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Abstract

A conjecture of Fox about the coefficients of the Alexander polynomial of an alternating knot is
proved for alternating algebraic (or arborescent) knots, which include two-bridge knots.

1980 Mathematics subject classification (Amer. Math. Soc): 57 M 25.

1. Introduction

An integer polynomial/(/) = £™=0 cnt" will be called trapezoidal if
(1) all the coefficients oif(t) are nonzero and have the same sign,
(2) r/(i/o = f(t),
( 3 ) | c o l < W < • • • <\ck\,k = [m/2]and

(4) whenever c, = cl+1, c, = Cj, i ^j < [m/2].
We call f(t) positive or negative according to whether c0 > 0 or c0 < 0.
If A(f) is the Alexander polynomial of an alternating knot, then A(-?) is

trapezoidal in all cases thus far examined. This naturally leads to the following
conjecture [4].

CONJECTURE. Let A(t) denote the Alexander polynomial of an alternating knot in
S3. Then A(-f) is trapezoidal.
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318 Kunio Murasugi [2]

The conjecture has been proved only for 2-bridge knots [5] and a few other
special types of alternating knots like alternating prezel knots [10). Proofs are, in
principle, based upon the actual computation of the Alexander polynomials.

The purpose of this paper is to prove the conjecture for a large family of
alternating algebraic knots which includes, in particular, 2-bridge knots (see
Theorem 5.1). To define our family of alternating algebraic knots or links, first,
we will give a sufficient condition for / to be alternating in terms of the associated
weighted tree (see Section 4). The conjecture will be proved for alternating links
that satisfy this sufficient condition by a simple inductive argument. To avoid the
involvement of the link matrices in the proof, we will use the Conway polynomi-
als. The proof is, therefore, probably more comprehensible but not simpler, than
the use of the link matrices.

2. Preliminaries

Throughout this paper, a link means the union of n(> 1) disjoint 1-sphere S1

in S3, but a knot is always to mean a link of one component. All links are
oriented.

By the reduced link polynomial of /, denoted A,(/), is meant the reduced
Alexander polynomial of / and hence, if / is a knot, A,(/) is the ordinary
Alexander polynomial.

Now the following easy proposition will be used frequently in this paper. The
proof will be omitted, however, since it is elementary, but tedious.

PROPOSITION 2.1. Let f(t) = L?L0 c,7' and g(t) = E"=o djtJ be positive
trapezoidal polynomials. Then

( l ) / ( 0 g(t) is trapezoidal,
(2) ifm = n + 2k, 0 < k < 1, thenf(t) + tkg(t) is trapezoidal.

Now let / be an algebraic link (or an arborescent link) in S3 [2]; / is associated
with a weighted (finite) tree T. In this paper, we only consider finite graphs, and
therefore, a graph is always to mean a finite graph. Let w be a weight function.

DEFINITION 2.1. A vertex a, of Tis called positive (or negative) if w(at) > 0 (or
w(a,) < 0); T is called positive (or negative) if all the vertices are positive (or
negative). Tis called even if w(a,) = 0 (mod2) for all a,. In particular, Tis called
a 0-tree if w(a,) = 0 for all at. Let v(at) denote the valency of a,, i.e. the number
of edges incident with at. A vertex a, is called a stump if v(at) = 1, and a, is called
a twig if v(at) = 2. Tis called excessive if |w(a,)| > max{ v(at), 2} for all at.

An algebraic link / is the boundary of a surface F constructed by plumbing as
specified by a weighted tree T; I will be denoted by l(T) and Fby F(T).
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EXAMPLE 1.

a positive excessive tree

2 «v ^* 3

.3 5.

an excessive tree

-3 5

an even non-zero tree

FIGURE 1

In this paper, a disjoint union of trees (usually called A forest) will also be called
a tree. Therefore, a tree may be disconnected.

DEFINITION 2.2.

(1) A vertex-graph is a graph with just one vertex and no edge.
(2) An edge-graph is a tree with just one edge and two stumps.
(3) An arc-tree is a connected tree having just two stumps.
(4) The complement of a subtree H of a tree T, denoted by f(H), is the tree

obtained from T by removing all vertices of H and all edges of T incident with at
least one vertex in H. Therefore, T(H) is, in general, a collection of trees.

