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ABSTRACT. While performing statistical–dynamical simulations for avalanche predetermination, a
propagation model must reach a compromise between precise description of the avalanche flow and
computation times. Crucial problems are the choice of appropriate distributions describing the
variability of the different inputs/outputs and model identifiability. In this study, a depth-averaged
propagation model is used within a hierarchical Bayesian framework. First, the joint posterior
distribution is estimated using a sequential Metropolis–Hastings algorithm. Details for tuning the
estimation algorithm are provided, as well as tests to check convergence. Of particular interest is the
calibration of the two coefficients of a Voellmy friction law, with model identifiability ensured by prior
information. Second, the point estimates are used to predict the joint distribution of different variables
of interest for hazard mapping. Recent developments are employed to compute pressure distributions
taking into account the rheology of snow. The different steps of the method are illustrated with a real
case study, for which all possible decennial scenarios are simulated. It appears that the marginal
distribution of impact pressures is strongly skewed, with possible high values for avalanches
characterized by low Froude numbers. Model assumptions and results are discussed.

1. INTRODUCTION
In the avalanche field, a dichotomy between simple stat-
istical relations (Lied and Bakkehøi, 1980; McClung and
Lied, 1987; McClung, 2001; Keylock, 2005) and determinis-
tic propagation models (Naaim, 1998; Bartelt and others
1999) has long existed. Recently, however, coupled stat-
istical–dynamical approaches have been proposed to address
the issue of avalanche predetermination (Barbolini and
Keylock, 1999; Bozhinskiy and others, 2001; Meunier and
others, 2001). They are based on a numerical model in which
a constitutive law describes the behavior of snow in motion
using different friction coefficients: one coefficient in the
case of a Coulombian friction law, two in the case of the
Voellmy friction law (Voellmy, 1955) or Perla’s friction law
(Perla and others, 1980), more with more complex friction
laws (Nishimura and Maeno, 1989; Harbitz and others,
1998; Salm, 2004). Probability distributions are chosen for
the propagation model input variables, and fictitious ava-
lanches are generated usingMonte Carlo simulations to study
the variability of the outputs.

A major difficulty is the choice of input distributions that
appropriately represent the variability of the avalanche
phenomenon at the studied site. This is sometimes overcome
by calibrating simple parametric models using the available
local data (Barbolini and Savi, 2001; Meunier and Ancey,
2004), but this can be difficult if correlations between the
different input variables are to be taken into account.
Moreover, the number of recorded variables is generally
insufficient to perform the deterministic joint calibration of
more than a single friction coefficient (Buser and Frutiger,
1980; Martinelli and others, 1980; Ancey and others, 2003).
Only one friction coefficient is then calibrated with a classic
statistical procedure (e.g. least-square minimization), while
the other(s) is (are) set using expert considerations.

In environmental science, such a lack of local informa-
tion is today often taken into account in a Bayesian

framework (Krzysztofowicz, 1983; Berger, 1985; Kuczera
and Parent, 1998; Kavetski and others, 2002; Berliner; 2003;
Clark, 2005), for instance in association with complex
numerical models (Oakley and O’Hagan, 2004; Karniadakis
and Glimm, 2006). In the avalanche community, simple
Bayesian computations have received some attention in the
past (McClung and Tweedy, 1994; Harbitz and others,
2001). Interest in Bayesian methods for snow avalanche
science has grown recently (Ancey, 2005; Straub and Grêt-
Regamey, 2006; Eckert and others, 2007b, in press), but their
use remains relatively new in this field and is limited to
simple propagation models. For instance, their utility for
calibrating a friction law including more than one friction
coefficient is not yet documented.

From a more practical point of view, mitigation against
snow avalanches generally involves considering high-return-
period avalanches to designate hazard zones and to design
defense structures. For hazard zoning, two variables, runout
distance and impact pressure, are usually studied, and a
combination of two return periods derived from the marginal
distributions of the two variables is generally retained (Salm
and others, 1990). However, the pressure that must be taken
into account is not a direct outcome of an avalanche
propagation model. Its distribution must therefore be derived
from other variables (Keylock and Barbolini, 2001), and an
important question is how far pressure depends on the
velocity and thickness of the incoming flow. Traditional
engineering rules are based on hydrodynamics. They
recommend considering the dynamic pressure in the free
surface flow obtained by multiplying the kinetic energy by a
constant drag coefficient. However, converging results from
field data (Sovilla and others, 2008; Thibert and others,
2008) and small-scale experiments (Tiberghien, 2007) have
shown strong variation of the drag coefficient with the flow
parameters. In particular, it has been proved that a constant
drag coefficient underestimates the impact pressure for
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avalanches characterized by low Froude numbers (e.g.
dense snow avalanches close to their runout). A theoretical
approach based on the definition of a viscous fluid equiva-
lent to snow in motion has recently been developed to
account for these observations (Naaim and others, 2008). It
predicts high drag coefficients for viscous flows with low
velocities, but to date it has not been implemented in a
statistical–dynamical approach.

In a previous paper (Eckert and others, 2008a), we
described a general Bayesian framework for computing
return periods for avalanche hazard zoning. It allows local
data to be used to perform on-site calibration of an ava-
lanche propagation model and computation of design
return periods. The possible correlations between input
data are fully acknowledged, with a statistical formalism
adapted to the input–output data structure. In the predictive
phase, credible intervals are computed to give the decision-
maker a fair quantification of the local state of knowledge.
However, the propagation model is a simple sliding block
with a Coulombian friction law. Its main advantages are the
short computation times required and the easy calibration
of its unique friction coefficient with the available release
and runout positions. On the other hand, only the distri-
bution of runout distances is then readily available for
hazard assessment.

In this paper, we expand this preliminary approach by
including a depth-averaged fluid propagation model with a
Voellmy friction lawin the same Bayesian stochastic frame-
work. Recent advances in impact pressure quantification are
taken into account to compute realistic distributions of this
crucial quantity for hazard mitigation. For the calibration
step, we aim to show how a Metropolis–Hastings (MH)
algorithm can be constructed and used to infer and identify
the joint posterior distribution of the friction coefficients of a
complex noninvertible avalanche model.

In the predictive phase, since there is a one-to-one
mapping between a return period and an exceedance
probability only for univariate variables (Ancey and others,
2004), we compute return periods for runout distances only.
The main reason for this choice is that runout distance is the
most ‘pessimistic’ variable in terms of hazard zoning (Eckert
and others, 2007b). Indeed, the nominal runout distance
must be exceeded for another variable (e.g impact pressure)
to take a nonzero value. Nevertheless, we also aim to show
that the joint distribution of the other model outputs at a

given abscissa of the runout zone is an extremely valuable
outcome for hazard mapping or defense structure design
because it fully characterizes all the reference scenarios
corresponding to the return period considered.

The paper is organized as follows: Section 2 presents the
numerical avalanche model, how it is embedded in a
stochastic framework, the details of its Bayesian calibration
using an adapted MH algorithm, and how the point estimates
obtained can be used to compute full reference scenarios. In
section 3, the joint posterior distribution of the parameters of
the stochastic avalanche model is computed for a case study
from the French avalanche database. Practical details of the
MH algorithm in action are also provided, as well as ways of
checking convergence. In section 4, a Monte Carlo approach
is used to obtain the return period for the case study
associated with each runout distance. The joint distributions
of the other variables of interest corresponding to a few return
periods are studied. In particular, impact pressures taking
snow rheology into account are computed for different sizes
of obstacles. Section 5 discusses the results with special
attention to model identifiability, modeling assumptions and
possible further developments.

