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Abstract

We present a method for solving a class of optimal control problems involving hyperbolic
partial differential equations. A numerical integration method for the solution of a gen-
eral linear second-order hyperbolic partial differential equation representing the type of
dynamics under consideration is given. The method, based on the piecewise bilinear finite
element approximation on a rectangular mesh, is explicit. The optimal control problem is
thus discretized and reduced to an ordinary optimization problem. Fast automatic differen-
tiation is applied to calculate the exact gradient of the discretized problem so that existing
optimization algorithms may be applied. Various types of constraints may be imposed on
the problem. A practical application arising from the process of gas absorption is solved
using the proposed method.

1. Introduction

Finding optimal controls for problems involving partial differential equations (PDEs)
has been the subject of a good proportion of the control literature for many years (see
[l]-[7], [9], [11], [12], [16], [17], [20], [22], [23], [25] and the relevant references cited
therein). However, unlike the case of optimal control problems involving ordinary
differential equations (see [10] and [19]), the majority of this work concentrates on the
theoretical aspects of the problem. Comparatively little work has been done to find
computational methods for solving such problems effectively (see [4], [5], [20], [26]
and the relevant references cited therein). This is mainly due to the computational
complexity of the problems.

The purpose of this paper is to present a computational method for solving a general
class of optimal control problems subject to a second order linear hyperbolic PDE.
Various types of constraints may also be imposed. We present the different aspects of
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[2] Computing optimal control with a hyperbolic PDE 267

the method as follows.
The dynamics of the problem under consideration are governed by a general second

order hyperbolic partial differential equation. A discretization method based on the
integration of the equation over a rectangular element and on the bilinear approxima-
tion of the control on that element is proposed. This yields a second order 2-point
implicit scheme (similar to the box or Crank-Nicholson scheme; cf., for example, [24,
Chapters 2 and 4]) along both the x and t directions. It turns out that the resulting
scheme is explicit and we show that the method is unconditionally stable, provided
the coefficients in the equation are positive. The discretization error is shown to be of
second order in both the independent variables.

The discretization turns the problem into a standard mathematical programming
problem, although the objective and constraint gradients have to be calculated in a
roundabout manner. This is usually done by first calculating the gradients of the
original (nondiscretized) problem, in the process yielding a continuous PDE for the
costates of the problem (which also arises in the application of a maximum principle).
For a numerical method, this costate equation is then discretized. Unless care is
taken to correctly match the costate discretization with the discretization of the state
equations, a small amount of error is introduced into the gradient values. This
error usually has a detrimental effect on the optimization process and results in poor
convergence.

To overcome the possibility of these numerical difficulties, we bypass the gradient
calculations of the original nondiscretized problem and calculate the gradients of the
discretized problem directly by fast automatic differentiation (FAD) (see [14] and the
relevant references cited therein). FAD has been applied successfully in a variety
of problems, including optimal control problems (see [13]). In the optimal control
applications, it has been shown to yield the discretized costate equation of a problem
directly without first deriving the continuous costate equation [13]. These are the
exact equations for the discretized problem (unlike those which can be obtained by
possibly carelessly discretizing the continuous version of the costate equation). They
yield exact gradient values and hence the convergence of the optimization process is
not impeded.

As an application example, we consider the problem of optimizing a gas absorption
process. Numerical results are presented.

2. Discretization of the system dynamics

Consider a linear hyperbolic equation of the form

^ ^ ^ f(x,t) in Q = (0, I)2 (2.1)^+a(x,t)^ + b(x,t)^
axdt dx dt
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with Darboux boundary conditions

z(x,0) = p(x), z(O,t) = q(t), (2.2)

where a(x, t), b(x, t), f(x, t), p(x) and q(t) are given functions. The unknown z and
all the known functions in the above are either scalar or vector-valued. This problem
has been studied extensively in the context of optimal control (cf., for example, [15],
[26] and the references cited therein). Despite its importance in chemical processes
and optimal control, the numerical solution of this problem, to the best of knowledge,
has not been investigated thoroughly.

