
Accepted manuscript: Authors' Copy 

This peer-reviewed article has been accepted for publication but not yet copyedited or 
typeset, and so may be subject to change during the production process. The article is 
considered published and may be cited using its DOI. 

This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any 
medium, provided the original work is unaltered and is properly cited. The written permission 
of Cambridge University Press must be obtained for commercial re-use or in order to create a 
derivative work. 

Predicting cardiovascular disease in patients with mental illness 1 

using machine learning 2 

 3 

Martin Bernstorff1,2,3, Lasse Hansen1,2,3, Kevin Kris Warnakula Olesen4, 4 

Andreas Aalkjær Danielsen1,2, Søren Dinesen Østergaard1,2 5 
 6 

1 Department of Affective Disorders, Aarhus University Hospital – Psychiatry, Aarhus, Denmark 7 
2 Department of Clinical Medicine, Aarhus University, Aarhus, Denmark 8 

3 Center for Humanities Computing, Aarhus University, Denmark 9 
4 Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark. 10 

 11 
 12 
 13 
 14 
Corresponding author 15 
Martin Bernstorff, MD 16 
Department of Affective Disorders 17 
Aarhus University Hospital - Psychiatry  18 
Palle Juul-Jensens Boulevard 175 19 
8200 Aarhus N 20 
Denmark 21 
E-mail: manber@rm.dk  22 
Telephone: +45 4142 6636 23 
 24 
 25 
 26 

27 

https://doi.org/10.1192/j.eurpsy.2025.1 Published online by Cambridge University Press

https://doi.org/10.1192/j.eurpsy.2025.1


Accepted manuscript: Authors' Copy 

2 
 
 

Abstract 28 

 29 
Background: Cardiovascular disease (CVD) is twice as prevalent among individuals with 30 

mental illness compared to the general population. Prevention strategies exist but require 31 

accurate risk prediction. This study aimed to develop and validate a machine learning model 32 

for predicting incident CVD among patients with mental illness using routine clinical data 33 

from electronic health records. 34 

 35 

Methods: A cohort study was conducted using data from 74,880 patients with 1.6 million 36 

psychiatric service contacts in the Central Denmark Region from 2013 to 2021. Two machine 37 

learning models (XGBoost and regularized logistic regression) were trained on 85% of the 38 

data from 6 hospitals using 234 potential predictors. The best performing model was 39 

externally validated on the remaining 15% of patients from another 3 hospitals. CVD was 40 

defined as myocardial infarction, stroke, or peripheral arterial disease. 41 

 42 

Results: The best-performing model (hyperparameter-tuned XGBoost) demonstrated 43 

acceptable discrimination, with an area under the receiver operating characteristic curve of 44 

0.84 on the training set and 0.74 on the validation set. It identified high-risk individuals 2.5 45 

years before CVD events. For the psychiatric service contacts in the top 5% of predicted risk, 46 

the positive predictive value was 5%, and the negative predictive value was 99%. The model 47 

issued at least one positive prediction for 39% of patients who developed CVD. 48 

 49 

Conclusions: A machine learning model can accurately predict CVD risk among patients 50 

with mental illness using routinely collected electronic health record data. A decision support 51 
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system building on this approach may aid primary CVD prevention in this high-risk 52 

population. 53 

 54 
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Introduction 57 

CVD not only diminishes quality of life, but also contributes substantially to premature 58 

mortality [1,2]. Individuals with mental illness are twice as likely to develop CVD compared 59 

to the background population [3,4], and are at elevated risk of premature death due to CVD 60 

[2]. This elevated risk can likely be attributed to higher prevalence of unhealthy lifestyle such 61 

as poor diet, sedentary behaviour, and excessive alcohol consumption [5]. Additionally, 62 

psychopharmacological treatment, antipsychotics in particular, acts as a double-edged sword 63 

in the context of CVD, increasing risk due to weight gain and dysmetabolism [6], while being 64 

associated with lower risk of cardiovascular disease in observational studies [7], likely via 65 

beneficial effect on the underlying mental disorder. 66 

 67 

Unfortunately, the elevated risk of CVD among those with mental illness is not reflected in 68 

the administration of preventive measures, with screening for CVD occurring at 25% lower 69 

rates among individuals with mental illness [3,8], and up to 88% of individuals with 70 

schizophrenia with dyslipidaemia not receiving adequate treatment for the latter [9]. 71 