2. MATERIALS AND METHODS

2.1. Snow avalanche numerical modeling
Snow avalanches are complex flows (e.g. Ancey, 2006;
Pudasaini and Hutter, 2007). Their typical vertical stratifica-
tion has been demonstrated through field measurements
(Sovilla and others, 2001; Ancey and Meunier, 2004) on full-
scale experimental sites. To be consistent with observations,
avalanche flows can be modeled within the formal frame-
work of continuum mechanics (Savage and Hutter, 1989) by
different layers with different physical properties (Issler,
1998; Naaim, 1998; Zwinger, 2000). Such models are often
used to back-calculate well-documented events. However,
due to the time needed for one avalanche simulation, these
models cannot be used within a probabilistic framework
requiring at least a few hundred simulations.

Considering only the dense layer of the avalanche
simplifies the problem, since the depth of the flow is then
small compared to its length, allowing a shallow-water
approximation of the mass and momentum conservation
equations to be used. Although some physical processes (e.g.
the formation of the powder part of the flow and vertical
velocities in the dense flow) are thus ignored, a realistic
representation of the avalanche can be obtained. Computa-
tion times are much more reasonable, allowing Monte Carlo
simulations to be implemented (Barbolini and others, 2003).

In this paper, we therefore represent avalanche propa-
gation with a fluid model based on depth-averaged Saint-
Venant equations. We assume that the study site can be
described by a curvilinear profile whose equation in a
Cartesian frame is z ¼ f1 xð Þ, where z is the altitude and
x the distance measured in Cartesian coordinates starting at
the top of the path. The propagation model, noted G in
Figure 1, is described by Naaim and others (2004).
However, to facilitate the specification of the input
conditions corresponding to each simulation and reduce
computation times, we ignore snow incorporation and
deposition here, so that mass is conserved. Variation in
momentum corresponds to the difference between gravity
g and a friction term, Fric, which is sometimes called the

Fig. 1. Direct acyclic graph of the stochastic avalanche model.
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retarding acceleration (Gauer and others, 2009). The
equations of mass and momentum conservation, in which
v is the flow velocity, h is the flow depth, � is the local
slope and t is time, are

@h
@t

þ @ hvð Þ
@x

¼ 0, ð1aÞ
@ðhvÞ
@t

þ @

@x
�svhv2 þ ksvg

h2

2

� �
¼ h g sin�� Fricð Þ: ð1bÞ

They are solved numerically using a finite volume scheme
(Naaim, 1998). Even if they are expressed in a two-
dimensional (2-D) frame, they in fact represent a one-
dimensional (1-D) flow on the curvilinear profile (Greve
and others, 1994; Gray and others, 1999; Pudasaini and
Hutter, 2003).

ksv is the ratio between the stress normal to the slope and
the stress parallel to the slope. It can be calculated from the
Mohr–Coulomb plasticity model for quasi-static deforma-
tions (Savage and Hutter, 1989). For dense granular flows on
rough surfaces, Silbert and others (2001) showed that the
normal stress is equal to the stress along the slope. Even if it is
not true in general, particularly during deposition (Pudasaini
and others, 2007; Pudasaini and Kröner, 2008), Pouliquen
and Forterre (2002) showed, using ksv = 1, that, for depth-
averaged equations, ksv has no significant effect on the
dynamics of the flow. �sv is the shape of the vertical velocity
profile. Observations of real snow flows showed a quasi-
constant velocity over the whole core of the avalanche, and
highly sheared vertical velocity profiles close to the bottom
(Bouchet and others, 2004). This implies �sv is very close
to 1.We therefore set both �sv and ksv to 1 for the entire study.

A major problem is to specify a realistic friction term,
Fric. The scarcity of measurements in real avalanche flows
leaves the question open, but it seems reasonable to
postulate that snow avalanches do not accelerate indefi-
nitely on a quasi-constant slope. Since, with no erosion, the
flow can reach an equilibrium speed only if friction
increases with velocity, a constant friction term cannot be
used in our model. Experimental approaches have supported
this choice, showing using small-scale flows (Rognon and
others, 2008) and shear cells (Casassa and others, 1989,
1991) the quasi-parabolic increase of friction with velocity.
Although it continues to be debated in the avalanche
community, the widely used Voellmy model (Voellmy, 1955)
is therefore a good candidate. It associates a Coulombian
term with a velocity square-dependent term, with two
friction coefficients � and � to be specified, so that

Fric ¼ �g cos�þ g
�h

v2: ð2Þ

With this model, the limit velocity can be attained for
constant slopes tan(�) >�. Traditionally (Salm and others,
1990), it is assumed that the coefficient � summarizes snow
properties as a function of altitude, exposure, etc., whereas
� is assimilated to a morphological parameter representing
the roughness of the path. However, this interpretation of the
Voellmy equation continues to be discussed since it is based
on expert considerations rather than on measurements. Its
main advantage while fitting the model on a set of observed
avalanches is that it reduces the number of unknown
quantities. We therefore adopt this point of view: � is
modeled as a latent variable describing the random effects
from one avalanche to another, and � as a parameter in the
strict statistical sense of the term. � and �i, i 2 1,N½ �, where

N is the total number of observed avalanches, are estimated
from the data.

2.2. Pressure computations
The dynamic pressure in the free surface flow is defined as
�Nv

2, i.e. double the kinetic energy per unit volume. Impact
pressure Pr can be expressed as

Pr ¼ Cx
1
2
�Nv2, ð3Þ

where �N is the density of the flowing snow and Cx the drag
coefficient. We compare the statistical distribution of the
dynamic pressure in the free surface flow with the
distributions of impact pressures obtained with both the
experimental formulation of Sovilla and others (2008) and
the semi-empirical formulation of Naaim and others (2008).
For all computations, a constant density of 300 kgm–3 is
assumed. The related uncertainty is not taken into account.

In the empirical formulation proposed by Sovilla and
others (2008), the drag coefficient is expressed as

Cx ¼ 1
2�N

�1ðFrÞ��2 , ð4Þ

where the Froude number Fr is the ratio between inertial
forces and gravity. The parameter pair �1, �2ð Þ depends on
the obstacle and the event considered (e.g. on the snow
properties) and is fitted on various avalanche events from the
Vallée de la Sionne test site in Switzerland. We use the
values �1 = 5770 and �2 = 1.9, which correspond to the best-
documented event.

Naaim and others (2008) used the framework of gradually
variable shallow flows to define a macroscopic viscosity and
a Reynolds number based on the mean velocity and on the
obstacle-specific diameter. Assuming the Reynolds similar-
ity, the drag coefficient formula obtained for simple fluids
was extended to free surface flows of complex fluids. It is
considered that the drag coefficient accounts for two
different contributions. The first is determined by the shape
of the obstacle. The second is related to the flow regime and
is considered to be independent of the shape contribution.

The generalized Reynolds number Re represents the ratio
between inertial and viscous forces. Assuming a quasi-
permanent and uniform flow impacting an obstacle with a
specific diameter d0 on a slope characterized by a slope
angle �, it can be written as

Re ¼ 25
4

� ðFrÞ2
cos� sin�

d0
h

� �2

: ð5Þ

The formula is valid for a prismatic shape. For a cylindrical
shape, the drag force is divided by 2. To investigate the
influence of the size of the obstacle considered, we study
two diameters: d0 = 0.25m (e.g. a pylon) and d0 = 5m (e.g. a
small house or a defense structure such as a deflecting
mound).

According to Naaim and others (2008), the variation of the
drag coefficient can be expressed as

Cx ¼ 196:02 Reð Þ1=5 log 10 Reð Þ þ 3
� ��3:37

: ð6Þ
This semi-empirical formula was obtained by compiling
existing data on the drag coefficient of Newtonian and non-
Newtonian fluids. Low and moderate Reynolds numbers
ranging from 0.1 to 200 were investigated, corresponding to
the typical variation range of the equivalent Reynolds
number in snow avalanche flows. For Re > 200,
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log 10 Reð Þ þ 3 tends to zero and Equation (6) is no longer
valid. This is not a real problem for pressure computations in
dense snow avalanches since the drag coefficient then
becomes constant. For a prismatic shape, Cx tends to 2
(Fig. 11a, shown further below).