We now discuss the discretization of (2.1) with the boundary conditions (2.2).
Let Q. be partitioned into rectangular elements with mesh node distributions {x, }'o
and {/7 }Q respectively on the x-axis and the f-axis. We let Ax, = xi+l — x: and
Atj = tj+l —tjfor/ = 0, 1, . . . , / — 1 and j = 0, 1, . . . , J - 1. Integrating (2.1) over
QLj = (AV,*/+I) x (tj, tj+i), we have

Lz(x,t)dQ= [ f(x,t)dQ. (2.3)

For any 0 < / < / and 0 < j < J, let <p,j(x, t) be the conventional piecewise bilinear
basis function associated with the node (x,, tj), and let

zh(x,t)=

where {z/} are approximations to the nodal values of z. We also let z, (t) = zh(x,, t)
and z'(x) = zh(x, tj). Obviously both z,(t) and zj(x) are piecewise linear on [0, 1].

Now, replacing z in (2.3) by zh we obtain the equation

/ LzhdQ= (-±L+a(x,t)-^ + b(x,t)^)dSl= I f(x,t)dQ
Jn,t JsiijXdxdt dx dt ) Jn.. ^ ^

for all / = 0, 1 , . . . , / — 1 and j = 0, 1, . . . , J — 1. By direct integration on QLj we
obtain

Because zh is piecewise bilinear for any fixed x or fixed t, both jf and ̂  are constant
on any line segment within an element parallel respectively to the x-axis and the /-axis.
Integrating the second term in (2.4) by parts, we have

/

' ;+ i / • •«•/•+! a 7 ,

https://doi.org/10.1017/S0334270000012510 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012510


[4] Computing optimal control with a hyperbolic PDE

,-(O(z;+i(O-z/(O)<"

A,-

j IJ _

269

-f«
z^ _ dzA

dt dt)
dt

+ (A! - A1) (zL, - z>),
(2.6)

where

a(x,t)dx, Ai{t) =

1 rv +

and A) = Aj(tk), k = j , j + I. Similarly we have

r + / + \)
dJ±dxdt= f + bJ(x)(zj+\x)-zj(x))dx

A'; I, (2.7)

where

— • 1 f'i+l f —
b\x) = — / b(x,t)dt, BJ(x)= / b\x)dx,

&tj Jtj J
—i 1 fXi+l

B=— Bj(x)dx
Ax, JXi

(2.8)

(2.9)

and B{ = Byte) , it = /, / + 1. Substituting (2.5), (2.6) and (2.8) into (2.4) we obtain

(l + C\ + £/) zitl - (l + Cj - Ff) z/+l - (l - Dj + Ej) z]+,

(2.10)

where

(2.11)
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ji.j denotes the integral on the right side of (2.4). From (2.10) we obtain

zitl = (l + C/ + £/)"' [(l +C{-Ff) z/+1 + (l - DJ + E{) z\_

[5]

+l

(2.12)

for all / = 0, 1, . . . , / — 1 and j = 0, 1 , . . . , / — 1. This, together with the boundary
conditions in (2.2), yields an explicit scheme for the solution of (2.1). In the case that
a and b are constant on Q, the coefficients in (2.11) reduce to

Ei =
Ax,

We now discuss the stability of the method. As mentioned before, the method is
equivalent to applying a 2-point implicit scheme to (2.1) along both the x and t direc-
tions (see pages 29 and 59 of [24]). We show only that the method is unconditionally
stable along the t direction. The stability along x direction then follows because of
the symmetry of the problem and the method.

For any j — 0, 1, ... , J — 1, (2.11) can be rewritten as

= R'zJ (2.13)

where zJ = (z{,zJ
2, ... , z\Y, g' = (g{, g'2, • • • , gJ/V is a known vector consisting

of the terms G,,y in (2.11) and some boundary values, and Pj and RJ are two I x I
lower triangular matrices in the forms

P> =

(p\\
Pl\
0

0
P22

P32

0 . . .
0 . . .

0
0
0

0
0
0

0 \
0
0

and

RJ =

0
0

(ru
ri\

0

0
0

0

r22

''32

0 ...
0 ...

0 ...
0 ...

