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ABSTRACT

We estimate Value-at-Risk for sums of dependent random variables. We model
multivariate dependent random variables using archimedean copulas. This
structure allows one to calculate the asymptotic behaviour of extremal events.
An important application of such results are Value-at-Risk estimates for sums
of dependent random variables.
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1. INTRODUCTION AND MOTIVATION

Consider a portfolio consisting of d similar insurance policies. The aggregate
claim S of the portfolio is the sum of all single claims X1, ..., Xd , i.e.

S Xi
i

d

1

=
=

! . (1.1)

The calculation of the premium and a risk management analysis are two of the
main topics of risk theory. Therefore not only the marginals of the Xi ’s have
to be known but also their dependence structure. In practice, this problem is
often simplified by assuming that the random variables Xi are independent and
identical distributed (i.i.d.). Of course, the independence hypothesis is a very
strong assumption which is almost never satisfied. In the present paper we
model a portfolio consisting of d dependent risks. We use the copula frame-
work to model the dependence structure and we will see that such a dependence
structure may have an enormous effect on Value-at-Risk considerations.

Copulas were originally introduced in 1959 in the context of probabilistic
metric spaces (see Sklar [16] and Schweizer-Sklar [15]). During the past years
they have developped rapidly and they have attracted much interest. Copulas
are used to describe scale invariant dependencies between random variables.
An understanding of such stochastic dependence structures has become very
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important in many fields of probability theory. Copulas have been particularly
useful for constructing appropriate mulitivariate models in the areas of mod-
ern risk management and stress testing in the actuarial world and in finance.
An overview of recent developments and applications can be found in Joe [7],
Nelsen [14], Frees-Valdez [5], Juri-Wüthrich [8, 9], Embrechts-McNeil-Strau-
mann [4] and the references therein.

Nevertheless it is quite difficult to fit copulas to real data (for successful real
data fitting of copulas by actuaries see Klugman-Prasa [11] and Hürlimann [6]).
It is difficult to have a good intuitive feeling for dependence structures (see
e.g. fallacies in [4] and [9]). Moreover, in extreme value theory, one does not
usually have enough data to analyze the behaviour of extremal events. There-
fore it is very important to have appropriate convergence theorems, in order
to approximate tail probabilities by their asymptotic values. This procedure is
applied quite often in practice: if we know the asymptotic behaviour we do not
need to worry about the exact choice of the model, but only about the estima-
tion of parameters and the question of speed of convergence.

In the present article we restrict ourselves to exchangeable random variables
with archimedian copulas. Among this class of random variables we discover a
certain “universality” which makes it easy to derive asymptotic Value-at-Risk esti-
mates for aggregate random variables. These asymptotic estimates follow from
the asymptotic copula behaviour which is measured in terms of regular varia-
tion. We prove weak convergence results (see Lemmas 6.1, 7.1, 7.2 below) from
which we can derive asymptotic Value-at-Risk estimates (see Theorem 3.3 below).

The use of these results for risk managers and actuaries is similar to that of
e.g. the central limit theorem for sums of random variables or the Fisher-Tip-
pett theorem for extremal events (see [3], Theorem 3.2.3): having only partial
information on the model we are able to give estimates for the Value-at-Risk
with the help of our asymptotic results. The questions we do not study here
are 1) Speed of convergence and approximation error terms; 2) Validation and
justification of our model assumptions (Assumption 3.1). One should carefully
consider the exchangeability (indistinguishability) assumption: we give some
arguments justifying the sense of our model. 3) Similar results (to Theorem 3.3)
for non-archimedean copulas.

Organization of this paper: In the next section we introduce the concept of
copulas. These copulas describe multivariate dependence structures of random
variables which are studied in the sequel. In Section 3 we present our main
result, Theorem 3.3, which describes asymptotic quantile behaviours. In Sec-
tion 4 we identify the limiting constants and in Section 5 we give examples.
Finally in the remaining part we prove all our results. The crucial steps are the
weak convergence statements given in Lemmas 6.1, 7.1, 7.2.

2. MULTIVARIATE COPULAS

The idea behind the concept of copulas is to separate a multivariate distribu-
tion function into two parts, one describing the dependence structure and the
other one describing marginal behaviours, respectively.
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Definition 2.1 (Copula) Choose d ≥ 2. A d-dimensional copula is a d-dimensional
distribution function restricted to [0,1]d with uniform-(0,1) marginals.