Finally, with the formalism and friction model used, no
steady and quasi-uniform flow is possible for slope angles
lower than arctan(�), because the avalanche is then in its
decelerating phase. To compute the Reynolds number using
Equation (5), the slope angle is therefore taken as the local
slope angle �(x) for avalanches that do not decelerate at
abscissa x, and as arctan(�), the last slope angle for which a
steady flow was possible, for avalanches that decelerate at
abscissa x. This can be rewritten as

� ¼ max arctan �ð Þ,� xð Þð Þ: ð7Þ

2.3. French avalanche database, data transformation
and stopping condition
The Enquête Permanente sur les Avalanches (EPA; permanent
avalanche survey) is a database describing the avalanche
events of�4000 determined paths in the French Alps and the
Pyrenees since the beginning of the 20th century (Mougin,
1922; Bélanger and Cassayre, 2004). Avalanche counts are
registered by local foresters as exhaustively as possible. A
great deal of other quantitative and qualitative information is
also collected. This unique database is particularly well
designed for statistical–dynamical approaches and for more
phenomenological large-scale studies relying on the entire
database (Eckert and others, 2007a).

When using these data to calibrate a numerical avalanche
model, the main difficulty is that not all the input variables
needed are registered in the database. For example, for our
propagation model, the length of the release zone, Lstart,
which we measure along the x axis, as well as the mean
snow depth in the release zone, hstart, are necessary but not
available. Following Meunier and others (2004), we evaluate
the dimensions of the starting zone associated with the
registered events using a deterministic transformation of the
recorded deposit volume vstop. However, the procedure
chosen is highly speculative. A more realistic description of
the release conditions, including the most recent develop-
ments concerning the size distribution of snow avalanches
(McClung, 2009) could easily be included in our framework.

The three dimensions of the starting zone are assumed to
have the same influence on the deposit volume, which
implies dependencies to the power of 1/3 between vstop and
hstart, Lstart, lstartð Þ, respectively, the latter being the width of
the release zone. Moreover, expert considerations are used
to set the snow depth and the length of the starting zone
associated with a very small and a very large avalanche.
Under the assumption of a constant snow volume, this
allows the relationship between the deposit volume and the
mean snow depth in the release zone to be expressed as

hstart ¼ 0:5þ 0:04vstop1=3, ð8Þ
and the relationship between the deposit volume and the
length of the release zone as

Lstart ¼ 75þ 3:5vstop1=3: ð9Þ
A linear relationship between the snow depth and the length
of the release zone then exists:

Lstart ¼ 31:25þ 87:5hstart: ð10Þ

In addition, the width of the release zone can be evaluated
using

lstart ¼
vstop cos �startð Þ

Lstarthstart
, ð11Þ

where �start is the mean slope of the release zone between
the abscissas xstart and xstart þ Lstart. Weighting by cos�start is
necessary because of the projection of Lstart on the release
slope �start.

Our propagation model does not take into account the
width of the release zone. When only Lstart and hstart are used
as input variables, roughly one-third of the variability of the
deposit volumes is lost. An equivalent release volume vstarteq

depending on the mean release width can be computed as

vstarteq
¼ Lstarthstart

cos �startð Þ
1
N

XN
i¼1

lstarti : ð12Þ

Its variability from one avalanche to another represents the
variability introduced in the propagation model more
realistically than the variability of the observed deposit
volumes.

Finally, when numerical avalanche propagation stops, the
granular media are reorganized along the slope (e.g.
Pudasaini and others, 2007). A stopping condition therefore
has to be specified to distinguish these quasi-static motions
from the avalanche flow. Here we assume any avalanche to
be stopped as soon as the maximal propagated discharge is
smaller than

qthres ¼ vstarteq
� 10�4: ð13Þ

This varying threshold is convenient for simulating ava-
lanches of very different volumes. Very small avalanches are
not immediately stopped, which occurs if the constant
threshold chosen is too high; while, for very large ava-
lanches, quasi-static reorganization is excluded, which is
not the case if a low constant threshold is chosen.

2.4. Multivariate stochastic modeling
Stochastic modeling allows the variability of avalanche
events on a given path to be described. Here we expose our
assumptions concerning the distributions of the different
input–output variables of the propagation model. The main
characteristics of the obtained stochastic avalanche model
are summarized in Figure 1 using a directed acyclic graph
(Lauritzen, 1996). The relevance of the different probabilistic
choices is discussed in section 5.4.

A distinction is made between avalanche frequency a
and avalanche magnitude y. Avalanche frequency is a
scalar discrete random variable corresponding to the
number of avalanches recorded each winter and whose
long-range mean is necessary for computing return periods.
Avalanche magnitude is a random vector including all the
correlated multivariate quantitative characteristics that vary
from one event to another: runout distance, velocity and
pressure profiles, snow volume, etc. The stochastic model
is noted p y, a �M, �Fjð Þ, indicating that the joint distribution
p of the random variables y and a is indexed by the
parameters �M, �Fð Þ. Finally, the hypothesis of magnitude–
frequency independence is made, considering that the
number of avalanches per winter does not affect their
quantitative characteristics. This classic hypothesis in ava-
lanche modeling is fulfilled if the number of avalanches
affecting the studied path each winter is not too high. It can
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be expressed as

p y, a �M, �Fjð Þ ¼ p y �Mjð Þp a �Fjð Þ: ð14Þ
Avalanche frequency is assumed to be an independent
Poisson-distributed process (Eckert and others, 2007a), with
its single parameter 	 quantifying the mean annual ava-
lanche number:

a 	j � P 	ð Þ: ð15Þ
The magnitude model embeds the sliding block propagation
model within several stochastic operators describing the
variability of the different input–output quantities. McClung
(2003) adopts a similar approach that describes avalanche
events as a Poisson process with log-normal marks for
avalanche masses.

The release abscissa xstart that corresponds to the begin-
ning of the release zone is assumed to be purely random and
beta-distributed (Meunier and others, 2001). A normalization
is necessary, and the length of the release zone is used, so that

xstartn a1, a2j ¼ xstart � xmin

xmax � xmin
a1, a2j � Beta a1, a2ð Þ, ð16Þ

where xmax and xmin are the maximal and minimal abscissas
of the release zone. xmax and xmin are assumed to be known.
They can be estimated using simple topographical thresh-
olds or the available data.

Given the normalized release abscissa, the mean release
depth hstart is assumed to be gamma-distributed, with a
parameterization reflecting the dependency of the snow
depth on the release abscissa and a constant dispersion
around the mean. For simplicity, the conditioning by xmax

and xmin is dropped, which leads to

hstart b1, b2,
h, xstartj

� Gamma
1

h

2 b1 þ b2xstartnð Þ2, 1

h

2 b1 þ b2xstartnð Þ
� �

:
ð17Þ

This model is chosen to represent the skewness of a
hydrological variable such as snow depth (values much
higher than the mean are plausible) as well as the possible
variation of snow depth with altitude. Since a linear relation
between the release depth and the length of the release zone
exists (Equation (10)), there is no need to specify probability
distributions for other input quantities.

Given the normalized release abscissa and the flow
depth, the latent friction coefficient � is assumed to be
normally distributed, with four parameters characterizing its
dependency on the release abscissa and mean release depth
and with a constant dispersion around the mean. This can be
written as

� c, d , e,
, xstartj , hstart � N c þ dxstartn þ ehstart,
ð Þ: ð18Þ
Small Gaussian differences between the observed runout
distances xstopdata and the latent computed runout distances
xstop are postulated, such as

xstopdata 
num, xstop
�� � N xstop,
num

� �
: ð19Þ

These differences can result from numerical errors due to the
imperfection of the propagation model, and/or from obser-
vation errors. The standard deviation 
num is to be specified.