Consequently, identifying individuals with mental illness at elevated risk of CVD is a crucial 72 

initial step towards implementing effective preventive strategies. However, to the best of our 73 

knowledge, there is a paucity of tools designed for predicting CVD risk among patients 74 

receiving treatment in psychiatric service systems. 75 

 76 

Accurately assessing CVD risk is a multifaceted challenge. Machine learning models are 77 

particularly well-suited for this task, given the presence of numerous interacting factors 78 

increasing CVD risk [10], and the models' ability to capture complex relationships while 79 

mitigating the impact of data idiosyncrasies [11]. Previous research has demonstrated the 80 

efficacy of machine learning models in accurately predicting clinical outcomes for patients 81 
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with mental disorders when trained on electronic health record data. Specifically, it has been 82 

possible to predict, e.g., mechanical restraint [12], progression from prediabetes to type 2 83 

diabetes [13], and incidence of type 2 diabetes [14]. In line with these achievements, to aid 84 

identification of patients with mental illness who may benefit from targeted intervention to 85 

prevent CVD, we aimed to develop and validate a machine learning model trained on 86 

electronic health record data to predict development of CVD among patients with mental 87 

illness. 88 

  89 
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Methods 90 

The methods are illustrated by panels A-I in Figure 1. 91 

Data and cohort extraction 92 

This study is based on electronic health record data from the PSYchiatric Clinical Outcome 93 

Prediction (PSYCOP) cohort, which encompasses all individuals with at least one contact 94 

with the Psychiatric Services of the Central Denmark Region in the period from January 1, 95 

2011, and November 22, 2021. The dataset includes information from routine clinical 96 

practice (i.e., there was no specific data collection for the purpose of this study) on service 97 

contacts, diagnoses, medications, procedures and laboratory results from all public hospitals 98 

(psychiatric as well as general hospitals) in the Central Denmark Region (Figure 1A). 99 

Denmark has a tax-financed universal public healthcare system.  100 

 101 

A flowchart illustrating the definition of the patient cohort is available as eFigure 1. For this 102 

study, we restricted the cohort to patients with contacts to the Psychiatric Services of the 103 

Central Denmark Region after January 1, 2013, due to data instability prior to this date 104 

caused by the implementation of a new electronic health record system [15,16]. Only patients 105 

aged 18 years or older were included, as the probability of developing CVD is very low in 106 

those below the age of 18. Patients with known CVD, defined by meeting one of the outcome 107 

criteria (see below) between January 1, 2011, and December 31, 2013, were excluded to 108 

minimize issuing of predictions for prevalent cases.  109 

 110 

Outcome definition (cardiovascular disease) 111 

The outcome definition had three elements. First, to align with prior research, we took 112 

inspiration from the outcome definition from the Systematic Coronary Risk Evaluation 2 113 
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(SCORE2) [17]. Specifically, we defined incident CVD as the first occurrence of a diagnosis 114 

of myocardial infarction (MI) (International Classification of Diseases, 10th revision (ICD-115 

10): I21-I23 or a diagnosis of stroke (ICD-10: I6, (Figure 1B). Second, we included 116 

interventions/procedures which are highly indicative of vascular disease (procedure codes are 117 

available in eTable 1) to the outcome definition, namely percutaneous coronary intervention 118 

(PCI), coronary artery bypass grafting (CABG), intracranial endovascular thrombolysis and 119 

other intracranial endovascular surgery. Third, given the large morbidity and disability 120 

burden due to peripheral arterial disease, its increasing incidence, and the potential for 121 

prevention [18], we included diagnoses (ICD-10: I70.2, I73.9) and procedures (procedure 122 

codes are available in eTable 1) for iliac, femoral, popliteal and distal arterial disease to the 123 

outcome definition.  124 

Data splitting  125 

The data were divided into two subsets: a training dataset (85% of the data) and a test dataset 126 

(15% of the data). Specifically, all visits to the Psychiatric Services in either the western or 127 

eastern part of the Central Denmark Region (Aarhus, Gødstrup, Herning, Holstebro, Horsens 128 

and Randers) were used for the training set, and the central part (Viborg, Silkeborg and 129 

Skive) for the test-set (see Figure 1C). If a patient first had visits in one of the splits (i.e. the 130 

training set or the test set), any subsequent visits in the other split was removed. This 131 

guaranteed that no patient appeared in both the training and test datasets. After this point, the 132 

test dataset was left aside and only used for the final evaluation of the best performing model 133 

obtained during the training phase. This geographical split assessed the generalizability 134 

across geography, e.g., to which extent the model could be applied without modification if a 135 

new hospital was added to the region. 136 

 137 
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Prediction time filtering 138 

We defined prediction times as the time of any in- or outpatient contact with the Psychiatric 139 

Services (service contacts). Consequently, each patient could have multiple prediction times - 140 

corresponding to their number of service contacts. We excluded prevalent cases by not 141 

issuing a prediction if that patient had already met the CVD outcome criteria at the time of a 142 

service contact (Figure 1D). Moreover, no prediction was made if the lookbehind window 143 