Theorem 2.2 (Sklar [16], [15], [14]) For a given joint distribution function F with
continuous marginals F1, ..., Fd there exists a unique copula C satisfying

d, ..., , ..., .F x x C F x F xd d1 1 1=^ ^ ^_h h hi (2.1)

Conversely, for a given copula C and marginals F1, ..., Fd we have that (2.1) defines
a distribution with marginals Fi .

Sklar’s theorem is a motivation for calling a copula a dependence structure.
In fact, (2.1) means that C couples the marginals Fi to the joint distribution
function F. One important property of copulas is that the copula of a random
vector (X1, ..., Xd ) is invariant under strictly increasing transformations.

There are several special copulas, e.g. the so called comonotonic copula
CU(x1, ..., xd) = min{x1, ..., xd} which corresponds to total positive dependence
or the independent copula which is the copula of independent random variables:
CI(x1, ..., xd) = x1·...·xd (for more background information we refer to [4, 7, 14]).
In this article we focus on archimedean copulas.

Definition 2.3 Choose d ≥ 2. Let c : [0,1] → [0, ∞] be strictly decreasing, convex
and such that c(0) = ∞ and c(1) = 0. Define for xi ∈ [0,1], i = 1, ..., d

,..., .C x x xc cd i
i

d
c

1
1

1

=
-

=

!^ ^eh ho (2.2)

The function c is called generator of Cc.

Remark. For d ≥ 3, Cc is in general not a copula. There are generators such
that Cc is not a distribution (see Kimberling [10] or Nelsen [14], Section 4.6).
Henceforth we give necessary and sufficient conditions for c under which Cc

is a copula for all d ≥ 2 (see Nelsen [14], Section 4.6). We say: c–1 is completely
monotonic on [0, ∞) if for all k ∈ �, x > 0,

( ) .
dx
d xc1 0k

k

k
1 $-

-
] g (2.3)

The following theorem gives necessary and sufficient conditions for having a
copula (see Nelsen [14], Theorem 4.6.2).

Theorem 2.4 (Kimberling [10]) Cc is a copula for all d ≥ 2 if and only if the gen-
erator c has an inverse c–1 which is completely monotonic on [0, ∞).

Remark. If c–1 is completely monotonic on [0, ∞) we call Cc archimedean copula.
Archimedean copulas are interesting in practice because they are very easy to
construct, but still we obtain a rich family of dependence structures. Usually
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they have only one parameter which is a great advantage when one needs to
estimate parameters from data.

Examples of archimedean copulas:

• The Clayton copula with � > 0 is generated by c(t) = t–� – 1 and takes the form

, ..., ... .C x x x x d 1
, /� � �

d d

aCl
1 1

1
= + - +

- - -
^ `h j (2.4)

• The generator c(t) = e q/t – e q with q > 0 corresponds to

, ..., / ( ) .logC x x e d eq 1
, /

d
x

i

d
c q q q

1
1

i= - -
=

!^ h ) 3 (2.5)

Further examples may be constructed as follows. For a generator c and k ≥ 1

( ) ( ),t tck
=z (2.6)

is a generator too.

3. QUANTILES FOR SUMS OF DEPENDENT RANDOM VARIABLES

In this section we give our main results and a classification of the multivari-
ate distributions. In view of Sklar’s theorem we are able to decouple the depen-
dence structure from the marginals, therefore we can analyze their behav-
iours separately.

In Subsection 3.1 we define our model and we give a definition of regular
variation which is used for the characterization of the asymptotic behaviour
of extremal events.

In Subsection 3.2 we give a classification of the marginals. It should be
pointed out that all “sufficiently nice” distributions belong to one of these
three classes from an extreme value point of view. I.e. extremal events can be
characterized by three different types of behaviour (limit laws).

Finally in Subsection 3.3 we characterize the dependence structures and
give our main results.

3.1. Definitions and assumptions

Let us first give the crucial assumption for our results:

Assumption 3.1 Assume that the random vector X = (X1, ..., Xd), d ≥ 2, satisfies:

1. Every coordinate Xi has the same continuous marginal F (x) = P [Xi ≤ x].

2. X = (X1, ..., Xd ) has archimedean copula Cc.
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Remarks:

• Assumption 3.1 is quite natural if we think that we have a portfolio of
exchangeable (indistinguishable) dependent risks. One should also mention
that due to fact that copulas are invariant under strictly increasing trans-
formations (see remark after Theorem 2.2) it is always possible to transform
the random vector such that it has identical marginal distributions.