''33 • • •

Pl-\l-2

0

0
0
0

Pl-U-\

Pn-i

0
0
0

0
Pll)

0 \
0
0

0 0 0
\0 0 0

r,_,,_2 r,_,,_, 0
0 /„_, ;-„/
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The nonzero entries in P> and Rj are

Pii = 1 + C/_, + Ej_t, /?,,_, = - ( 1 + C/_, — /=/!,), (2.14)

rl7 = 1 - D/L, + £/_„ r l 7 _ , = - ( 1 - D/_, - F?_i). (2.15)

From (2.13) we obtain

zj+l = Kjzj+ (PJ)~Xgj (2.16)

with Kj = {P'Y RJ• Now the stability of (2.16) (Von Neumann condition) requires
that all the eigenvalues of K> and (Pj) lie on the interval [—1, 1]. We first show
the former. Because both Pj and RJ are lower triangular matrices, Kj is also a lower
triangular matrix, and so we need only to show that \ku | < 1 for all / = 1, 2, . . . , / ,
where £,-,• denotes the diagonal element of Kj in row /. From the definitions of Pj and
R' and the relationships (2.14) and (2.15) we see that

_ r^ _ 1 - O/_, + £/_,

Pa 1 + C/_, + £/_,

So, if we can show that both D/_, and C/_, are nonnegative, then \ku\ < 1. In fact,
since a(x, t) is positive, from (2.7) we know that Aj{t) is strictly increasing. Thus,
from (2.11) we have that CJ*l and D/_, are positive, and so |&,,| < 1. Similarly,
it is easy to show that all the eigenvalues of \P') lie in (—1, 1) because pit > 1
for all / = 1 ,2 , . . . , / . Therefore we have shown that the scheme is unconditionally
stable along the t direction. The stability along the x direction follows similarly
because both the problem and the method are symmetric with respect to t and x. We
comment that even if £>/_, and C/_, are negative, from the above equality we see that
kn ->• 1 as Atj ->• 0, because both D/_, and C/l, are of order Atj. So, in this case,
the method may still be stable when AXJ and Atj are sufficiently small. We now
discuss the accuracy of the method. Recall that z = z(x, t) denotes the solution of the
undiscretized problem defined by (2.1) and (2.2). Let

Z = V z(x,,t;)d>j ,(x,t).

that is, Z is the interpolant of z in the space spanned by the piecewise bilinear basis
functions {</>,.;}. Because Z is bilinear on each Qtj, from the deduction of (2.10) we
see that •

J LZ{x, t) dQ = (l+ Cj + £ / ) z(jt,-+1, 0+i) - ( l + C\ -
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- (l - Dj + Ej) z(xi+utj) + (l - Dj - F/) Z(X,, 0).

Subtracting this equation from (2.10) we obtain

(l + Cj + Ej) eJH - (\ + Cj - Ff) ej+l - (l - Dj + Ej) ej+l

+ (l - Dj - F/)ej = dj - f LZ(x, t)dSl, (2.17)

where ej = zj — z(x,, tj). Notice that

d\z - Z)/"" r
Jlj J.Xi

dxdt
dxdt = 0.

The last term in (2.17) becomes

- 1 LZ(x,t)dQ L L(z- Z(x,t))dQ

dx dt

< (a + b)dQ sup ( - z)
) •

Let h be the mesh parameter such that Ax,, Atj < h for all / and j . Because Z is
the bilinear interpolant of z, using the standard argument of interpolation in Sobolev
spaces (cf., for example, [8], §4.4) we have

sup (
.DeQ/j \

-Z) d(z - z)
< Mh,

where M is a generic positive constant depending on the second order seminorm of
z (which is bounded on Q because we have assumed that the second order partial
derivatives of z are continuous on £2). Combining the last two inequalities and noting
that a and b are continuous on Q we obtain

(2.18)Gij - / LZ(x,t)dQ

For any positive integer m, we let || • ||oo denote the sup norm on W1 defined by

IMIoo = sup |v/l Vv = (u,, V2,... , vj e Km. (2.19)
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Also, for any m x m matrix K, we let

Halloo
II TS II " " ^ ^

H/q = sup ———.
veR™ IMIoo

Obviously || • || is a norm on the space of all linear transformations from Km to R"'.
For any j , since all the eigenvalues of K' and (Pj)~x are in (—1, 1), we have, for all
j=O,l,...,J-\,

||/H| < 1, IK/^r'll < 1- (2.20)

Rewrite (2.17) in a matrix form as (2.16). Taking the sup norm on both sides and
using (2.18) we have

where Kj and PJ are the same as those in (2.16) and

e> = (e[, 4,... , ej,), gj = (Ax,, Ax2,... , Ax,)Atj.