(5) A root is a vertex with which at least two stumps are incident.
A reduction on T that shrinks a 2-edge arc-tree to a vertex will be called a

contraction. See Figure 2.

FIGURE 2

Sometimes, a contraction will be called an elimination of a twig.
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It is easy to see that if a connected tree T does not have a root, then T has a
twig unless T is an edge-graph or a vertex-graph.

PROPOSITION 2.2. By a finite number of applications of contractions, any con-
nected tree can be reduced to a graph containing at least one root, or an edge-graph,
or a vertex-graph.

The proof is obvious.
Given an even tree T, we are able to determine whether or not the link 1{T) is a

knot.

PROPOSITION 2.3. For an even tree T, l(T) is a knot if and only if T is reduced to
an edge-graph by a finite number of applications of contraction.

PROOF. Since we are only concerned about the number of components of 1{T),
we may assume that T is a 0-tree. Since a contraction then does not change the
link type, T may be assumed to be one of the three graphs listed in Proposition
2.2. Obviously, l(T) is a knot if and only if T can be reduced to an edge-graph.

COROLLARY 2.4. Let T be a 0-tree. Then A / ( r ) ( / ) equals 1 or 0 according as l(T)
is a knot or not.

PROOF. 1{T) is either an unknotted knot or a split link, and hence A / ( r ) ( / )
equals 1 or 0.

3. Graphs and links

Let G be a finite planar graph without loops or stumps; G divides a plane into
finitely many domains Do, Dx,...,Dm, say. Take a point P, from each domain £>,
and join Pt, Pj whenever 3Z>, o dDj # 0 , by simple arcs, each of which intersects
exactly one point in the common edge. Therefore if 8Z>, n dDj consists of k edges
ax, a 2 , . . . ,ak, we join Pt and Pj by k simple arcs TV T2, . . . ,rk in such a way that
ap n rq =t 0 if and only if p = q. A new planar graph G* thus obtained is called
the dual graph of G. Note that a vertex Pj of G* corresponds to a domain Dj.

A graph is called a directed graph if + or - is assigned to each edge. When G
is a directed graph, the dual graph G* is also directed by putting + on T, if and
only if a, is a positive edge.
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DEFINITION 3.1. A planar graph G is called collapsible if the collection of the
domains { Do, Dx,... ,Dm } can be renumbered (if necessary) so that

(1) Do is the unbounded domain,
(2) for / = 1,2,... ,m — 1, Dr U • • • U D, and Di+1 have at most one edge in

common.

EXAMPLE 2.

collapsible non-collapsible

FIGURE 3

PROPOSITION 3.1. A planar graph (without loops or stumps) is collapsible if and
only if there is a vertex v in the dual graph G* of G such that the complement of v in
G* is a tree.

PROOF. Suppose that G is collapsible. Then the vertex corresponding to the
unbounded domain is what we sought.

The converse is obvious. Simply renumber the domains Do, Dl,...,Dm along
the tree.

Now let T be a weighted tree on a plane. We assume |w(a,)| > 2 if a, is a
stump. Assign + or — to each edge of T arbitrarily. Then take a point a0, not on
T, from the plane. Join a0 and each ai (i # 0) by disjoint simple arcs and
assign + or — on each new arc in such a way that the number of positive arcs
minus the number of negative arcs incident with a, is equal to w(a,). Thus we
obtain a directed planar graph G.

EXAMPLE 3.

FIGURE 4
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Consider the directed dual graph G* of G. Proposition 3.1 then implies

PROPOSITION 3.2. G* is collapsible.

From this directed planar graph G*, we can construct a link / as follows. First
we replace each vertex by a small disk and each edge by a band in the plane
connecting the two corresponding disks. If each band is then twisted in the
positive or negative direction according as the corresponding edge is positive or
negative without causing any "complication" in the resulting surface F, this
surface F will have spine G*. (See Figure 5 below.) The boundary of the (not
necessarily orientable) surface F is the link / we sought.

( a ) ( b )

FIGURE 5

PROPOSITION 3.3. / is ambient isotopic to the algebraic link associated with the
weighted tree T.

PROOF. Let F be the (not necessarily orientable) surface constructed from G*
and let a be a band "surrounding" a stump ax of T (Figure 6(a)). Slide a along a
line AB (Figure 6(b)). Then we can say that F is obtained from a and the rest of
the surface Fo by plumbing. Since Fo is associated with a tree t{al), the induction
can be applied.