• In practice, we are often in the situation where the random variables are not
exchangeable and where we do not want to transform them. In our context
(from an extreme value or risk management point of view) non-exchange-
able situations are only of interest if the marginals have the same asymptotic
behaviours (see Subsection 3.2). Otherwise one finds that one of the coor-
dinates is dominating the other ones (see Lemmas 6.1, 7.1, 7.2 below).

• Here, we restrict ourselves to archimedean copulas. One could generalize
our results to other copulas. We have done this generalization in a different
context (see [8] and [9]) and we have seen that the notations and calculations
become much more complicated in the general situation. To keep the analy-
sis of this article easy we have decided to restrict ourselves to archimedean
copulas. By the way, also among archimedean copulas there are interesting
ones from an extreme value point of view. Especially, we have seen (see [8],
Section 3.2) that the Clayton copula plays a crucial role in multivariate
extreme value theory.

• There is a wide range of examples where one has a portfolio of similar
dependent risks and where one wants to study tail probabilities of the form
(1.1): e.g. travel insurance or health insurance portfolio (see e.g. Bäuerle-
Müller [1]), credit risk portfolio (see e.g. Frey-McNeil [13]), reinsurance port-
folio (see e.g. Kremer [12]), Motor hull portfolio with protection against hail
storms, etc.

We will be interested into the limit x ↓ xF, where xF = inf{x ∈ �; F (x) > 0}
denotes the left endpoint of the distribution F. We have seen (see e.g. [9]) that
from a mathematical point of view it is much easier to analyze lower tail depen-
dence than upper tail dependence. Therefore we assume that losses Xi are neg-
ative and that we are interested into the behaviour Xi → –∞, xF resp. In practice,
this can always be obtained by ‘sign flips’ (x 7 –x). Such a ‘sign flip’ reflects a
transformation from a random vector X with copula C to a random vector –X
with copula Cõ, where Cõ is the survival copula of C (see [9]). Such a transformation
reflects also changing from upper tail dependence to lower tail dependence.

Definition 3.2 A function f is regularly varying with index � ∈ � at x– (x+, resp.)
if for all t > 0

( )
( )

, ( )
( )

, .lim limf y
f yt

t f y
f yt

t resp� �

y x y x
= =

- .

(3.1)

We write f ∈ �
x0

-

(f ∈ �
x0

+

, resp.). For � = 0 we say f is slowly varying. For
� = –∞ (i.e. we consider for the rhs of (3.1) lim� → –∞t�) we use the terminology
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rapidly varying. A standard reference on regular variation is Bingham-Goldie-
Teugels [2].

3.2. Marginal behaviours

As already mentioned above there are three different types of marginal behav-
iours: In the Fisher-Tippett Theorem and the Pickands-Balkema-de Haan The-
orem (see e.g. Theorems 3.2.3 and 3.4.13(b) in [3]) one sees that the one-dimen-
sional distributions (marginals) can essentially be divided into three subclasses
for analyzing extremal events. The crucial conditition is the rate of decay at
±∞, i.e. the fatness of the tails: Let xF denote the left-endpoint of the distrib-
ution F. Then the three subclasses are characterized by (see Theorems 3.3.7,
3.3.12 and 3.3.27 in [3] for necessary and sufficient conditions)

• Fréchet case: F (·) ∈ b-0 3- for � > 0.

• Weibull case: Assume xF > –∞ and F (xF –1/·) ∈ b-0 3- for � > 0.

• Gumbel case: Assume xF > –∞ and there exists a positive function a (·) such
that for t ∈ �

( )
( )

.lim F u
F u ta u

e
u x

t

F

+
=

.

^ h
(3.2)

For a possible choice of a (·) we refer to [3], (3.34).

We want to stress here once more that in applied problems one can often not
give an explicit description of the excess distribution for rare events (since one
has almost no datas). Therefore it is often a successful way to approximate
the true distribution by one of the three limit laws (Fréchet, Weibull or Gumbel
distribution) since we know that asymptotically we have a weak convergence
result.

Examples are given below, see Section 5.1.