Repeatedly using the above estimate and (2.20) we obtain

\\eJ+l Hoc < IIKjII ( IIKj-11| H^ - 1 I L + Mh KPJ-'y1 II11^-' lloo)

Ik"1 l

f ] ||AT'|
/=0 1=0 \m=/+l

1 = ]

< Mhj sup

< Mh1 j sup At/

< Mh2

because ||e°||oo = 0. Thus, from this it follows that

\ei\<\\ej\\oo<Mh2 (2.21)

for any / and j . Therefore, the method is of second order accuracy.
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3. Gradient calculations

Consider the following optimal control problem:
Minimize

M{u) = [ &(x,t,z,u)d£i (3.1)
Jn

subject to

—^- + a(x, t, u{x, 0 ) -^ + b(x, t, u{x, /))— = f(x, t, u(x, t)), (3.2)
dxat dx at

for all (x, t) € int(fi), where Q = [0, 1] x [0, 1], Jz? : Q x DS x OS -> BS is given and
M : Q —> DS is the control function to be determined. We assume that the control is
bounded, that is,

«min < u(x, t) < Mmax, for all (x, t) € fi. (3.3)

Let ^ denote the set of all control functions satisfying (3.3). Note that the system
dynamics (3.2) are a slight generalization of those considered in the previous section.

Boundary conditions of the form (2.2) may be imposed and it is possible for
these to contain another control function and/or parameters which can be used in the
optimization. We do not specify these here for the sake of brevity. Furthermore, we
could impose certain types of canonical constraints on the problem at this stage, but
we choose not to do so. Both of these complications are dealt with to some extend in
the application example.

The task at this stage is to derive the gradient formula of the objective functional
(3.1) with respect to the control u. Usually the gradients of the original (nondiscretized)
problem are derived first, leading to a PDE in the costate of the problem which also
arises when a maximum principle is applied to the problem. It is then possible to
discretize both (3.2) and the costate equation, solve them and calculate the required
gradient of the discretized problem.

We proceed differently here, firstly discretizing (3.2) and then using the concept
of fast automatic differentiation (FAD) to derive the costate equation in an already
discretized form. The advantages of this approach are twofold. We avoid the need to
calculate the gradient of the original (nondiscretized) problem, the details of which may
get quite complicated for a given problem, and the resulting gradients are guaranteed
to be exact.

The idea of automatic differentiation and its applications to optimal control prob-
lems in particular has been described in [13]. Of the so-called forward and reverse
forms of the method, we choose the latter because it is computationally far more
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[10] Computing optimal control with a hyperbolic PDE 275

efficient for the type of problem under consideration. The basis of the method can be
described as follows. Consider the problem of finding the gradient of a scalar function
Q(u) with respect t o n e W. Assume that

Q(u) = W(z, u), (3.4)

where z e K" and u are related by the following set of equations

* ( Z , H ) = 0 , (3.5)

where 4> : f x I ' K K". If we assume that the matrix <t>z(z, w) is nonsingular,
then the implicit function theorem guarantees that (3.5) defines z as a differentiate
function of « and the required gradient exists. It can be calculated by first forming the
Lagrangian

L(z, u) = W(z, u) +pT<t>(z, u). (3.6)

The vector/; can then be determined from

Lz(z, u) = Wt(z, u) + pT<t>z(z, u) = 0T. (3.7)

Finally, the required gradient is given by

^ = Lu(z, u) = Wu(z, it) + pT<S>u(z, u). (3.8)
du

Now returning to the original task, we follow exactly the same discretization
procedure as in the previous section, except that we also define u\ to be the nodal
values of the control function. The choice and exact structure of the control functions
is arbitrary at this stage.

The discretized problem then ultimately only depends on the set of nodal control
values \u\\ and the cost reduces to a function of these only:

M(u) = W(z(u), «), (3.9)

where z denotes the collection of {z/} and u represents the collection of {w/}. (We
represent the right hand side of (3.9) in this way, since it will, in general, also contain
the dependent state variable.)

Regardless of what numerical integration scheme we now choose to employ, we
can describe it by a general set of equations as follows:

z{ = F ( i , j , Z j , Uf), i = 0 , . . . , / , ; j = O , . . . , J , (3.10)

where the exact form of F depends on the particular integration scheme used and on
the prescribed boundary conditions of the problem. Here, Z/ denotes the set of all z,m
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that appear in the equation for z\. Similarly, Uf denotes the set of all wj" that appear
in the equation for z/.