To sum up, the proposed frequency model has only one
parameter, �F ¼ 	. Conversely, the magnitude model is
re la t ively complex, wi th ten parameters �M ¼
a1, a2, b1,b2,
h, c,d , e,
, �ð Þ and, for each avalanche, the
latent friction coefficient � and the computed runout
distance xstop. The different input variables and � are

explicitly modeled as dependent variables to take into
account possible correlations that may affect extreme
events. The joint probability of the magnitude observations
given parameters and latent variables is obtained by
combining the different conditional distributions:

p xstart, hstart, xstopdata �M,�, xstop,
num
��� �

¼ p xstart a1, a2jð Þp hstart b1, b2,
h, xstartjð Þp xstopdata 
num, xstop
��� �

:

ð20Þ
� appears in the right-hand side term only indirectly, by
constraining the deterministic propagation and xstop.

Finally, we note xstarti , hstart i , xstopdatai

� �
, i 2 1,N½ � and

at , t 2 1, Tobs½ �, our datasets corresponding to the N ava-
lanches registered on the studied site during Tobs years of
observation. They are assumed to be mutually independent,
which implies

pðaÞ ¼ p a1, a2:::, aTobs
� �¼YTobs

t¼1

	
p atð Þ
, ð21aÞ

p xstart, hstart, xstopdata
� �¼YN

i¼1

�
p xstarti , hstarti , xstopdatai

� ��
: ð21bÞ

For the magnitude model, this hypothesis is fulfilled if all
avalanches that occur in a given winter are neither too
numerous nor temporally too close, so that the quantitative
characteristics of the first avalanche do not affect those of the
next avalanches. For the frequency model, the physical
independence of the number of avalanches occurring in two
consecutive winters is clear.

2.5. Bayesian inference
Inference of the proposed stochastic model is performed
under the Bayesian paradigm. Bayes’ theorem (Bayes, 1763)
allows the observations to be combined with a prior
distribution � �M,	ð Þ which encodes prior knowledge about
the unknowns. The result of the computation is the joint
posterior distribution of all parameters and latent variables
p �M,	,�, xstop dataj� �

, where data denotes all observations
ðxstart1 , hstart1 , xstopdata1 , :::, xstartN , hstartN , xsstopdataN , a1, :::, aTobsÞ.

Under the magnitude–frequency independence hypoth-
esis, the frequency and the magnitude models can be
inferred separately. For the frequency model, inference is
analytically feasible as soon as a gamma prior,

� 	 a	,b	jð Þ ¼ a	b	

� b	ð Þ	
b	�1 exp �a		ð Þ, ð22Þ

is chosen for the parameter 	. The parameter pair a	,b	
� �

represents the prior knowledge concerning avalanche
occurrences. The posterior distribution is then still gamma-
distributed, with the parameter pair a

0
	, b

0
	

� �
verifying

a
0
	 ¼ a	 þ Tobs and b

0
	 ¼ b	 þN.

For the magnitude model, inference is more cumber-
some. Indeed, the probability of the latent variables given
parameters and observations p �, xstop �M, xstart, hstartj�

,
xstopdata ,
numÞ must be considered in Bayes’ theorem in
addition to the prior and the probability of observations
given parameters and latent variables, i.e.

p �M,�, xstop data,
numj� �
/ � �Mð Þp xstart,hstart, xstopdata �M,�, xstop,
num

��� �
�p �, xstop �M, xstart,hstart, xstopdata ,
num

��� �
:

ð23Þ
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The latent variable distribution is obtained by combining
the distribution of the friction coefficient � and the result of
the deterministic propagation noted as the Dirac distri-
bution �ðÞ:
p �, xstop �M, xstart, hstart, xstopdata ,
num

��� �
¼ p � c, d , e,
, xstart, hstartjð Þ�xstop Gðxstart, hstart,�, �Þð Þ: ð24Þ

In other words, xstop must be equal to Gðxstart, hstart,�, �Þ,
otherwise a zero probability is assigned. This emphasizes
that, even if our model has two latent variables, � and, xstop,
they are deterministically linked.

2.6. Markov chain Monte Carlo methods and the
Metropolis–Hastings algorithm
The normalizing constant in Equation (23) cannot be
computed analytically, so recourse to a simulation-based
estimation algorithm is necessary. A general exposition of the
Markov chain Monte Carlo (MCMC) methods that can be
used to obtain samples from p �M,�, xstop data,
numj� �

can be
found in various sources (Gilks and others, 1996; Robert,
1996; Brooks, 1998; Congdon, 2001; Parent and Bernier,
2007). Their principle is that, under few assumptions, there is
a single stationary distribution for a Markov chain. Iterative
MCMC algorithms have therefore been developed to
construct chains in the space of model unknowns that
converge to the target posterior distribution. Such procedures
include the extremely general MH algorithm (Metropolis and
others, 1953; Hastings, 1970), and the efficient but less
general Gibbs sampler (Geman and Geman, 1984).

An initial state of the chain must be specified for all model

unknowns, in our case �M,�, xstop
� � oð Þ. Then a burn-in period

is needed to ensure that the chain has reached its so-called
ergodic state. Finally, running enough iterations of the chain
after the burn-in period reconstructs the target distribution.
For example, each iteration k of the MH algorithm consists in
the generation using an exploration function f2 of a candidate

value for the unknowns �M,�, xstop
� � Cð Þ ¼ f2 �M,�, xstop

� � k�1ð Þ

and in a probabilistic acceptance–rejection rule deciding

whether �M,�, xstop
� � kð Þ ¼ �M,�, xstop

� � Cð Þ or whether

�M,�, xstop
� � kð Þ ¼ �M,�, xstop

� � k�1ð Þ. The random feature in
the acceptance–rejection rule is the key point: if the
candidate is a posteriori more likely than the previous state
of the chain, it is always accepted. In the opposite case, it
is sometimes accepted, allowing the algorithm to leave the
regions of high posterior probability where it mostly
gravitates, and jump to regions of lower posterior prob-
ability. This way, the algorithm randomly browses the
whole domain, looking for potential local second-order
modes of the posterior distribution.

Convergence should occur for any symmetric exploration
function that keeps the Markov chain homogeneous. How-
ever, the use of the MH algorithm is very subtle in practice
because no general theoretical result concerning the rate of
convergence is available. Moreover, for high-dimension
parameter spaces, the posterior surface is likely to exhibit
numerous modes and curvature ridges that may trap the
algorithm andmake it difficult to visit all regions according to
their posterior probabilities. The choice of an appropriate
exploration function is therefore the critical point in writing
an algorithm that converges reasonably fast. A class of
exploration functions is generally chosen and the strength of
its jump is tuned to obtain the fastest convergence. Gelman

and others (1995) showed that the main criterion to define a
suitable value for the jump strength is the observed
acceptance rate computed after a given number of iterations.
A high acceptance rate means that candidates result from too
small jumps around a main distribution mode, leading to
numerous tiny moves. It then takes a long time to explore the
whole posterior space. By contrast, a low observed accep-
tance rate implies that the jump values used are too high and
that the chain is stuck. The observed acceptance rate must
therefore stay around 0.23 for a number of unknowns greater
than 5 and be �0.44 for a single parameter.

In addition to visual inspection, the convergence must
be quantitatively checked (Brooks and Gelman, 1998;
Brooks and Roberts, 1998), generally by launching many
chains from different starting points of the parameter space.
This allows verification that the different subsamples
belong statistically to the same population by various
parametric and nonparametric tests (Mengersen and others,
1999). For example, the Gelman–Rubin convergence
diagnosis compares the variability of the generated
parameters within and across the different sequences
(Gelman, 1996). Further useful hints concerning explora-
tion functions and convergence diagnosis for the MH
algorithm are provided by F. Torre and others (http://
www.cybergeo.presse. fr/).