(a) ( b )

FIGURE 6
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Proposition 3.3 shows that given a weighted tree T, two collapsible planar
graphs constructed from T define ambient isotopic links.

4. A criterion for alternating links

If a weighted tree T is positive (or negative) and is excessive, then a collapsible
planar graph G* constructed in the previous section can be chosen so that all the
edges of G* are positive (or negative). Therefore, the link obtained from G* is
obviously alternating, that is, we have

PROPOSITION 4.1. IfTis a positive (or negative) excessive tree, then the algebraic
link l(T) is alternating.

For a positive but not excessive tree T,l(T) may not be alternating.

EXAMPLE 4.

FIGURE 7

Now consider an arbitrary weighted tree T.
Let A(T) be the set of those edges in T which join positive vertices and negative

vertices. If all the edges in A(T) are removed from T, T will split into finitely
many subtrees TvT2,...,Tk, each of which is either strictly positive or negative.
A collection { 7\, T2,..., Tk} will be called a uniform decomposition of T.

EXAMPLE 5.

T l T2 T 3

" I
h • .3 y- 2

- 2

FIGURE 8
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PROPOSITION 4.2. Let {Tl,T2,...,Tk} be the uniform decomposition of a tree T.
If each of 7\,... ,Tkis excessive, then the link l(T) is alternating.

PROOF. Let V be the set of those vertices of T which are incident with some
edges in A(T). Let G* be the collapsible planar graph constructed in Section 3.
Since each 7) is positive or negative, G* can be chosen so that all edges of the
boundary of the domain corresponding to a vertex in T(V) have the same sign as
that of Tf. Then slide a band along the edge dual to an edge in A(T), as we did in
the proof of Proposition 3.3. The new surface is obtained by plumbing the surface
F(7\), F(T2),... ,F(Tk), and it bounds 1{T). When F(7]) and F(7}) are plumbed,
Tt and Tj have opposite signs and hence, the boundary of F{T) is alternating.
(Compare the construction of Seifert surfaces for alternating links [7].)

COROLLARY 4.3. A 2-bridge link is alternating.

PROOF. A 2-bridge link is associated with a non-zero even arc-tree T. Therefore,
each component of the uniform decomposition of T is excessive. The corollary
follows from Proposition 4.2.

5. Statement of main theorem

Now we begin to study the reduced link polynomials of algebraic links.
Suppose we are given a weighted tree T. If the surface F(T) is orientable, the

orientation of F(T) induces an orientation of the link l(T) and hence F(T) is a
Seifert surface of l(T). This makes the computation of the link polynomials much
easier.

Since F(T) is orientable if and only if T is even, we consider hereafter only
even trees. We assume, further, the orientation of l(T) is induced from that of
F(T), whenever F{T) is orientable. Then the main theorem of this paper is

THEOREM 5.1. Let T be an even tree and let A,(0 be the reduced link polynomial
of the algebraic link l(T) associated with T. Let {Tl,T2,...,Tk} be the uniform
decomposition of T. If each 7} is excessive, then l(T) is alternating and A^-?) is
trapezoidal.

The first half of Theorem 5.1 is included in Proposition 4.2. The later half will
be proved in Sections 6-8 by induction.
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6. Conway polynomial

Let / be an oriented link and let V/(z) denote the Conway polynomial of /;
V/(z) is an integer polynomial on z and it is recursively computable by using a
few axioms [3, 6]. In particular, it satisfies the following axiom.

(6.1) If /, /' and /0 are links differing at one crossing as indicated below, then
V,(2) = Vr(z) + zv/o(z).

\

FIGURE 9

This axiom (6.1) is slightly different from that given in [6]. However, it defines
the same polynomial.

Now let The a connected even tree. Since F(T) is orientable and its orientation
induces the orientation of l(T), the Conway polynomial of l(T) is uniquely
determined, and is denoted by v(z; T).

For an even tree T with k connected components 7\, T2,...,Tk, v(z; T) is
defined as V(z; T) = Ylf^i V(z; 7]). It should be noted that for a connected tree
T, v(z; T) may be 0, but for a disconnected tree, v(z; T) may not be 0.