(the time used for extracting predictors) included time before follow-up started on January 1, 144 

2013 or if the lookahead window (the time within which to detect the outcome) of 2 years 145 

extended beyond the end of follow-up, the date of moving out of the Central Denmark 146 

Region, or the patient's death. These "truncations" are artifacts caused by data collection. If 147 

not accounted for, they could cause the model to learn patterns that do not exist during 148 

implementation, leading to discrepancies between the model's test performance and actual 149 

implemented performance. In the case of a patient moving into the region, we did not issue 150 

predictions for two years after the move, mirroring the wash-in for existing patients. 151 

 152 

Predictor grouping and flattening 153 

Predictors were chosen based on a recent meta-analysis of prediction models for CVD in non-154 

psychiatric settings and included demographics, laboratory results, diagnoses, antipsychotics, 155 

and mood stabilizers [19]. Specifically, the following predictors were included, all 156 

operationalized using routine clinical electronic health record data from the Central Denmark 157 

Region: age, sex, smoking status, high- and low-density lipoprotein (HDL and LDL), 158 

haemoglobin A1c (HbA1c), systolic blood pressure, diagnosis of chronic lung disease (ICD-159 

10: J40-J44*), diagnoses from all psychiatric subchapters individually (F0-F9), as well as use 160 

of any one of the top 10 weight gaining antipsychotics during inpatient treatment 161 

(Anatomical Therapeutic Chemical classification codes in parentheses): clozapine 162 
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(N05AH02), zotepine (N05AX11), olanzapine (N05AH03), sertindole (N05AE03), 163 

chlorpromazine (N05AA01), iloperidone (N05AX14), quetiapine (N05AH04), paliperidone 164 

(N05AX13), trifluoperazine (N05AB06), and risperidone (N05AX08), resulting in 26 eligible 165 

features (Figure 1E) [20,21]. These predictors were aggregated over the lookbehind windows 166 

(90, 365 and 730) days, to incorporate different temporal contexts, and with different 167 

aggregation methods (min, mean, max) using the timeseriesflattener python package [22], 168 

resulting in a total of 234 potential predictors (Figure 1F). For further elaboration, see the 169 

Supplementary Material.  170 

 171 

The dataset includes numerous predictors lacking values within the lookbehind window. 172 

However, these absent values do not constitute missing data in the conventional sense, as 173 

they are not a result of omitted data entry. Instead, the absence of data reflects the reality of 174 

clinical practice. Since this absence aligns with the data available for implementation, 175 

patients exhibiting such an absence should be retained in the dataset. During model training, 176 

these absent values are either passed on directly (XGBoost) or imputed using the population 177 

median (logistic regression). 178 

 179 

Predictor addition by early stopping 180 

The predictors were rank ordered into eight layers (see eTable 2). Models were trained 181 

incrementally, adding layers until discrimination stabilized (∆AUROC < 0.01) for the last 182 

two layers. The best-performing layer with the fewest features was further refined by 183 

incorporating additional aggregation methods (min, max, mean) and lookbehind windows 184 

(90, 365, 730 days). See the Supplementary Material for further details.  185 

 186 

Model selection and hyperparameter tuning 187 
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We focused on two models: XGBoost and elastic net regularised logistic regression, due to 188 

the large number of possible model configurations (Figure 1G). XGBoost was selected for its, 189 

fast training, and ability to handle numerical, categorical, and missing values internally, and 190 

due to the fact that gradient boosting methods generally outperform other machine learning 191 

approaches on tabular data [23,24]. As simpler models are more interpretable and easier to 192 

implement, logistic regression with elastic net regularisation was included as a benchmark 193 

model. Logistic regression requires missing value imputation as part of pre-processing, and 194 

we imputed using the median. For the elastic net penalisation to not be affected by predictor 195 

units, we Z-score standardised all predictors for the logistic regression. All predictors listed 196 

under “Predictor grouping and flattening” were considered for the XGBoost and elastic net 197 

regularised logistic regression. As a sensitivity analysis, we trained an elastic net regularised 198 

logistic regression using only predictors that mimic those from SCORE2 as closely as 199 

possible with the available data (see Supplementary Table 1 for the specific predictors). All 200 

models were trained using 5-fold cross-validation, with hyperparameter optimisation to 201 

maximise the area under the receiver operating characteristic curve (AUROC) using the tree-202 

structured Parzen estimator algorithm in Optuna v2.10.1 (Figure 1H). Additional details, 203 

including which hyperparameters were explored, are provided in the Supplementary Material. 204 