Furthermore, let D = {(/, j) : 0 < / < /, 0 < j < J) and define the sets

Qi,j = {{l,m)eD : zj e Z,"'}, (3.11)

Kij = [(l,m)eD : u\ e £//"}• (3.12)

Then, applying (3.8), the required gradients are given by

— = WUJ(Z,U)+ J2 PTFjd.m.Z^U?), (3-13)
"Ui ' U.m)eKLj

0 < / < / , 0 < j < J, where, according to (3.7), the nodal values of the costate
pj satisfy the relations

pi = W:j(z,u)+ J2 P?Fj{l,m,Z?,U?), (3.14)

forO < / < / , 0 < j < / .
The same technique of automatic differentiation can be applied to find gradients in

virtually any type of integration scheme and, in fact, in any type of multistep method.

4. Application example

Consider the problem of purifying a mixture of air and poison gas. The mixture
is passed through a tubular filter containing an appropriate absorbent. Let v(t) be
the time dependent velocity of the mixture passing through the filter. When v(t) is
sufficiently large, the diffusion process is negligible and the quantity of the gas Q(x, t)
absorbed per unit volume of the absorbent as well as the concentration C(x, t) of the
gas in the pores of the absorbent satisfy the following equations (see, for example,
[15] and [21, p. 175]).

^ (4.2)
at

with the boundary and initial conditions

C(0, 0 = Co, (4.3)

G(Jt,O) = O, (4.4)
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[12] Computing optimal control with a hyperbolic PDE 277

where x denotes the longitudinal axis of the tube, Co is a constant, and fi and y are,
respectively, the kinetic and Henry's coefficients which are positive constants. Assume
here that x and t are scaled quantities so that the region of interest is Q = [0, 1 ] x [0, 1 ].

To eliminate the unknown function Q(x, t), we differentiate (4.1) with respect to t

d2c dvd£
V dxdt dtdx JF'

Differentiating (4.2) with respect to t, substituting the result into the above equation
and using (4.1) we obtain

d2c dvdc dc dQ dc dc
-v = B By— = B h Byv—

dxdt dt dx dt Hr dt p dt WY dx

32C / ldv\dC BdC

or

dxdt V vdt J dx v dt

For simplicity we assume that fiy + v/v > 0 for all t > 0. This includes the cases
of v being nondecreasing and of v decreasing at a moderate rate compared to its
magnitude. The boundary condition for C is given in (4.3). Substituting (4.2) into
(4.1), putting t = 0 and using (4.4) we have

-voCx(x,O) = 0C(x,O),

where t;0 = v(0). From this and (4.3) we obtain the initial condition for C

C(x, 0) = Coexp ( - — ) . (4.6)
V wo/

Equation (4.5) and the boundary and initial conditions (4.3) and (4.5) form a linear
second order hyperbolic problem describing the process of gas absorption. As men-
tioned in [21], similar equations arise in other problems such as the processes of drying
with a current of air and heating a tube with a current of water.

Suppose that the nature of the tubular filter is such that it ceases to be effective once
the concentration of the gas in the pores of the absorbent at the end of the tube is, say,
5% of Co- Hence we impose the constraint

C(l, /) < 0.05C0, for all / € [0, 1]. (4.7)

Furthermore, we require the velocity of the mixture to always exceed a given
minimum value. Hence we require that

w(0>Umin, for all t e [0,1]. (4.8)
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The optimal control problem then is to determine the optimum velocity profile v
such that the volume of gas/air mix passing through the filter is maximised while the
constraints (4.7) and (4.8) are satisfied. In other words, the problem in standard form
is to minimize

M(v) = - I v{t)dt (4.9)-i
subject to the system dynamics (4.5) with (4.3) and (4.6) and while not violating (4.7)
and (4.8).

The control function in this problem is clearly v(t), but the term v/v in (4.5) causes
difficulties. A way around this problem is to introduce an additional state variable
y = In v. Then y = v/v, v = ey and the system dynamics now consist of two
equations

C,, + tfy + u)Cx + Pe-yC, = 0, (4.10)

y = u, (4.11)

where the function u(t) is the new control function for the problem. We also need to
specify an initial condition for (4.11), so put

£, (4.12)

where £ is now also a variable in the optimization process.
The problem now is to minimize

f
Jo

eyU)dt (4.13)

subject to the system dynamics (4.10) with (4.3) and (4.6), (4.11) with (4.12) while
satisfying the constraints (4.7) and (4.8).

5. Numerical solution

In this section we discuss the numerical solution of the application example. We
show how the problem is discretized, how we deal with the constraints and how the
FAD approach discussed previously applies to this particular problem. Finally we
present the numerical results obtained.