The purpose of this section is to prove a simple reduction formula (6.3) below.
Let a, be a vertex of T. Suppose q edges ex, e2,...,eq are incident with at. We

define two weighted trees L̂  and U2 as follows.
Ux is a tree obtained from T by removing p edges ex, e2,... ,ep, (0 < p < q),

while f/2 is a subtree of T obtained by removing the remaining q — p edges
ep+l,... ,eq. The weight functions w, for Uj (j = 1,2) will be defined by means of
the weight function w of T:

( l ) i f r * i,Wj(ar) = w(ar),j = 1,2,

(6.2) (2) w^dj) and w2(a,) are even, and

(3) Wl(at) + w2(a,) = w(aj).

We say T splits into Ul and U2. (See Example 6 in Section 7.) Then we have

PROPOSITION 6.1.

(6.3) V ( z ; r ) = v(z ; f / 1 )+ v(z ; t / 2 ) .

PROOF. In the following proof, we will distinguish between knots and links (of
more than one component).
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Now first we should note that the complements f(at), t/(a,) and U2(at) are
identical and consist of q connected trees Tx, T2,..., Tq. Let aj, k = 1,2,... ,q, be
the vertex which is connected to a, by the edge ek; ajk belongs to Tk.

Case 1. all T, Ux and U2 are 0-trees.
Since (6.3) is trivially true when p = 0 or p = q, we assume 0 < p < q and

hence, q > 2.
Since, for a 0-tree T, v(z; T) is 1 or 0 according as l(T) is a knot or a link, it

suffices to prove

(1) all l(T), l(Ux) and l(U2) are links, or

(6.4) (2) if l(T) is a knot, then either l(Ux) or l(U2)

is a knot, but not both.

We will prove (6.4) by induction on n(T), the number of edges in T.
The initial case is p(T) = q. Then a, is a root in T, and hence /(71) is a link. On

the other hand, each of Ux and U2 contains at least one vertex-graph, and hence
both l(Ux) and l(U2) are links.

Now assume that (6.4) holds for any tree T with fi(T') < n(T).
If T has a root, then l(T), l(Ux) and l(U2) are all links. In fact, if some vertex

am( * a,) is a. root, then am is also a root in C/j and U2. Therefore, l(T), 1(1/^ and
l(U2) are all links. If at is a root in T, then at least two of q vertices ah, aJ2,. ..,aj
are stumps in T. Let a, and a, be stumps in T. If both es and ew belong to Ux,
then a, is a root in t/L, while U2 contains two vertex-graphs {ajs}, {ajw}- If
es e t/j, but ew G t/2, then {oj^} and {a7j} are vertex-graphs in Ux and f/2,
respectively. Therefore l(T), l(Ux) and Z([/2) are all links.

Now suppose that T has no roots. Since T is neither an edge-graph nor a
vertex-graph, T must have a twig, which may be eliminated by a contraction.
Apply the induction hypothesis.

Case 2. general case.
Let X(T) be the number of non-zero vertices in T.
For \(T) = 0, we are done in Case 1.
Suppose (6.3) holds for any tree T with A(F') < X(T). We say that the tree To

is obtained from T by defining a new weight w(aj) = c,if T and ro have the same
underlying tree, but weight functions differ (possibly) at only one vertex a,.

LEMMA 6.2. Denote by V(n) the vertex-graph with weight n. Let T be a weighted
tree with w(a,) = 1b > 0. Let To be the tree obtained from T by defining a new
weight w(at) — 0. Then

V(z; T) = V(z; To) + v(z;{f(ai), V(2b)}).
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PROOF. If we apply Axiom (6.1) at a crossing associated with a vertex a,-, we
obtain v ( z ; T) = v ( z ; 7\) + z v ( r ; t (a , ) ) , where 7\ is the tree obtained from T
by defining a new weight w(a,) = 2(6 — 1). Since z = v ( z ; F(2)), we can write
zV(z; r(a,.)) = V(z;{f (a , ) , F(2)}). By repeating this 6 times, we obtain the
lemma.