 205 

Model evaluation 206 

The model that achieved the best AUROC on the training dataset was evaluated on the 207 

geographically independent (external) test dataset (Figure 1I). Performance metrics, including 208 

AUROC, sensitivity, specificity, positive predictive value, and negative predictive value, 209 

were calculated. Since healthcare systems are limited by available resources, and can 210 

accommodate different amounts of interventions, performance metrics were calculated for 211 

different predicted positive rates [25]. The predicted positive rate is the proportion of all 212 
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prediction times which are marked as "positive". The mean time from the first positive 213 

prediction until a patient met the definition of CVD was also determined. Predictor 214 

importance was estimated using information gain. 215 

 216 

Robustness analyses 217 

The stability of model prediction was assessed across patient sex, age, as well as time from 218 

first visit, and month of year.  219 

Post-hoc analyses 220 

A model using the best performing hyperparameters was re-evaluated on a random split of 221 

the entire dataset. All patients were randomly allocated (85%-15%) to either the training 222 

(85%) or test set (15%), ensuring no patient overlap between the splits. This analysis assessed 223 

the performance in the case where all application-sites are included in the training data. 224 

 225 

Ethics 226 

The use of electronic health record data for this study was approved by the Legal Office of 227 

the Central Denmark Region in accordance with the Danish Health Care Act §46, Section 2. 228 

According to the Danish Committee Act, ethical review board approval is not required for 229 

studies based solely on data from electronic health records (waiver for this project: 1-10-72-230 

1-22). Data were processed and stored in accordance with the European Union General Data 231 

Protection Regulation and the project is registered on the internal list of research projects 232 

having the Central Denmark Region as data steward. 233 

 234 

Data and code sharing 235 
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The code for all analyses is available on GitHub: https://github.com/Aarhus-Psychiatry-236 

Research/psycop-237 

common/tree/7cc7ad912e638957e983a1af2a6df0f474aa6345/psycop/projects/t2d 238 

  239 
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Results  240 

The eligible cohort consisted of 27,954 patients with a total of 364,791 psychiatric service 241 

contacts (prediction times). Demographic and clinical information on the cohort is reported in 242 

Table 1. Patients in the train- and test data were broadly similar, with median ages of 35.2 243 

and 35.9 years, and proportions of females of 54.9% and 58.0%, respectively. Among the 244 

27,954 patients, 524 (2.0%) experienced a CVD event. The incidence of CVD was slightly 245 

higher in the test data compared to the training data (2.2% vs. 1.8%). The incidence of CVD 246 

spiked around the end of the wash-out period, after which it declined (eFigure 2). For each 247 

hpredictor, the proportion of prediction times using the fallback value is described in eTable 248 

3. 249 

Figure 2A presents the results of the model training. The XGBoost model using only 250 

predictor layers 1+2 (sex, age, LDL, systolic blood pressure, smoking (pack-years) and 251 

smoking (daily/occasionally/prior/never) achieved an AUROC of 0.84 (95% CI: 0.83; 252 

0.84). Incorporating additional lookbehinds or aggregation methods did not enhance 253 

model performance. Furthermore, the inclusion of further predictor layers did not 254 

increase the AUROC materially or statistically significantly (see eTable 4). The SCORE2-255 

like elastic net regularised logistic regression model performed comparably, with an 256 

AUROC of 0.83 (95% CI: 0.83; 0.83). 257 

Figure 2B shows the results for the XGBoost model with a 5-year lookahead window applied 258 

to the test data. It achieved an AUROC of 0.74 (95% CI: 0.73; 0.75). Figure 2C shows the 259 

resulting confusion matrix at a predicted positive rate of 5% with a positive predictive value 260 

of 5% and a negative predictive value of 99%, reflecting that for every twenty positive 261 

predictions, one prediction was followed by CVD within 5 years. At this predicted positive 262 

rate, the sensitivity at the level of prediction times (contacts to the Psychiatric Services) was 263 
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19%, and 39% of all patients who developed CVD were predicted positive at least once 264 

(Table 2). Figure 2C shows that, for patients experiencing a CVD event, the model’s 265 

probability of flagging them as positive (high risk) increases as the prediction time 266 

approaches the CVD event. Figure 2D shows the time from a patient’s first positive 267 

prediction until they experienced the CVD event. The model marked patients as being at high 268 

risk an average of 1.4 years before the CVD event. 269 

 270 

Supplementary Table 3 lists prediction by information gain for the best-performing XGBoost 271 

model (layers 1+2). The most important predictor was age, followed by smoking 272 

(daily/occasionally/prior/never), sex, systolic blood pressure, smoking (pack-years), and 273 