5.1. Discretization and Constraint Transcription. If we let z/ represent the value
of C(x, t) at the node (JC,, (,), use the integration scheme (2.12) for (4.10) and a simple
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Euler step for (4.11), we obtain the following:

.+[ [(l + C/ - £/) z/+l + (l - Cj + Ej) z/+l - (l - C/ - £/) z/]

1+C/ + E/ '(5.1)

yj+i = yj +UjAtj (5.2)

for all / = 0, 1, . . . , / - 1 and j = 0, 1, . . . , J - 1, where

j
E' =

We assume that the control is a piecewise constant function, so (5.2) actually gives
the exact knot values of y.

The boundary and initial conditions become

A = Co, 0<j<J (5.3)

z? = C0<f "*""*, 0 < / < / (5.4)

yo = | . (5.5)

Again, since we are assuming that u is piecewise constant, the objective function
(4.9) can be shown to be

Jz\ eyj - e>-i+>
W0(y, u) = Y) , (5.6)

j=0 UJ

where y = [y0,... , yj] and u = [«„, . . . , My-i].
In discretized form, the constraints (4.7) and (4.8) are

z/ < 0.05C0, 0 < j < J, (5.7)

«" > Vmin, 0 < j < J . (5.8)

Refer to the discretized problem of minimizing (5.6) subject to (5.1)-(5.5), (5.7)
and (5.8) as Problem (P).

We treat both (5.7) and (5.8) using a constraint transcription and penalty function
approach developed in [18] and applied successfully to many similarly constrained
problems. Consider first (5.7). For j = 0, we have z°, < 0.05C0. By (5.4), this is
equivalent to e'fie~l < 0.05C0. Rearranging, we get an upper bound on the parameter

< - In ( -
ln(0.0SC0)\

P /
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For the remaining j , we can write (5.4) as

0.05C0 - z/ > 0, \<j<J

which is equivalent to
j

or

^min[/z,(z/),oj =0,

where h\(z) = 0.05C0 — z. Note that min{/z,0} is a nonsmooth function. We
approximate it by the smooth function

h, if h < - e ;

, if — e < h < e;

0, ifh>€\

and then treat the smoothed constraint as a penalty function by appending the term

to the objective functional, where y, is an appropriate weighting factor. Treating the
constraint in this manner means that we need to construct an iterative algorithm where
the value of €\ is successively decreased and the value of y\ is adjusted at each stage
to insure constraint satisfaction. The details of the method and a convergence analysis
are given in [18].

Now consider the velocity constraint (5.8). For j = 0, we have eyo > vmm, that is,
e* > vmin or

I > ln(umin). (5.10)

For the remaining j we write (5.8) as

Vj - vmin > 0, I <j < J

or
ey> - u m i n > 0 , \ < j < J .

Proceeding in exactly the same manner as above, we transcribe the constraint into the
form

j

e» -vmm,0),
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smooth it, and then append the penalty term

to the objective functional, where e2 is the smoothing parameter, y2 is a penalty
weighting factor and h2{y) = ey — vmin.

By treating the constraints in this manner, we obtain the following approximate
problem, referred to as Problem (Pe.y):

Minimize the objective functional

Af (a, £) = W(z(u, $),y(u, £), u, £) = WoO, «) + ^ ' ^ + W2OO

subject to the discretized dynamics (5.1) and (5.2) with the boundary and initial
conditions (5.3), (5.4) and (5.5). We also have bounds on the control and on £:

-PY < "mm < uj < uma%, 0 < j < J - 1 (5.11)

( 5 , 2 )

Recall that we assume py + v/v > 0 in (4.5). Hence the reason for — fiy < umin

in (5.11).
The smoothing approximation in the constraint transcription means that instead

of the original Problem (P), we are now looking at solving a sequence of Problems
(Pe.y) where the e and y parameters are updated to insure a good approximation of
the original problem and to achieve constraint satisfaction.

5.2. Applying Automatic Differentiation. Recall that we introduced the additional
state y in Section 4. Consequently, we need to modify the application of automatic
differentiation to the problem as it is discussed in Section 3. The interdependence
between z, y, u and £ can be described with a number of sets like those denned
by (3.11) and (3.12). For the sake of brevity, we only record the resulting costate
equations and gradient formulae here.

Firstly, we require the partial derivatives of W(z, y, u, £).