Now we return to a proof of Proposition 6.1.
Suppose w(a,) = 2b ¥= 0 and 6 > 0 (for the case b < 0, a similar proof is

valid). By Lemma 6.2, we have

(6.5) V(z; T) = V(z; r0) + v(z; (fta,-),

Since \(T0) = \(T) - I < \(T), it follows by the induction assumption that
V(z; To) = v(z; I//) + v(z; £/2'), where 17,' (7 = 1,2) are trees obtained from I/,
by defining new weights w(a,) = 0 (7 = 1,2). Write w1(a/) = 2&' and w2(a,) =
26". Since 2b = 2Z>' + 2b", we have

(6.6)

V(z; {t(a,), V(2b)}) = v(z; {f(a,), V(2b')}) + v(z;

Lemma 6.2 also implies

V(z; Ux) = v(z; t//) + v(z; {f(fl/), F(2fe')}) and
V(z; U2) = V(z; t/2') + v(z; {f(a,), F(2fe")}).

Combining (6.5)-(6.7), we obtain (6.3).
Finally, suppose w(a,) = 0, but w(ar) = 2c =£ 0 for some vertex ar. We may

assume without loss of generality that ar belongs to Ux.
Let To and Uf (7 = 1,2) be trees obtained from T and Uj, respectively, by

defining new weights w(ar) = 0. Then it follows from Lemma 6.2 that

(6.8) v(z; T) = v(z; To) + v(z; {t(ar), V{2c)}).

Since \ ( r o ) < X(T) and X(r(ar)) < X(T), we obtain, by the induction assump-
tion,

V(z;7o)= v l z j t / ^ + v l z ; ^ ' ) , and

V(z; ( f (a r ) , F(2c)}) = v(z; f /^O) + v(z; f/2(ar)).

Applying Lemma 6.2 to Ux and U2, we obtain

(6.10) v ( z ; t/y) = v (z ; [//) + v (z ; £//ar)), 7 = 1,2.

Equation (6.3) now follows from (6.8)-(6.10). This proves Proposition 6.1.
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7. Proof of main theorem (I)

Let v(z; T) = E™_oa,z', am =* 0, be the Conway polynomial of a link l(T).
Since tmv(t — 1/7; T) is an integer polynomial on t2, we can define an integer
polynomial A(t; T) so that A(t2; T) = tmv(t - \/t; T). Then it is known [3, 6]
that A(r; T) is equal to the reduced link polynomial A,(f) of l(T) up to + tk. The
degree of A(t; T) is equal to the degree of v O ; T). We will denote by sign
A(t; T) the sign of the leading coefficient of A(t; T) (and hence, of v(z; T)).

Now, although (6.3) holds for any even tree, it is particularly useful for
alternating algebraic links. In fact, for an even excessive tree T, the surface F(T)
is orientable and F(T) is a Seifert surface of l(T) with minimum genus, and
hence, the Betti number of H^F^T),!) is exactly the number of vertices in T.
Therefore, we have

PROPOSITION 7.1 [7]. Let T be an even positive excessive tree and n the number of
vertices in T. Then

(2) A(0; T) * 0,
(3) sign A(-/, T) = (-1)",
(4) (-1)"A(-/; T) is a positive polynomial,
(5) if both f/j and U2 (used in (6.3)) are positive excessive even trees, then

(7.1)

Now, using (6.3) or (7.1), the computation of the reduced link polynomial is
reduced to those of simpler links. Since the simplest algebraic links are 2-bridge
links, first we consider these links.

A 2-bridge link / is associated with an even arc-tree T below.

FIGURE 10

PROPOSITION 7.2. Ifallbi are positive, then A,(-t) is trapezoidal.

PROOF. If n = 1, then A,(-t) = b^(l + t), which is trapezoidal. If all 6, = 1,
then / is a torus link of type («,2) and A,(-t) = 1 + t + t2 + ••• + t"'1, which
is trapezoidal.
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Now suppose that some bt is greater than 1. Then split T into two subtrees Ux

and U2 as is shown in Figure 11 below.

„
FIGURE 11

Since Ul and U2 are even excessive, (7.1) yields A(/; T) = A(f; t / J + A(?; C/2).
These splits will be repeated until every tree is a collection of even vertex-graphs
and/or arc-trees having weight 2 at each vertex. Let {7\, T2,. ..,Tm} be the
collection of the trees thus obtained. Then

Since each A(r; 7 )̂ is a product of the polynomials of the form tk — tk~1 +
• • • + ( -1 )* or c(t - 1), c > 0, it follows from Proposition 2.1 that each A(-/ ; Tt)
is trapezoidal. Since deg A(f; 7 )̂ = n and sign A(-r; Tt) = (-1)", it follows that
A,(- / ) = A(-f; T) is trapezoidal.