LDL-cholesterol.  274 

Figure 3 highlights that the model was stable across sex, age, and month of year. When 275 

calculating model performance within specific age bins, it dropped markedly, which is 276 

expected given the relative importance of increasing age for prediction. Model 277 

performance also dropped somewhat for patients having been in the system for longer, 278 

perhaps indicating a decreasing predictor-sampling-frequency over time (most 279 

diagnostic workup in the initial hospital contacts).  280 

Post-hoc analyses 281 

When training (85% split) and evaluating (15% split) the model on a random split of the 282 

entire dataset, it obtained an AUROC of 0.84 on the test data, identical to the cross-validated 283 

performance in the training data. 284 

285 
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Discussion 286 

In this study, we explored the feasibility of developing a machine learning model trained on 287 

routine clinical data from electronic health records to predict the development of CVD in 288 

patients with mental illness. An XGBoost model based only on layers 1+2 (sex, age, LDL, 289 

systolic blood pressure, smoking (pack-years) and smoking (daily/occasionally/prior/never) 290 

achieved an AUROC of 0.74 in the test set at the level of individual service contacts, with a 291 

PPV of 5% and an NPV of 99%. For patients who developed CVD and were identified by the 292 

model, the median time from initial positive prediction to CVD diagnosis was 1.4 years. This 293 

relatively simple model, in which the predictors overlap substantially with those from 294 

SCORE2, offers easy implementation in psychiatric services with less comprehensive 295 

electronic health record systems [26]. Notably, in spite of the theoretical improvements 296 

stemming from the use of machine learning, logistic regression with elastic net penalisation 297 

performed as well as the more complex XGBoost. This implies that, for prediction of CVD 298 

with a well-established aetiology, simpler models may be sufficient.  299 

A substantial decline in model performance was observed when evaluating on the test 300 

set (from an AUROC of 0.84 during cross-validation on the training set to an AUROC of 301 

0.74 on the test set). Of note, the training and test sets comprised data from different 302 

psychiatric hospitals within the Psychiatric Services of the Central Denmark region. This 303 

suggests that substantial distribution shifts can occur even within a relatively 304 

homogeneous population sharing geographical proximity, healthcare infrastructure, 305 

and clinical protocols, which is further supported by the relative lack of performance 306 

difference between training and test when performing a random split of the data (from 307 

an AUROC of 0.84 during cross-validation on the training set to an AUROC of 0.84 on the 308 

test set). These shifts may be due to variations in patient demographics and/or in data 309 
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collection between hospitals – despite geographical proximity. More broadly, this lends 310 

credence to the argument that external validation should not be considered an absolute 311 

prerequisite for scientific publication or model evaluation. Instead, it is proposed that 312 

models should undergo rigorous testing within the specific population which they are 313 

targeting [27].  314 

Adding information on psychiatric diagnoses by subchapter and antipsychotics (predictor 315 

layer 4) did not improve predictive performance. We hypothesise that this is either due to the 316 

relatively crude granularity with which these predictors were included, or that their effects are 317 

mediated by predictors were already included in the model (e.g. LDL, systolic blood 318 

pressure, HbA1c). If diagnoses and antipsychotics affect CVD risk mostly through these 319 

variables, they will add no further information. Moreover, the use of antipsychotics results in 320 

better treatment of the underlying disease, perhaps resulting in more health-promoting 321 

behaviour. In observational studies, antipsychotic use is associated with a lower risk of 322 

cardiovascular mortality [7]. 323 

 324 

To our knowledge, this is the first study to predict the onset of CVD specifically in patients 325 

with mental illness based on routine clinical EHR data from psychiatric services. 326 

Consequently, comparisons can only be made to studies from other settings/populations. 327 

Osborn et al. trained a CVD prediction model specifically for patients with severe mental 328 

illness in a primary care setting, including diagnoses and use of antipsychotics as potential 329 

predictors [10]. The final model (PRIMROSE) was based on age, gender, height, weight, 330 

systolic blood pressure, diabetes, smoking, body mass index, lipid profile, social deprivation, 331 

severe mental illness diagnosis, prescriptions of antidepressants, antipsychotics, and reports 332 

of heavy alcohol use. It achieved a C-statistic of 0.78, compared to 0.76 of the Framingham 333 

risk score (including weights from age, sex, current smoking, total cholesterol, HDL 334 
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cholesterol, systolic blood pressure, and blood pressure medications). Quadackers et al. 335 

compared multiple model’s absolute risk estimates for psychiatric inpatient populations, 336 

namely SCORE (blood pressure, age, sex, smoking, total cholesterol, and geographical 337 

region), the Framingham risk score and PRIMROSE (described above) [28]. They found very 338 

low agreement between the methods, with the Framingham risk score estimating risks 5-10 339 

times higher than SCORE, arguing that it overestimates risk because the risk of CVD was 340 

higher at the time of model development than it is now. This indicates the need for re-341 

calibrating models if they are used in markedly different populations than those in which they 342 

were developed – one example being patients with mental illness.  343 

 344 

Outside the context of patients with mental illness/psychiatric services, a recent meta-analysis 345 

found 16 studies comparing machine-learning models to traditional statistical models for 346 

prediction of CVD [19]. In aggregate, the point estimate of the machine-learning methods 347 

was marginally better, with a C-statistic of 0.77 (0.74-0.81) vs. 0.76 (0.73-0.79) for 348 

traditional statistical models. However, they also find that their implementation is rare and 349 

uncertain, arguing that “the impact of missing or unavailable variables and different baseline 350 

characteristics on model performance when applied cross-institutionally is unclear”. Indeed, 351 

implementing a model based on research cohorts can be challenging, because information on 352 

predictors is often not collected as part of routine clinical care, and/or the model assumes that 353 

all predictors are available at the time(s) of prediction. we intentionally used only readily 354 

available routine clinical data from electronic health records. 355 

 356 

If the model developed in this study were to be implemented in the Psychiatric Services of 357 

the Central Denmark Region, positive CVD predictions could be automatically presented to 358 

healthcare staff via the EHR system, enabling them to initiate appropriate interventions at the 359 
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level of the individual patient. The specific interventions will depend on the situation. As a 360 

first step, more information should typically be gathered, including blood pressure, and a full 361 

cardiovascular risk profile. Based on these measurements, patients should be treated 362 

according to guidelines [29]. Notably, lifestyle interventions do not appear to be cost-363 

effective in this population, with a large randomised trial of patients with schizophrenia 364 

finding no effect [30,31], and a meta-analysis of trials finding only a clinically insignificant 365 

change to BMI (-0.63 kg/m2) [32]. Pharmacological interventions, such as statins and 366 

antihypertensive drugs, may be more successful, as they require smaller changes to daily life. 367 

Another candidate, smoking cessation medication (e.g. bupropion), is as effective among 368 

patients with severe mental illness as in the general population, but underutilised [29,33].  369 

 370 

There are limitations to this study that should be considered by the reader. First, prevalent 371 

cases of CVD can be misclassified as incident, leading to a false spike in incidence at the 372 

beginning of the follow-up period. We mitigated this by employing a 2-year wash-in period. 373 

We found that, for most CVD events, incidence was decreasing after the wash-in period. 374 

There are multiple potential reasons for this finding. Specifically, it may reflect a true drop in 375 

incidence as studies show decreasing incidence rates of CVD in Denmark, but these drops are 376 

insufficient to fully explain the trend [34,35]. As such, it cannot be ruled out that some part of 377 

the events we detect are prevalent cases. This is, however, unlikely to cause harm to patients, 378 

as prevalent cases also need prevention of further events, but it may have inflated the 379 

prediction estimates. Second, this study does not address potential effects of implementing 380 

the developed model. When prediction models are implemented, they should affect 381 

behaviour, for example by inducing further testing or treatment. Specifically, implementing a 382 

CVD prediction model would likely induce more relevant LDL- and blood-pressure 383 

measurements. These model-induced measurements should improve the next prediction 384 
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issued by the model, meaning that predictions following a positive prediction are likely less 385 

accurate in the present dataset than they would be following implementation. Third, many 386 

important variables for CVD, such as physical activity, dietary habits, or waist circumference, 387 

are not collected with sufficient regularity as part of current clinical practice and could not be 388 

included in the model. If they had been available, the model would likely perform with 389 

greater accuracy. Fourth, since, most patients who experienced an event in the test set had a 390 

stroke (71.6%) the model is less likely to generalise to cohorts where stroke is less prevalent. 391 

However, given that the important features for the model are very general CVD features, we 392 

would expect meaningful generalisation. Finally, machine learning models vary markedly in 393 

their generalisability. We used routine clinical data from a system with universal healthcare 394 

and observed performance differences between departments within the same regional 395 

Psychiatric Services. Therefore, direct transfer of the model to other healthcare system would 396 

probably yield suboptimal predictions. However, the approach is likely to be generalisable, 397 

and retraining the model on data from other settings using the same architecture may allow 398 

for transferability.  399 

 400 

In conclusion, a machine learning model trained on routine clinical data from electronic 401 

health records can predict development of CVD among patients with mental illness at a level 402 

that may make clinical implementation as a decision support tool feasible. Specifically, the 403 

model may help clinicians identifying which patients will benefit from primary preventative 404 

initiatives. Moving forward, we see two main tasks arising from this work. First, we will 405 

work towards testing the feasibility of implementing the model as a clinical decision support 406 

tool in the Psychiatric Services of the Central Denmark Region. Second, as we believe the 407 

model may hold potential for broader application, we aim to conduct external validation in 408 

independent samples. 409 
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Figure 1:  Extraction of data and outcome, dataset splitting, prediction time filtering, specification of 574 
predictors and flattening, model training, testing and evaluation 575 
 576 

 577 
 578 
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A: Data was extracted from the electronic health records   579 
B: Potential CVD was identified 580 
C: The dataset obtained is split geographically into an independent training dataset (85%) and test dataset (15%) with no 581 
patient being present in both groups.  582 
D: Prediction times were removed if their lookbehind window extended beyond the start of the dataset or their lookahead 583 
extended beyond the end of the dataset. Prediction times were also removed after a patient developed CVD. 584 
E: Predictors were grouped.  585 
F: Predictors for each prediction time were extracted by aggregating the variables within the lookbehind with multiple 586 
aggregation functions. As a result, each row in the dataset represents a specific prediction time with a column for each 587 
predictor.  588 
G: Predictor layers were added until model performance no longer improved. 589 
H: Models were trained and optimized on the training set using 5-fold cross-validation. Hyperparameters were tuned to 590 
optimize AUROC.  591 
I: The best candidate model was evaluated on the independent test set. True positive predictions were those with predicted 592 
probabilities above the decision threshold and the patient having a CVD event within the lookahead window. False positive 593 
predictions were those where the model’s predicted probability was above the decision threshold, but the patient did not have 594 
a CVD event within the lookahead window. False negatives had predicted probabilities below the threshold, but the patient 595 
had a CVD event within the lookahead window. True negatives had predicted probabilities below the threshold, and the 596 
patient did not have a CVD event within the lookahead window. 597 
 598 
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Figure 2. Results from model training of all models (A) and on geographically independent 
(external/test) data (B-E) 

 

 

A 
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A) Results of experiments across aggregation methods (mean vs. min, mean and max), lookbehinds (730 days vs. 90, 365 
and 730 days), predictor layers (1, +2, +3, +4) and hyperparameter tuning. Note that results for each layer also includes the 
features of the prior layers. B) Receiver operating characteristics (ROC) curve. C) Confusion matrix. PPV: Positive 
predictive value. NPV: Negative predictive value. D) Sensitivity by months from prediction time to event, stratified by 
desired predicted positive rate (PPR). Note that the numbers do not match those in Table 1, since all prediction times with 
insufficient lookahead distance have been dropped. E) Time (months) from the first positive prediction to the patient 
developing CVD at a 5% predicted positive rate (PPR).   
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Figure 3. Robustness of the best performing model on geographically independent 

(external/test) data 

 

Robustness of the model across stratifications. The line is the area under the receiver operating 
characteristics curve. Bars represent the proportion of prediction times in each bin. Error bars are 
95%-confidence intervals from 100-fold bootstrap.  
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Table 1. Descriptive statistics for service contacts (A) and patients (B) that were eligible for 

prediction. 

A. Service contacts 

  Train Test 

Service contacts, n  310127 54664 

Demographics 

Age, median [Q1,Q3]  35.2 [25.9,46.7] 35.9 [25.1,47.3] 

Female, n (%)  185681 (59.9) 34579 (63.3) 

Smoking (pack-years), mean (SD)  30.5 (75.3) 25.1 (92.8) 

Smoking (daily/occasionally/prior/never),  
median [Q1,Q3] 

 
2.0 [1.0,4.0] 3.0 [1.0,4.0] 

BMI, median [Q1,Q3]  25.6 [22.1,30.2] 25.7 [22.0,30.2] 

Height (cm), median [Q1,Q3]  171.0 [165.0,178.5] 170.8 [165.0,178.0] 

Weight (kg), median [Q1,Q3]  77.0 [64.5,91.4] 76.5 [63.9,91.2] 

Diagnoses 

Angina, n (%)  2355 (0.8) 355 (0.6) 

Atrial fibrillation, n (%)  1822 (0.6) 453 (0.8) 

Chronic kidney failure, n (%)  805 (0.3) 149 (0.3) 

Chronic lung disease, n (%)  2307 (0.7) 819 (1.5) 

F0 - Organic disorders, n (%)  8357 (2.7) 1245 (2.3) 

F1 - Substance abuse, n (%)  32767 (10.6) 4387 (8.0) 

F2 - Psychotic disorders, n (%)  49889 (16.1) 6171 (11.3) 

F3 - Mood disorders, n (%)  115999 (37.4) 20048 (36.7) 

F4 - Neurotic and stress-related, n (%)  94095 (30.3) 13865 (25.4) 

F5 - Eating and sleeping disorders, n (%)  13689 (4.4) 2068 (3.8) 

F6 - Personality disorders, n (%)  47249 (15.2) 7185 (13.1) 

F7 - Mental retardation, n (%)  5778 (1.9) 320 (0.6) 

F8 - Developmental disorders, n (%)  9584 (3.1) 1687 (3.1) 

F9 - Child and adolescent disorders, n (%)  45151 (14.6) 11018 (20.2) 

Type 1 diabetes, n (%)  1865 (0.6) 308 (0.6) 

Type 2 diabetes, n (%)  6291 (2.0) 1009 (1.8) 

Lab results 

HDL, mean (SD)  1.4 (0.4) 1.4 (0.4) 

HbA1c, mean (SD)  35.7 (7.0) 35.2 (6.9) 

LDL, mean (SD)  2.9 (0.9) 2.9 (0.9) 

Systolic blood pressure, median [Q1,Q3]  126.8 [117.5,137.8] 125.2 [117.0,136.0] 
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Total cholesterol, mean (SD)  4.9 (1.0) 4.8 (1.0) 

Medications 

Antihypertensives, n (%)  692 (0.2) 70 (0.1) 

Top 10 weight gaining antipsychotics, n (%)  74900 (24.2) 10709 (19.6) 

Outcomes 

Incident CVD, n (%)  2885 (0.9) 721 (1.3) 

By subtype, n (group-%) 

CABG 15 (0.5) 8 (1.0) 

MI 608 (18.8) 75 (9.3) 

PAD 82 (2.5) 70 (8.7) 

PCI 626 (19.3) 37 (4.6) 

Stroke 1909 (58.9) 618 (76.5) 

 

 

B. Patients 

 

  Train Test 

Patients, n  23584 4370 

Female, n (%)  12946 (54.9) 2535 (58.0) 

Incident CVD, n (%)  430 (1.8) 94 (2.2) 

By subtype, n (group-%) CABG 6 (1.4) <5 

 MI 70 (16.1) 14 (13.7) 

 PAD 13 (3.0) 8 (7.8) 

 PCI 66 (15.2) 6 (5.9) 

 Stroke 280 (64.4) 73 (71.6) 

 

Cohort demographics by split after preprocessing. For filtering steps, see eFigure 1. Definitions are available in eTable 3. 

CVD: Cardiovascular disease. MI: Myocardial infarction. PCI: Percutaneous coronary intervention. PAD: Peripheral artery 

disease. CABG: Coronary artery bypass grafting. Note that < 5 is required by Danish Data Legislation. 
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Table 2. Performance by predicted positive rate for the best performing model (XGBoost) with 5 years of lookahead on the test set. 

 

Predicted 
positive 

rate 

True 
prevalence 

PPV NPV Sensitivity Specificity FPR FNR Accuracy TP TN FP FN 

% of all 
patients 

with 
CVD 

captured 

Median 
years 
from 
first 

positive 
to CVD 

1.0% 

1.3% 

5.6
% 

98.7
% 1.0% 95.7% 4.3% 

99.0
% 97.8% 31 53,417 524 690 7.4% 2.7 

5.0% 5.1
% 

98.9
% 4.8% 80.7% 19.3

% 
95.2
% 94.2% 139 51,340 2,601 582 39.4% 2.5 

10.0% 
3.3
% 

98.9
% 9.8% 75.2% 

24.8
% 

90.2
% 89.3% 179 48,647 5,294 542 48.9% 2.6 

20.0% 3.6
% 

99.2
% 19.6% 45.6% 54.4

% 
80.4
% 80.1% 392 43,383 10,55

8 329 70.2% 2.8 

 

Predicted positive rate: The proportion of contacts predicted positive by the model. Since the model outputs a predicted probability, this is a threshold set during evaluation.  
True prevalence: The proportion of contacts that qualified for CVD within the lookahead window.  
PPV: Positive predictive value. 
NPV: Negative predictive value.  
FPR: False positive rate.  
FNR: False negative rate.  
TP: True positives. Numbers are service contacts. 
TN: True negatives. Numbers are service contacts. 
FP: False positives. Numbers are service contacts. 
FN: False negatives. Numbers are service contacts. 
% of all patients with CVD captured: Percentage of all patients who developed CVD, who had at least one positive prediction. 
Median years from first positive to CVD: For all patients with at least one true positive, the number of years from their first positive prediction to having developed CVD. 

https://doi.org/10.1192/j.eurpsy.2025.1 Published online by Cambridge University Press

https://doi.org/10.1192/j.eurpsy.2025.1