Here a multivariate normal random-walk jump function
has been used. This means that the candidate has been
drawn from a multivariate normal distribution centered on
the previous value of the chain. For strictly positive variance
parameters, a logarithmic transformation has been used. The
variance–covariance matrix of the jump function had to be
tuned. To simplify this task, a sequential version of the MH
algorithm has been implemented. This means that a
diagonal variance–covariance matrix has been set for
candidate proposals, and that for each iteration the
credibility of the candidates for the different parameters
has been evaluated separately. The target acceptance rate
was 0.35–0.45 for all parameters except �. Since all
avalanches must be propagated with the same value of �,
the credibility of the different runouts obtained had to be
evaluated simultaneously with regard to the data. � and all
the latent variables �, xstop were therefore calibrated within
the same acceptance–rejection rule, with a target accep-
tance rate of 0.25.

2.7. Computing reference scenarios using Monte
Carlo simulations
For each unknown, a point estimate can be derived from the
joint posterior probability distribution function (pdf) in
addition to a credibility interval, which is the Bayesian
counterpart for a confidence interval, but using the posterior
pdf instead of the likelihood function. The posterior meanb�M, b	� �

is the Bayesian estimator of the parameters of our

model under the classic hypothesis of a quadratic loss

function. p y b�M���� �
and p a b�F���� �

are then the posterior mean

of the proposed models given �M ¼ b�M and 	 ¼ b	, respect-
ively. These distributions quantify the randomness of the
process studied given the data. The joint distribution

p y b�M���� �
includes the marginal distribution of some variables

of interest for hazard zoning (runout distance, velocity, flow
depth), and can also be used to compute the marginal
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distributions of Froude numbers p Fr b�M���� �
, Reynolds

numbers p Re b�M���� �
, drag coefficients p Cx b�M���� �

, and impact

pressures p Pr b�M���� �
by combining the needed variables.

p a b�F���� �
can easily be obtained because an explicit

formulation of the model is available. However, for

p y b�M���� �
, a statistical–dynamical Monte Carlo approach is

necessary to obtain the distribution of the outputs of the
numerical avalanche propagation model given the distri-
bution of its inputs. The specified conditional distributions
must be used. Integration over the distribution of the latent
friction coefficient � must also be performed, which gives
access to a sample of the distribution of the latent friction

coefficient p � b�M���� �
. This can be expressed as

p
�
y b�M��� � ¼ Z

p
�
xstart ba1,ba2j �

p hstart bb1, bb2, b
h, xstart
���� �

� p xstop xstart, hstart,�, b����� �
d�:

ð25Þ

To compute return periods, the expected annual frequency
E a �Fj½ � must be taken into account. With a Poisson
frequency model, it is simply the unknown parameter 	.
The return period Txstop , associated with the runout distance

xstop, is therefore estimated combining b	 and bFðxstopÞ ¼
P Xstop � xstop b�M���� �

, the estimated cumulative distribution

function (cdf) of runout distances:

Txstop ¼
1b	 1� bF xstop
� �� � : ð26Þ

Practically speaking, if ðxstop1 , xstop2 , ::: , xstopnÞ is the ordered
sample obtained using Monte Carlo simulations, the empir-
ical estimator for bFðxstopk Þ is simply k/n, where n is the
sample size. For hazard zoning purposes, the inverse
problem must be solved: the annual exceedance probability
is known (e.g. 0.01 for the centennial event) and the
associated runout distance quantile must be found. It is
provided by the estimated inverse cdf of runout distancesbF�1
xstop using

xstopT ¼ bF�1
xstop 1� 1b	T

� �
: ð27Þ

In the simulation set-up, the runout distance quantile
corresponding to the return period T is then the

n 1� 1=b	T� �
th value of the ordered sample.

Using a Monte Carlo approach makes numerical errors
unavoidable. A confidence interval for the non-exceedance
probability associated with a given runout distance is

CI� ¼ bFðxstopÞ � qN�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibFðxstopÞ 1� bFðxstopÞ� �
n

vuut
: ð28Þ

The confidence interval depends on the sample size, on the
probability considered and on the quantile qN�c

of the
standard normal distribution corresponding to the desired
confidence level �c, usually 95%. It must be emphasized
that such a confidence interval only accounts for the error
due to a numerical evaluation. It allows checking that the
sample size is large enough, but does not quantify other

error sources (e.g. observation error, model error or esti-
mation error). Their evaluation requires additional compu-
tational efforts to carry out sensitivity analyses and/or
predictive simulations (section 5.5 for discussion).

Finally, the joint distribution of the exceedances

p y b�M, xstop > xstopT

���� �
summarizes the characteristics of all

avalanche events at the abscissa xstopT . It can therefore be
considered as the joint distribution of all the reference
scenarios corresponding to the return period T . It can be
obtained simply by considering only those events for which
the runout distance exceeds xstopT . This partially counters the
limitations of the return period for a multivariate hazard such
as snow avalanches by giving the variation range to be
considered at any abscissa.

3. MODEL CALIBRATION ON A CASE STUDY

3.1. Case study presentation
The chosen case study is one of numerous paths of the
French avalanche database. It is situated in the village of
Bessans, Savoie department. It is only slightly channelized,
and ends in the large flat valley of the Arc river. It is
approximately 2300m long from the top of the path to the
Arc river, with a vertical drop of 1500m (Fig. 2). The average
slope is high, with several moderate changes of concavity
along the slope profile. The slope remains predominantly
above 308 during the first 1900m of the path. The potential
release zone is therefore long, so we chose xmax = 1900m
and xmin = 0. Forty-one avalanches were recorded during
Tobs = 44 years, with an empirical avalanche rate of 0.93
avalanches per year. However, only 26 of them were well
enough documented to be used to calibrate the magnitude
model. Therefore, N=26, even if 41 events had to be used to
compute the posterior distribution of the frequency model.

The quantitative characteristics of the observed events are
summarized in Table 1. Snow depths obtained from the
deposit volumes range from 75 cm to 4m, which seems
plausible given the relatively large size of the studied
avalanche site. Release zone lengths are �100–400m.
Release zone widths have a high residual variability, which
is not taken into account for model calibration. Thus, the
variability of the equivalent release volumes is significantly
lower than the variability of the ‘true’ release volumes.

The runout zone shows an irregular topography that
constrains the empirical distribution of avalanche runout

Fig. 2. Topography and available historical data for the case study.
Bessans township, path EPA No. 13, Savoie, France.
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distances to be strongly multimodal. Figure 2 shows that
most of the observed avalanches stopped on the gentle
slopes at the end of the path between x=1900m and
x=2090m. A few avalanches stopped earlier, between
x=1600m and x=1850m, on average slopes that are
situated above the last slope increase. An extreme event that
stopped in the flat Arc valley was also registered, with a very
large runout abscissa of 2208m. This large variability of
runout distances renders this case study a good test for the
efficiency of our MH algorithm in calibrating the chosen
avalanche propagation model.

Empirical correlations between data are shown in Table 2.
Although some of them are small, they are all significantly
nonzero at the 95% significance level. The numerous
correlation coefficients very close to 1 are due to the
deterministic relationships used to estimate the nonobserved
quantities. Correlations between the three dimensions
Lstart, lstart, hstartð Þ of the starting zone and the release abscissa
xstart are slightly negative. For this path, the size of the
avalanche decreases with the altitude of the beginning of the
release zone. Correlations between Lstart, lstart, hstartð Þ and the
runout abscissa xstopdata are also negative. The longest runouts
therefore mainly correspond to avalanches released at
relatively low altitudes. For example, the extreme event
registered was released at 2000ma.s.l., corresponding to
xstart = 1518m (Fig. 2).