Wzj (z, y,u,^) = W0 zj 0,11) + Wl z/ (z)

=0

0,

0,

dh.
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w (z,y,u, = wOyj

eyi

Uj

i

(y,

ey>

«/-

«) +

«y-i

Wlw(z)
=0

3/j2

Cv)

2

}
J

7 = 0 ;

WUj (z, = W0 UJ (y, u) + Wx UJ (z) + W2 Uj (y)

=o =o

= Wo t(y, «)

-. 0< ; < / - ! ;

= 0,
=0 =o =0

where

dh

1, if h < -e;

0,

, if — € < h < €\

if A > e .

To simplify the notation, note that from (5.1), we may write

, _ (l + Cg - £/_-,') z/_, + (l - C/ '̂ + EJZl) z/-1

z/ =
' i - l "r c / - l

Zi"-1

= F(i, j), for 1 < / < / , 1 < j < J.

Furthermore,

BEi
•Ai,_i, and

O'-i

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

As well as the costate p mentioned in Section 3, the occurrence of _ys in this
application leads to an additional costate q. The equations denning both of these are
as follows:

pj =
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(l - Cj - Ej)

283

, {"'(
. (
,+,(

!_
1 +

1 +

1 +

1 -

+ cj

' c;-i

c/-

0-

c/-
•c/-.

+

+

+

+

£/"')

-£/)

£/-)

£/"')•

C/_,+ £/_,)'

where Wzi{z,y, u, ^) is given by (5.13).

qj = Wyi{z,y,u,H)
i

»=O,

y = O ;

0-C/-E/) f.=0,
(l + Cj + 1

(l -Cj -I

(l + Cj + £

('-cL,

Ej)' l

'/) 1

<y

< /
y

<

<

=

j -

i -

0;

1;

1,

Pi

where Wy(z,y, u, %) is given by (5.14),

C/.,+ £/.,)

and

(5.19)
1 < ; < / -

1 < j < J -

0 < / < / - 1,

0<j<J

i = 1, j =

H

- l ;

(5.20)

can be easily

calculated from (5.17) and ' and —— are given by (5.18).
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Having calculated the costates, we can finally calculate the required gradients:

3C/_, 3«y + 3E/L, 9«,

0 < j < y - 1; (5.21)

/
= Ws (z, y,u,$) + J2 p°pXie-t-^-e + q0, (5.22)

where '—. and '—. can be calculated from (5.17), WUj(z,y, u,
3C,_, 3£,_,

is given by (5.15), W^(z,y, u, ̂ ) is given by (5.16), and

a n d -

Using these gradients, the control problem can now be solved as a standard math-
ematical programming problem.

5.3. Numerical Results. We consider a problem which is characterized by the fol-
lowing data:

0 = 5 0 , y=l, C 0 = l , vmin = 0.5.

We choose a uniform mesh node distribution with / = 100 and J = 100. The
control u is assumed to be piecewise constant on the interval [0, 1]. Hence, in
the discretized problem, we lump together each successive set of five ujs into one
parameter, giving a total of 20 control parameters. This helps to reduce the size of the
optimization problem. Constant bounds are placed on the control:

-5.0 < u <5.0

and the bounds for £ are determined by (5.12).
The parameters ex, e2, Y\ and y2 are initialized to 10"2, 10"2, 1 and 1, respectively.
The results obtained are shown in Figures 1 and 2. Figure 1 shows the optimal

velocity of the gas/air mixture and Figure 2 plots the corresponding pore concentration
C(x, t). Note how the velocity constraint and the constraint on C(l, 0 are both
satisfied.

The objective function value is —0.734477, that is, a volume of 0.734477 units3 of
the mixture has passed through the filter.
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0.75

a 0.65 -

0.55-

0.9

FIGURE 1. Optimal velocity of air/gas mixture.

6. Conclusion

We have presented a numerical solution method to solve a class of optimal control
problems involving hyperbolic partial differential equations. The solution of the PDE
is obtained using an explicit integration scheme which we showed to be uncondition-
ally stable and of second order accuracy.

The gradient of the objective functional is then obtained by applying the technique
of automatic differentiation. As demonstrated, this technique yields the exact dis-
cretized costate equations without needing to first calculate the costate equations of
the nondiscretized problem.

We considered a practical problem as an application example and demonstrated
how the method can be easily expanded to deal with some generalizations of the basic
problem, in particular the addition of constraints.

Numerical results were presented to verify our theoretical results and to demonstrate
the usefulness of the method.
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FIGURE 2. Pore Concentration corresponding to optimal velocity.
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