3.3. Main theorem

As for the marginals, there are exactly three different types of behaviours for
archimedean copulas (see also [8], Section 3.1). We can divide archimedean cop-
ulas into the following three subclasses: a) regularly varying ones, b) rapidly
varying ones (comonotonic copula), and c) slowly varying ones. In this article
we only treat subclass a) (regularly varying ones). The claims and proofs for
b) (rapidly varying ones) are similar to the regularly varying case. Case c), the
slowly varying case, is more complicated since it ranges from independent to
weakly tail dependent copulas (see also Fallacy 5.1 in [9]). Especially, it is nec-
essary to analyze higher order terms in order to determine asymptotic behav-
iours. We will not treat this case here because it would go beyond the scope of
this article.
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Theorem 3.3 Assume d ≥ 2, �> 0 and �> 0. There exist constants qF
d (�,�), qW

d (�,
�), qG

d (�) ∈ [d –1/�,∞) such that for all X satisfying Assumption 3.1 with c ∈ �-00+

and

a) Fréchet case: with marginals F (·) ∈ b-0 3- :

i( ) ( , ).lim �F u P X ud q b1
u i

d

d
F

1

#
-

- =
"3 =

!= G (3.3)

b) Weibull case: with marginals F with xF > –∞ and F (xF –1/ ·) ∈ b-0 3- :

i( / ) / ( , ).lim �F x u P X dx d u q b
1

1
u F

F
i

d

d
W

1

#
+

+ =
"3 =

!= G (3.4)

c) Gumbel case: with marginals F with xF ≥ – ∞ and there exists a positive func-
tion a (·) such that (3.2) is satisfied, we have

i( ( )) ( ) ( ).lim �F u a u P X d u a u q1
u x i

d

d
G

1F

#
+

+ =
. =

! ^ h= G (3.5)

Interpretation and Properties.

• The constants in the above theorem can explicitly be calculated. The explicit
forms of the limiting constants are given below in formula (4.6).

• Theorem 3.3 shows that � and � determine the asymptotic behaviour of
aggregate random variables (e.g. in the Fréchet case): Out of � and � we cal-
culate the constant qF

d (�,�). Hence d, � and the marginal F completely deter-
mine the asymptotic behaviour of our aggregate random variables. For prac-
tical purposes this means that we do not need to worry about an explicite
choice of the archimedean dependence structure. As long as we can deter-
mine the strength of dependence � we can exactly determine the asymptotic
behaviour. For very small quantiles (e.g. Value-at-Risk estimates) we approx-
imate then the ‘true’ quantile by:

i ( ) ( , ), .�P X ud F u q uasb
i

d

d
F

1

"$ 3# +- -
=

!= G (3.6)

4. A RECURSIVE FORMULA FOR qd (�,b)

In this section we define two families of distributions which turn out to be
useful for two purposes. As we will see in Section 6 and 7 they will be used to
prove our main theorem. On the other hand their quantiles allow for an explicit
calculation of the constants qL

d (�,�), L = F,W,G.
Choose �,� > 0, k,d ∈ � with 1 ≤ k ≤ d and d ≥ 2. Then we define for x1, …, xk
∈ [0,1] and xk+1, …, xd ≥ 0
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, ..., .H x x k
x

,
( , )

/

�
� �

d k d
ii

d
b

b

1
1

1

=

-

=

-
!J

L

K
KK

^

N

P

O
OO

h (4.1)

For x1, …, xk ≤ 1 and xk+1,…, xd ∈ � we define

,...,
( )

.
exp �

G x x k
x 1

,
( )

/

�

�

d k d
ii

d

1
1

1

=
- -

=

-
!J

L

K
KK

^

N

P

O
OO

h
" ,

(4.2)

Lemma 4.1 H(�,�)
d,k defines a continuous distribution on [0,1]k ≈ [0,∞)d–k. The func-

tion G(�)
d,k defines a continuous distribution on (–∞,1]k ≈ � d–k. Both distributions

have Clayton copula.

Remark: In view of [8] it is not surprising that both distributions have Clayton
copula. This comes from the fact that the Clayton copula is invariant under
certain transformations and plays the role of an attracting copula (see [9]).