3.2. Prior distribution
The parameters were assumed a priori mutually independ-
ent, so that the joint prior distribution is simply

� �ð Þ ¼
Ydim �ð Þ

k¼1

� �kð Þð Þ, ð29Þ

i.e. the product of the marginal distributions of the scalar
parameters. This usual choice that facilitates prior elicitation

is not very constraining since interparameter dependence is
taken into account a posteriori. Moreover, the marginal prior
distributions were assumed to belong to standard parametric
families with their hyper-parameters to be specified.

Relatively informative marginal priors were used for the
parameters c and 
 (mean and variance of the latent friction
coefficient �), the release depth (parameter b1) and the
friction coefficient � whose inverse controls the increase of
friction with velocity and thus the limit velocity that can be
reached by the flow. The choice of an informative prior for �
has been made to ensure the model can be identified. For
the other parameters, it was a modeling choice aimed at
bringing more information into the analysis (see section 5.1
for discussion and sensitivity analysis).

The correlation parameters b2, d , eð Þ were assumed to be
unknown a priori: the means of their marginal prior
distributions were set to zero to let the data decide whether
significant correlations between the different input variables
of the propagation model exist. Vague priors (Bernardo and
Smith, 1994) were also used for a1, a2,	ð Þ, because prior
knowledge was not available. The different marginal priors
used are summarized in Table 3.

3.3. Running the MH algorithm and assessing
convergence
The numerical error 
num for the discrepancy between
observed and computed runout distances was set to 15m.
The 1-D random-walk jump functions shown in Table 4
were chosen for MH inference. They were tuned with
respect to Gelman and others’ (1995) optimal acceptance
rates to adapt the algorithm to the case study. After a burn-in
period of 1000 iterations, 2000 iterations were performed
and stored as a sample of the posterior distribution.
Convergence was checked by launching different chains
from different starting points of the parameter space and

Table 2. Dataset linear correlations

xstart vstop hstart Lstart lstart xstopdata

xstart 1.00 –0.16 –0.12 –0.12 –0.13 0.07
vstop –0.16 1.00 0.95 0.95 0.98 –0.26
hstart –0.12 0.95 1.00 1.00 0.99 –0.33
Lstart –0.12 0.95 1.00 1.00 0.99 –0.33
lstart –0.13 0.98 0.99 0.99 1.00 –0.32
xstopdata 0.07 –0.26 –0.33 –0.33 –0.32 1.00

Table 1. Dataset descriptive statistics

Mean Std dev. q2.5 q97.5

xstart (m) 677.6 443.5 106.5 1496.9
vstop (m3) 69 226 169590 5400 674760
hstart (m) 1.64 0.78 0.75 4
Lstart (m) 174.7 68.3 96.9 381.5
lstart (m) 72.3 88.4 3.8 350.9
vstarteq (m3) 30 587 32898 6740 138540
xstopdata (m) 1933.1 104.8 1701.3 2183.5

Table 3. Marginal prior distribution. U refers to the uniform
distribution, N to the normal distribution and Gamma to the gamma
distribution

a1 � Uð0;10Þ c � Nð0:5;0:2Þ
a2 � Uð0;10Þ d � Nð0; 0:25Þ
b1 � Nð3; 1Þ e � Nð0; 0:25Þ
b2 � Nð0; 1Þ 
 � Gammað1;10Þ

2h � Gammað10; 100Þ � � Nð1200;100Þ

	 � Gammað0:01; 0:001Þ

Table 4. Jump functions for the MH algorithm. logN refers to the
log-normal distribution. Notations indicate, for example, that at
each iteration k of the MH algorithm, the candidate value for the a1
parameter is drawn from a normal distribution centered on the
value at the previous iteration

aC
1
� Nða1ðk � 1Þ; 0:5Þ cC � Nðcðk � 1Þ; 0:04Þ

aC2 � Nða2ðk � 1Þ; 0:6Þ dC � Nðdðk � 1Þ; 0:1Þ
bC

1
� Nðb1ðk � 1Þ;0:15Þ eC � Nðeðk � 1Þ; 0:03Þ

bC
2
� Nðb2ðk � 1Þ;0:4Þ 
C � logNð log 
ðk � 1Þð Þ;0:4Þ


2Ch � logNð log 
2hðk � 1Þ� �
;0:4Þ �C � logNð log �ðk � 1Þð Þ; 0:01Þ

�C
i � Nð�iðk � 1Þ; 0:001Þ
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computing the Gelman–Rubin convergence diagnosis (see
below). The total computations for one chain took �2 weeks
on a recent standard PC. This very long time is related to the
relative complexity of the propagation model used and to
the fact that, at each iteration of the MH algorithm, N=26
iterations of the propagation model had to be performed.

Table 5 shows the acceptance rates obtained for one
chain. They are very close to the target optimal values
discussed in section 2.6, i.e. 0.34–0.49 for the scalar
parameters and 0.26 for the multidimensional jump corres-
ponding to the friction coefficients. Figure 3 shows how well
the two chains (for two parameters) mix during the ergodic
phase. For the parameter a1 characterizing the distribution of
release abscissas, the trajectories of the two chains show a
stabilized variation domain as well as strong variability from

one iteration to the other, and they mix well. This indicates
that convergence is easily reached. For �, the chains are
more autocorrelated, with lower variability from one
iteration to the other and thus a lower level of mixing. This
indicates that, for the friction coefficients, reaching con-
vergence and obtaining a good approximation of the
posterior pdf is more cumbersome and requires more
iterations of the MH algorithm. A more quantitative check
of the convergence is given in Table 6, which presents the
Gelman–Rubin statistics for the different unknowns. It is not
equal to 1 for all parameters. However, the highest value is
1.03, which indicates that the variability of the generated
samples across the different sequences is <1.05 times the
variability within the different sequences, even for the
friction coefficients � and �. This is in practice more than
sufficient for considering that convergence has been reached
and that a satisfactory numerical approximation of the joint
posterior pdf is therefore available.

3.4. Posterior distribution
3.4.1. Model parameters
All marginal posterior distributions of the model’s par-
ameters have a variance lower (sometimes much lower) than
for the prior distributions (Fig. 4). This indicates that the
information contained in the prior distribution has been
updated. For instance, it shows that the data contained
sufficient information to enable joint calibration of the two
friction coefficients (see section 5.1 for discussion).

All distributions are unimodal, making use of the point
estimates in the predictive phase appropriate in this case.
The posterior mean of the frequency parameter 	 corres-
ponds to the empirical annual avalanche rate, slightly less
than one avalanche per year (Table 7). The posterior

Fig. 3. Two chains of the MH algorithm for two parameters, a1 and �. The algorithm is in its ergodic phase (burn-in period is not considered).

Table 6. Gelman and others’ (1995) convergence diagnosis

a1 a2 b1 b2 
h c d e 
 � and �i

1.01 1.01 1 1 1 1 1 1 1.03 1.02

Table 5. Acceptance rates for the MH algorithm

a1 a2 b1 b2 
h c d e 
 � and �i

0.37 0.34 0.4 0.48 0.41 0.49 0.41 0.41 0.38 0.26

Table 7. Posterior distributions

a1 a2 b1 b2 
h c d e 
 � 	

Mean 1.38 2.49 1.52 0.03 0.45 0.449 –0.013 0.025 0.11 1300 0.932
Std dev. 0.35 0.7 0.17 0.39 0.037 0.028 0.05 0.017 0.02 53.6 0.146
q2.5 0.8 1.29 1.18 –0.74 0.386 0.39 –0.12 –0.001 0.08 1200 0.666
q97.5 2.13 4.05 1.84 0.8 0.535 0.5 0.08 0.06 0.15 1387 1.241
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distributions of the dispersion parameter 
h and of the
friction coefficient � exhibit higher modal values than the
corresponding marginal prior distributions (Fig. 4). This
shows a higher variability of release depths around the
model’s mean 
h than was a priori assumed. It also shows a
relatively low increase of friction with velocity �, indicating
that higher limit velocities can be reached by the avalanches
than was a priori assumed.

Posterior correlations between release abscissas and
release depths (parameter b2), release abscissas and Cou-
lombian friction coefficients (parameter d), and release
depths and Coulombian friction coefficients (parameter e)
are not significantly nonzero at the 95% credibility level
(Table 7). This indicates that, for this case study, the different
input variables are nearly independent. However, whereas
the credibility intervals for b2 and d are nearly centered on
zero, this is not the case for e. This shows that relatively
strong evidence exists in the data in favor of a positive
correlation between release depths and Coulombian friction
coefficients. This is related to the negative correlations
observed in the data between Lstart, lstart, hstartð Þ and the
runout abscissa xstopdata .

3.4.2. Latent variables
For each of the calibrated events, a marginal posterior
distribution is obtained for the latent friction coefficient and
for the latent runout distance. Most of these distributions are
unimodal, bell-shaped and show a small dispersion. Figure 5
(a and c) show the posterior pdfs obtained for the 10 January
1936 avalanche.

For the whole dataset, the calibrated modal values for �
range from 0.16 to >0.6, with numerous values between
0.4 and 0.6 (Fig. 5b). In the avalanche literature, a 0.16
Coulombian friction coefficient is generally attributed to an
extreme event involving very dry and cold snow. This
statement is to some extent supported by the data since this
value is found for the extreme event that has reached the

longest runout by far (xstopdata= 2208m; Fig. 2). However,
the corresponding snow volume was not exceptional
(vstop = 45 000m3), which somewhat contradicts Salm and
others’ (1990) guidelines (see section 5.4.2). The modal
values obtained for the other avalanches must be attributed
to more ordinary events involving old wet snow or less cold
dry snow. This is the case for the 10 January 1936
avalanche, with a posterior estimate of 0.57 for �
(Fig. 5a) and a runout distance xstopdata= 1876m.

The distributions obtained for each latent runout distance
are discrete because of the 5m discretization step used
by the numerical avalanche model. However, they are all
very close to their theoretical distribution, i.e. a
Gaussian distribution centered on the observation and
with a variance of 
2

num (Fig. 5c). Propagation errors
"i ¼ mean xstop

� �� xstopdatai are therefore small for the whole

dataset, with an empirical distribution that is unbiased and
has a standard deviation close to the chosen value

num = 15m (Fig. 5d). These results suggest that the
probabilistic calibration of the past events has been
successfully performed for this case study, even though
the runout zone considered has a complex topography.

3.4.3. Posterior correlation
The result of Bayesian inference is the joint distribution of all
unknowns rather than the analyzed marginal distributions
up to this point. Given the large simulated sample, all
interparameter linear correlation coefficients are nonzero at
the 95% significance level. However, most of them are
small, indicating that many parameter pairs are a posteriori
nearly independent. This applies particularly to parameter
pairs indexing distributions of different input variables
(Fig. 6a) such as a1, eð Þ, and parameter pairs including at
least one variance parameter such as b2,
hð Þ. By contrast,
parameter pairs indexing the mean of the distribution of the
same input variable, i.e. a1, a2ð Þ, b1,b2ð Þ, c, dð Þ, c, eð Þ and
d , eð Þ, show high (in absolute value) posterior correlations

Fig. 4. Marginal prior and posterior distributions of model parameters. Poorly informative priors for parameters a1, a2,	ð Þ are not shown.
Priors (in red) for the other parameters were obtained by expert elicitation.
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because of possible compensations (Fig. 6b), for instance
–0.81 for b1, b2ð Þ and –0.57 for c, eð Þ.

Possible compensations to obtain the same runout
distance also explain that a significant positive correlation
exists between � and the Coulombian friction coefficient �
corresponding to the different calibrated events (e.g. 0.64
between � and the value of � corresponding to the 10 January
1936 avalanche (Fig. 6c)). This is partially related to the
difficulty of calibrating a Voellmy friction law using the
available data (section 5.1), but is also a normal feature in a
random-walk iterative search allowing several points of
similar credibility in the parameter space to be reached.

4. SIMULATION OF REFERENCE SCENARIOS
4.1. Simulation set-up
For the predictive phase, 20 000 Monte Carlo simulations
were performed. First, 20 000 values of the joint distribution

of the input variables xstart, hstart,� b�M���� �
were sampled. This

notation remembers that, in the predictive phase, all
model parameters including � are fixed to their posterior
estimates. The distribution of the release length Lstart was
obtained by computing the release length corresponding to
each simulation using Equation (10). Then each set of
input variables was propagated, which provides, using

Fig. 5. Marginal posterior distributions of latent variables. Left: the posterior distribution of the latent variables for one of the avalanches of
the dataset: (a) friction coefficient and (c) runout distance. Right: histograms of the marginal posterior means for the full dataset: (b) friction
coefficient and (d) runout distance.

Fig. 6. Three joint posterior distributions. Three unknown pairs are presented: (a) two parameters with no correlation; (b) two parameters
with a high negative correlation; and (c) the two highly positively correlated friction coefficients for the 10 January 1936 avalanche.
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Equation (25), the joint distribution of the output variables

p xstop, vxt , hxt b�M���� �
¼p G xstart, hstart, Lstart,� b�M��� �� ih

. The nota-

tions vxt and hxt indicate that, for each simulation, a velocity
and a flow depth are computed for each abscissa and each
time-step. Note that the random noise 
num is not considered
in this predictive phase, so the runout distance distribution
obtained is discrete with a 5m discretization step.

Subsequently, the samples obtained were reworked to
compute return periods and extract the distributions of
friction coefficients, maximal velocities v max

x , and maximal
flow depths hmax

x at abscissas corresponding to different
return periods. The associated distributions of Froude
numbers, Reynolds numbers, drag coefficients and impact
pressures were computed using these maximal values. The
Froude numbers, Reynolds numbers and impact pressures
considered are not rigorously maximal values, since max-
imal values for these quantities are not necessarily con-
comitant with maximal velocities and maximal flow depths.
Nevertheless, tests were done to compare the values
obtained with this simplified simulation set-up and the ‘true’
maximal values for a few events, showing very few
differences. Moreover, recent experimental data concerning
velocity and flow depth profiles in real avalanche flows
(Sovilla and others, 2008) and avalanche simulations
(Naaim and others, 2010) suggest that the Froude number
is relatively constant in the avalanche body, so the
distributions obtained with our simplified set-up may well
be close to the distribution of the ‘real’ maxima of the

different quantities at the abscissas considered. Total
computations took approximately 5 days on a standard PC.

4.2. Distribution of input variables
Figure 7 shows the distribution of the ‘input’ variables of the
propagation model given �M ¼ b�M. Most avalanches are
released in the upper part of the path, with release depths of
0.77–2.54m at the 95% confidence level (Table 8). Corres-
ponding release lengths range predominantly between 100
and 250m. The distribution of the friction coefficient � is
slightly skewed to the left, but very close to a Gaussian
distribution with a mean bc and a standard deviation b
2. This
comes from the low correlation between � and the other
input variables inferred on the data for this case study. The
posterior correlation between � and xstart and between � and
the release dimensions hstart, Lstartð Þ is therefore very low
(Table 9; see section 5.4.2 for discussion). Other a posteriori
correlation coefficients are close to those obtained from the
data. Given the large simulated sample, all these correlation
coefficients, even the very small ones, are nonzero at the
95% significance level.

4.3. Runout distances and return periods
Figure 8a shows the simulated runout distance distribution.
It is strongly multimodal, with its main mode around
x=2000m, a secondary mode around x=1700m and a
tertiary mode around x=900m. This is in good agreement
with the path’s complex geometry: the main mode

Fig. 7. Distribution of the input variables of the propagation model: (a) release abscissa, (b) release depth, (c) release length and (d) friction

coefficient �. Parameters of the magnitude model equal their posterior mean b�M. Release lengths are derived from release depths using
Equation (10).
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corresponds to the gentle slopes at the bottom of the path,
just before the arrival at the valley floor, where most of the
observed avalanches have stopped. The secondary mode
corresponds to the segment of the path where the slope
decreases to �238 before increasing again to 408, where a
few of the observed avalanches have stopped. The third
small mode in the middle of the path corresponds to a
change in the path’s concavity that stops minor avalanches
characterized by a very high level of friction. Due to their
small size, such avalanches are not recorded in the French
avalanche database.

Table 10 confirms the fairly good agreement between the
simulated sample and the data. For the median, the
difference between observed and predicted samples is
45m, and for the 90% quantile it is <30m. Nevertheless,
a systematic difference exists, with a lower exceedance
probability associated with a given abscissa in the simulated
sample than in the data. The simulated sample is also much
more dispersed and skewed on the left than the dataset.
These effects are presumably due to the absence of records
of very small avalanches in the database, which causes the
runout distance corresponding to a given exceedance
probability to be overestimated with the empirical distri-
bution. The simulated sample is thus arguably closer to
reality. However, it is not possible to check this assumption

since the basis on which certain small events were ignored
in the past (threshold altitude or minimal deposit volume,
etc.) is not precisely known.

The abscissas corresponding to any return periods (e.g.
the classic periods of 10, 30, 100 or 300 years) are obtained
simply by considering the associated quantile of the runout
distance distribution using Equation (27). Agreement be-
tween data and the one-to-one relationship between runout
distance and return period derived from the simulated
sample is quite good, except for the data corresponding to
the highest recorded runout distance (Fig. 8b). This is
because the empirical return period computed for this latter
avalanche is highly unrealistic, as it necessarily nearly
corresponds to the length of the observation period. The
simulated sample gives a return period of 340 years for this
event, which seems much more realistic and is consistent
with the calibrated value of �=0.16.

Monte Carlo confidence intervals have been computed for
a few return periods using Equation (28). Their width ranges
from 5 to 10m depending on the abscissa considered
(Table 11). This indicates that the number of simulations
performed is sufficient, even for evaluating runout distances
corresponding to return periods >100 years. Indeed, such
widths are within the order of magnitude of the discretization
step of the numerical propagation, so better precision cannot

Table 8. Distribution of model variables given b�M
Mean Std dev. q2.5 q97.5

xstart (m) 681.7 412.9 58.8 1550.3
hstart (m) 1.53 0.45 0.77 2.54
� 0.482 0.109 0.268 0.695
xstop (m) 1805.8 343.3 889 2137.3
Lstart (m) 165.2 39.8 98.7 253

Table 9. Intervariable correlations (posterior mean)

xstart hstart � xstop Lstart

xstart 1.00 0.02 –0.03 0.23 0.02
hstart 0.02 1.00 0.12 0.13 1.00
� –0.03 0.12 1.00 –0.79 0.12
xstop 0.23 0.13 –0.79 1.00 0.13
Lstart 0.02 1.00 0.12 0.13 1.00

Fig. 8. (a) Runout distance distribution and (b) return periods.
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be expected with a larger number of simulations. The
variable width of the confidence interval is worth special
mention. On a regular slope, it increases with the return
period, since more and more simulations are required to
precisely evaluate decreasing exceedance probabilities.
Here, however, this is not the case, because of the irregular
topography in the runout zone: when the local geometry
constrains avalanches to stop because of a slope increase,
the exceedance probability is precisely estimated, so the
confidence interval is small (e.g. 3m for T=5 years and 5m
for T=30 years). By contrast, when the local slope remains
constant or increases, different runouts can be obtained for
avalanches with very close dynamical properties, so the
corresponding exceedance probability is harder to evaluate
and the confidence interval is larger (e.g. 10m for
T=10 years).

4.4. Coulombian friction coefficient
Figure 9 presents the distributions of �T , the Coulombian
friction coefficient of the avalanches exceeding runout
abscissas corresponding to return periods of T=10, 30 and
100 years. Note that these distributions become more
irregular as the return period increases because few
avalanches obviously exceed high-return-period abscissas,
thus increasing Monte Carlo error. With 20 000 simulations,
there are slightly more than 200 centennial avalanches since
the mean avalanche frequency is slightly lower than one
event per year for the case study. The three distributions are

skewed to the left, because avalanches that reach a high
abscissa have predominantly low friction coefficients. This
also explains why the mean of the distribution decreases
with the return period, ranging from 0.314 for a 10 year
return period to 0.2 for a 300 year return period. This
confirms that the lowest calibrated value of 0.16 is due to an
extreme avalanche, with a return period greater than 300
years. Finally, the standard deviation of �T remains constant
whatever the return period and is approximately 0.07, little
more than half the overall standard deviation b
.
4.5. Flow velocities, flow depths and Froude numbers
Figure 10 presents the distribution of maximal velocities,
maximal flow depths and Froude numbers at the abscissa
corresponding to a return period of 10 years. Predicted
maximal flow depths are nearly uniformly distributed
between 0 and 3.5m, but major decennial avalanches show
flow depths up to 10m. Corresponding maximal velocities
range between 0 and 20m s–1, with a well-marked modal
value close to 5m s–1, but a probability of 0.2 to observe
maximal velocities higher than 10m s–1 (Table 12). This
latter value is of practical interest since it corresponds to the
probability of observing a dynamic pressure in the free-
surface snow flow higher than the classic threshold of 30 kPa
with the chosen mean snow density of 300 kgm–3. Finally,
decennial avalanches are mainly associated with Froude
numbers between 1 and 2.5, but much more dynamical
flows are also possible, with Froude numbers >4. This is
related to the slope at the 10 year abscissa, which is still
significantly steep.

Table 10. Comparison between data and simulated runout
distances

Data Simulated sample

Mean (m) 1933.1 1805.8
Std dev. (m) 104.8 343.3
Skew 0.19 –1.69
q10 (m) 1796.1 1140.9
q25 (m) 1876.1 1724
q50 (m) 1915.6 1960.6
q75 (m) 1979.8 1995.7
q90 (m) 2046.1 2074
q99 (m) 2207.8 2167.4

Table 11. Runout distance versus return period: posterior mean and
Monte Carlo confidence interval

T xstopT q2.5 q97.5

years m m m

5 2004 2003.7 2006.5
10 2064 2059 2069
30 2125.2 2123.6 2129
100 2164 2160 2169
300 2203.9 2198 2213.1

Fig. 9. Distribution of the Coulombian friction coefficient versus return periods of (a) 10 years, (b) 30 years and (c) 100 years. Only the
exceedances of the corresponding abscissa are retained (e.g. for T=30 years, the abscissa has a 0.033 annual probability of being reached).
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For higher return periods, a few avalanches still exhibit
high velocities, flow depths and Froude numbers. However,
these quantities globally decrease as the return period
increases. For instance, most of the avalanches that exceed
return period abscissas >30 years show low flow depths and
low velocities (Table 12). The low velocities occur because
the slope globally decreases with the abscissa, which
decreases the dynamics of the flow and stops more and
more avalanches. The low flow depths associated with high
runouts are explained by the low friction coefficients of the
avalanches reaching these high abscissas (Fig. 9), dry fluid
flows being rather thin. Finally, for return periods of 30 and
100 years, the mean of the Froude number distribution is
very close to 1, and few avalanches still show Froude
numbers >3 (Table 13). