed. E. O. Attinger) (New York:
McGraw-Hill, 1964).

Department of Applied Mathematics
University of Adelaide
Adelaide, South Australia 5000

https://doi.org/10.1017/50334270000001909 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000001909