EXAMPLE 6. A(O = 4r3 - 9t2 + 9t - 4

FIGURE 12

PROPOSITION 7.3. Let I be an algebraic link associated with an even excessive
positive tree T. Then A^- / ) is trapezoidal.

PROOF. Split Tinto a collection of trees, {Tx, T2,...,Tm} such that each Tt is a
collection of even excessive positive arc-trees or even vertex-graphs. (Use an
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induction on the number of vertices with valency at least 3.) Since each A(-f; 7])
is trapezoidal by Proposition 7.1, it follows from (7.1) that A(-r; T) is trapezoidal
and so is A,(-/).

EXAMPLE 7.

T l T 2

2 2
» •

. 2

FIGURE 13

8. Proof of main theorem (II)

In this section we prove Theorem 5.1 by induction on k, the number of
components of the uniform decomposition of T. We may assume that T is
connected.

When k = 1, Theorem 5.1 is Proposition 7.3, and we are done.
Suppose Theorem 5.1 is true for any tree T which has less than k components

in the uniform decomposition. Further we assume inductively that the
sign A(-f; T) is (-1)J, where s is the number of positive vertices of T. This
hypothesis is verified for k = 1 by Proposition 7.1(3).

Now let {T1,T2,...,Tk} be the uniform decomposition of T. Then there is a
component 7} such that the complement T = f(Tt) of Ti in T is connected. We
assume that Tk is such a component.

Suppose that Tk is a positive tree. (The same proof is valid when Tk is negative.)
Let em be an edge in A(T) which connects a positive vertex a, in Tk and a

negative vertex a. in Tt, say. Let ex,...,ep and em be all edges incident with aj. Let
Uy be a tree obtained from Tby removing firstp edges el,...,ep and wx(a7-) = 0,
and U2 another tree with w2(oy) = w(fly), and apply (6.3) to obtain

(8.1) v(z;T)= v(z;C/1) + v(z;U2).

See Figure 14.
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FIGURE 14

Since the algebraic link associated with a subtree {Tk,em, ay} in Ux is the
(Schubert) product of links associated with the disconnected tree f(at), we have
A(/; t/j) = A(7; T(a,, a,)). On the other hand, by definition,

A(r; U2) = A(r; Tk)A(t; f(Tk)). By the induction assumption, A(-t; f(a,, a,)),
A(-r; 7^) and A(-/; f(Tk)) are trapezoidal, and hence, &(-t; Ux) and A(-/; U2)
are trapezoidal.

Let n be the number of the vertices of T and s the number of the positive
vertices of T. Then deg v(z; Ux) = « — 2 and deg V(z; t/2) = n, and also
sign A(-f; t/x) = (-1)1"1 and sign A(-f; f/2) = (-l)s. Therefore, it follows from
(8.1) that

A(r2; T) = t"v{t - \/t; T) = t"v{t - \/t; Ux)

+ t"v{t - \/t\ U2) = t2A(t2; Ux) + A(r2; U2),

and hence, A(/; T) = tA(/; UJ + A(r; U2), and we have

(8.2) A(-t; T) = (-t)A(-t; U,) + A(-t; U2).

Since (-l)J"1A(-r; l^) and (-1)JA(-/; t/2) are positive trapezoidal polynomials,
it follows from Proposition 2.1(2) and (8.2) that (-1)*A(-*; T) is positive and
trapezoidal.

The proof of Theorem 5.1 is now completed.

9. Generalization

Let F(n) be the orientable surface of Euler characteristic 2 - n which bounds
an oriented torus link of type (n, 2).
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EXAMPLE.

Kunio Murasugi [161

F(U)

FIGURE 15

It is known [8] that a Seifert surface of an alternating fibre link / is obtained by
generalized plumbings (or *-product) from finitely many surfaces FinJ,.. ,,F(nk),
n, =£0, +1 . A slight modification of the proof of Theorem 5.1 can be applied to a
special type of alternating fibre links and we obtain

THEOREM 9.1. Let I be an alternating fibre link. If a Seifert surface of I is obtained
by {ordinary) plumbings from F(nl),...,F(nk), w, =£ 0, ±1 in such a way that if
F(nt) and F(nj) are plumbed then n^j < 0, then A,(-f) is trapezoidal.

Figure 16 is an example of such an alternating fibre link.

FIGURE 16
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