Now we are able to define our constants. We choose two random vectors
(Z(k)

1, …, Z(k)
d ) ~d H(�,�)

d,k and (Z(k)
1, …, Z(k)

d ) ~d G(�)
d,k. Then we define the constants

( , ) / > ,�q P Z db 1 0,
( )

d k
F

i
k

i

d

1

$=
=

!= G (4.3)

( , ) > ,�q P Z db 0,
( )

d k
W

i
k

i

d

1

#=
=

!= G (4.4)

( ) > .�q P dZ 0,
( )

d k
G

i
k

i

d

1

#=
=

!= G (4.5)

The constants in Theorem 3.3 are then given by (L = F,W,G)

( , ) ( ) ( , ) < .� �q
d
k q kb b1 ,

/�
d
L k

k

d

d k
L1

1

1
$ 3= -

-

=

-! c m (4.6)

Remark: For some parameters �, � and d, we can explicitly calculate these
constants (see Subsection 5.2), for all remaining cases we can at least numer-
ically determine the constants qL

d (�,�).
An alternative descriptions for qL

d (�,�) can be found via the following iden-
tity: Assume (Z (1)

1, …, Z (1)
d ) ~d H(�,�)

d,1 then for xi ≤ 1 (i = 1, … k)

, ..., , ...,

( , ..., , , ..., )

( , ..., )
( , ..., ).

P Z x Z x Z Z

H

H x x
H x x

1 1

1 1

( ) ( ) ( ) ( )

,
( , )

,
( , )

,
( , )

�

�
�

d d k

d

d d
d k db

b
b

1
1

1
1

1
1 1

1

1 1

1
3 3

# # # #

= =

8 B

(4.7)

From this one also easily sees that qL
d,d (�,�) = 1.

82 MARIO V. WUTHRICH

https://doi.org/10.2143/AST.33.1.1040 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.1.1040


5. EXAMPLES AND CONCLUSIONS

5.1. Marginal behaviours

In [3], p. 153, there is an overview of the most common marginal distributions
in each class. We choose one explicit example in the Fréchet and in the Gumbel
case.

• The Fréchet case contains heavy-tailed distributions like the Pareto, Cauchy,
Burr or loggamma distribution. Here we concentrate on the Pareto distrib-
ution: For q, � > 0 and x ≤ –q we have

( ) ( / ) .F x xq b
b0!= -
3

-

- (5.1)

• The Weibull case contains short-tailed distributions with finite support like
the uniform or beta distribution.

• The Gumbel case contains moderately heavy to light-tailed distributions like
the exponential, gamma, normal or lognormal distribution. As an example
we choose the standard Gaussian distribution: Using Mill’s ratio (see e.g. [3],
Example 3.3.29), we obtain 

( )
( )

.x x e xas
p

F
2

1 1
/

/x
1 2

2
2

"$ $ 3+ -
- (5.2)

5.2. Value-at-Risk estimates

In this subsection we choose explicit examples for which we calculate the asymp-
totic Value-at-Risk. If losses are negative, the Value-at-Risk at level 1 – p of a
random variable X is defined for p ∈ (0,1) as

( ) ; .sup �X x P X x pVaR 1p1 ! $ $= - -- 6 @" , (5.3)

Typically we are interested into p small. Formula (5.3) is just the “usual” defi-
nition of VaR1–p (–X).

In Theorem 3.3 we have seen that one does not have to make an explicit
choice for the generator c. All we have to choose is � > 0. One explicit choice
would be e.g. the Clayton copula c(t) = t –� – 1 ∈ �-00+. For more examples of
copulas with regularly varying generator we also refer to [8].

In order to determine the asymptotic behaviour of the quantiles we need
to evaluate the constants in Theorem 3.3. To make our lives easy we choose
d = 2. Hence for L = F,W,G we have (see (4.6))

( , ) ( , ) .� �q qb b2 2,
/�L L

2 2 1
1

$= -
- (5.4)

Hence we need to calculate qL
2,1(�,�).
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Figure 1: Fréchet case: asymptotic behaviour of VaR1– p (Y1+Y2) and VaR1– p (X1+X2)
as a function of p (q = 5).

Example 5.1 (Fréchet case)

Consider –X1 and –X2 with Pareto marginals with parameter � ≥ 1 and archime-
dean copula generated by c ∈ �-00+ with � > 0. In view of (4.3):

( , ) / > / ,

( / )
( , )

( / ) ( ) .

�q P
Z

P Z P Z Z
Z

Z

dx
dH x y

dx

x x x dx

b

b

1
2 1 2 1 2

2 1

1 2

1 2 1 2 1

, ( )
( ) ( ) ( )

( )

( )

,
( , )

/
( , ) ( , )

/

/

�

� � � �

F

ii

x y x x

b
b

b b b b

2 1 1
1

2

1
1

1
1

2
1

1
1
1
1

2 1

1 2

1

2

1

1 1 1

1 2

1

1 1

$ # #= = +
-

= +

= + + -

=

= -

- - - - -

#

#

!

`` jj

R

T

S
SS

R

T

S
SS

8

V

X

W
WW

V

X

W
WW

B

(5.5)

Now we choose � = 1/� (for this choice of � and � one can explicitly calculate
qF

2,1). Hence

( / , ) / ( / ) / .q x dxb b b b1 1 2 2 1 2 1 2, /

F b b b
2 1

1 2

1 2

1
= + = +

- - -#] g 6 @

Using (5.4), this implies that

( / , ) / .q b b b1 1 2 1,
F b
2 1 = +] g 6 @ (5.6)

In motor liability, often � = 2 is an appropriate choice for extreme value con-
siderations. So if we have two motor portfolios with decay parameter � = 2
and dependence parameter � = 1/2 (which corresponds to a tail dependence
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coefficient l = 1/4 (see Theorem 3.9 in [8])) we obtain qF
2 (1/2,2) = 3/4. Hence for

such a portfolio we obtain

.P X X u u uasq
2

4
3

1 2

2

"$ 3# ++ - b l7 A (5.7)

This means that the asymptotic behaviour of the Value-at-Risk is (p small)

( / ) .X X p pVaR asq 3 0
/

p1 1 2
1 2

"++- ^ h (5.8)

We compare this to the independent case: Assume –Y1 and –Y2 are i.i.d. Pareto
distributed with parameter � ≥ 1. Hence

,

.
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(5.9)

Hence for � = 2 we have

( / ) ,Y Y pVaR q 2
/

p1 1 2
1 2++- ^ h (5.10)

which is strictly smaller than VaR1–p (X1 + X2) (see Figure 1).

Example 5.2 (Gumbel case)

We choose standard Gaussian marginals and archimedean copula generated by
c ∈ �-00+ with � > 0. In view of (4.5)

( )
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dG x y
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x x dx
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^ h
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(5.11)

This can be determined numerically, e.g. qG
2,1(1) = 0.6427. This implies, using (5.4),

( ) ( ) / . .q q1 2 1 1 2 0 7854,
G G
2 2 1$= - = (5.12)

Using Theorem 3.3 and because of (5.2), we obtain for the asymptotic behav-
iour (� = 1)

( )

( )
.P X X u

q
u e uas

p
2

2

1 1
/

/
G

u
1 2 1 2

2 2
2
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-
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We compare this to the bivariate Gaussian case: Assume (Y1, Y2) is bivariate
normally distributed with standard Gaussian marginals and correlation r ∈ (0,1).
Hence Y1 + Y2 is Gaussian distributed with mean 0 and variance s2 = 2(1+ r).
Because of (5.2) this implies that

( )

.

P Y Y u P
Y Y u u

u e uas

s s r

p
r
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2
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4
1 1

/
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/
/( )u r

1 2
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1 2
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1 2
1

2

"$ $ 3

# #

+

+ - =
+ -

= -
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+ - +

e

d

o

n

7 <A F

(5.14)

Hence we have a faster decay in the bivariate normal case than in the regulary
varying archimedean case. Of course this is not surprising, since we know
from [9], Theorem 5.3, that the bivariate gaussian distribution is asymptotically
independent in a distributional sense for all r ∈ [0,1) (see also [4], Section 4.4).
For r = 1/2 and �= 1 we obtain for the asymptotic Value-at-Risk behaviour the
picture given in Figure 2.
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Figure 2: Gumbel case: asymptotic behaviour of VaR1– p (Y1+Y2) and VaR1– p (X1+X2)
as a function of p (r = 1/2).

5.3. Conclusions

In many applied situations we are confronted with the question of a suitable
Value-at-Risk estimate for dependent random variables. Usually, e.g. in actuar-
ial problems, one faces the additional problem that one has not enough data
to really analyze the dependence structure in the tails. For such situations The-
orem 3.3 and Lemmas 6.1, 7.1, 7.2 are appropriate tools for tail estimates.
All that we have to specify is the dependence strength � and the marginal
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behaviour F. From this information we are already able to estimate the asymp-
totic Value-at-Risk (for estimating � we refer to [4] and [8]).

In the two examples, we have seen that the dependence structure has a
rather large impact on joint extreme value calculations (it blows up the Value-
at-Risk of aggregate dependent random variables by a factor larger than 1
compared to the independent situation). In practice one often chooses an inde-
pendent or a Gaussian model (maybe after logarithmizing the data). Both
models are asymptotically independent (see [9]), and hence one has to be very
careful with the application of such models to practical situations, because
they tend to underestimate joint extremes. Our examples have indicated what
the difference between a mulitivariate dependent and an independent model can
be. The question which remains open is: How fast is the convergence? Of course,
for answering this question we would have to make more assumptions on the
dependence structure. In particular, in our archimedean situation one would
have to analyze higher order terms of the regularly varying generators c.

6. PROOFS IN THE FRÉCHET CASE

We want to point out that the crucial result is formula (6.2). It shows that due
to the dependence structure, one coordinate already determines the asymptotic
behaviour of the whole random vector. For the random vector (X1, …, Xd),
k ≤ d, we define the event

k1( ) , ..., .A u X u X uk # #= - -" , (6.1)

Lemma 6.1 (Fréchet case) Assume d ≥ 2, � > 0 and � > 0. Choose X satisfying
Assumption 3.1 with c ∈ �-00+ and F (·) ∈ b-0 3- . For 1 ≤ k ≤ d, x1, …, xk ∈ [0,1]
and xk+1, …, xd ≥ 0 the following limits are well-defined and we have

d/ ,..., / ( ) ( ,..., ),limP X u x X u x A u H x x,
( , )�

u d k d k d
b

1 1 1# #- - =
"3

7 A (6.2)

i ( ) ( , ).lim �P X ud A u q b,u i

d

k d k
F

1

# - =
"3 =

!= G (6.3)

Proof of Lemma 6.1. First we show that the argument on the left-hand side of
(6.2)-(6.3) is well-defined. Choose u > 0. For e > 0 there exists u0 ≥ u such that

k( ) ( ) , ...,

( )

( ) > ,

P A u P A u P X u X u

k F u k F u

k F u

c c c c e

e 0
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k k 0 1 0 0

1
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1 1
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$ # #

$
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= + -
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-

^_ ^`

^

hi hj

h

7 7 7A A A

(6.4)

where we have used Sklar’s theorem and c ∈ �-00+. Hence the argument on the
left-handside of (6.2)-(6.3) is well-defined. For 1 ≤ k ≤ d, we choose x1,…, xk ≤ 1.
We define for u > 0
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d

k

1, ..., / , ..., / ( )

, ..., , ..., .

F x x P X u x X u x A u

P X
u x X

u x X
u
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u

1 1
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(6.5)

F (k)
u defines a distribution on [0,1]k ≈ [0,∞)d–k. We use the following abbreviation

Y(u) = (Y (u)
1 , ...,Y (u)

d ) ~d F (k)
u i.e. Y(u) has the same distribution as (–u/X1, …, –u/Xd)

conditioned on the event Ak(u). We prove a weak convergence result for Y(u).
Since F(·) ∈ b-0 3- we have for xi as above and e > 0 that there exists u0 such

that for all u > u0

( ) / ( ).x F u F u x x F ue ei i i
b b

# #- - - + -^ ^ ^h h h (6.6)

Since c is regularly varying with index –�, we get a similar estimate for c (see
(6.4)). This implies for all e > 0, using Sklar’s Theorem 2.2,
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Using the same arguments we have a similar lower bound for the lim inf. Since
e was chosen arbitrarily, this proves (6.2):
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H(�,�)
d,k is a continuous function. Because F (k)

u is a distribution on [0,1]k ≈ [0,∞)d–k

so is H (�,�)
d,k . This means that Y(u) converges weakly to Y = (Y1, ...,Yd) ~d H (�,�)

d,k as
u → ∞. In view of the continuous mapping theorem (see e.g. Theorem A2.6 in [3])
this implies
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This proves Lemma 6.1. ¡
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Proof of Theorem 3.3 in the Fréchet case: Because of Assumption 3.1 we have
exchangeability. Hence the following identity is true:
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d
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d
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Hence using exchangeability once again we obtain
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Dividing (6.11) by F (–u) we have that (3.3) follows from (6.9) and (6.4). There
remains to prove that qF

d (�,�) is positive:
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¡

7. PROOFS IN THE WEIBULL AND GUMBEL CASE

For the random vector (X1, …, Xd ), k ≤ d, and xF we define the event

k1( ) / , ..., / .u X x u X x uA 1 1k F F# #= + +" , (7.1)

Lemma 7.1 (Weibull case) Assume d ≥ 2, � > 0 and � > 0. Choose X satisfying
Assumption 3.1 with c ∈ �-00+, xF > –∞ and F (xF – 1/·) ∈ b-0 3- . For 1 ≤ k ≤ d, x1,
…, xk ∈ [0,1] and xk+1, …, xd ≥ 0 the following limits are well-defined and we have

d1 / , ..., / ( ) ( , ..., ),limP X x x u X x x u u H x xA ,
( , )�

u F F d k d k d
b

1 1# #+ + =
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7 A (7.2)
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k d k
W

1

# + =
"3 =

!= G (7.3)

Proof of Lemma 7.1: As in (6.4) we have P[Ak (u)] > 0, hence the arguments in
(7.2)-(7.3) are well-defined. Next we define for u > 0

d

d

1u ( ,..., ) / , ..., / ( )

( ) , ..., ( ) ( ) .

F x x P X x x u X x x u u

P u X x x u X x x u

A

A

( )k
d F F d k

F F d k

1 1

1 1

# #

# #

= + +

= - -

7

7

A

A

(7.4)
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F (k)
u is a distribution with the first k coordinates bounded by 1. For xi > 0, e > 0

there exists u0 such that for all u > u0

( ) ( / ) ( / ) ( ) ( / ).x F x u F x x u x F x ue e1 1i F F i i F
b b# #- + + + + (7.5)

This implies as in (6.7)-(6.8)
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Therefore we observe weak convergence which together with the continuous
mapping theorem implies

i

i

/ ( )

( ) ( , ).

lim

lim �

P X d x u u

P u X x d u q b

A

A

1
u F

i

d

k

u F
i

d

k d
W

1

1

#

#

+

= - =

"

"

3

3

=

=

!

!

^

^

h

h

=

=

G

G

(7.7)

This finishes the proof of Lemma 7.1. ¡

For the random vector (X1, …, Xd), k ≤ d, and a function a(·) we define the event

k( ) ( ), ..., ( ) .u X u a u X u a uAk 1# #= + +" , (7.8)

Lemma 7.2 (Gumbel case) Assume d ≥ 2 and � > 0. Choose X satisfying Assump-
tion 3.1 with c ∈ �-00+, xF ≥ –∞ and there exists a positive function a (·) such that
(3.2) is satisfied. For 1 ≤ k ≤ d, x1,…, xk ∈ [0,1] and xk+1, …, xd ≥ 0 the following
limits are well-defined and we have

d1 ( ),..., ( ) ( ) ( , ..., ),limP X u x a u X u x a u u G x xA ,
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u d k d k d1 1# #+ + =
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7 A (7.9)
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! ^ h= G (7.10)

Proof of Lemma 7.2: As in (6.4) we have P [Ak(u)] > 0, hence the arguments in
(7.9)-(7.10) are well-defined. Next we define
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F (k)
u is a distribution with the first k coordinates bounded by 1. For xi ∈ �, e > 0

there exists u0 > xF such that for all u ∈ (xF,u0)

( ) ( ) ( ).e F u F u x a u e F ux
i

xe ei i# #+
- +

^ h (7.12)

This implies as in (6.7)-(6.8)
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But then the proof follows as in the Fréchet and Weibull case. This finishes the
proof of Lemma 7.2. ¡

Proof of Theorem 3.3 in the Weibull and Gumbel case (3.4)-(3.5): The proofs are
similar to (6.10)-(6.11): replace {Xk ≤ –u} by {Xk ≤ xF + 1/u} and {Xk ≤ u + a(u)},
resp., and replace the event Ak(u) by Ak(u) and Ak(u), resp. This finishes the proof
of Theorem 3.3. ¡

Proof of Lemma 4.1. Formulas (6.8) and (7.13) imply that H(�,�)
d,k and G(�)

d,k are con-
tinuous distributions. Hence there remains to show that they have Clayton copula.
We only prove the statement for H(�,�)

d,k since for G(�)
d,k the proof is analogous.

First we determine the marginals: 1 ≤ j ≤ k ≤ i ≤ d
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Sklar’s Theorem 2.2 immediately implies
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This proves Lemma 4.1. ¡
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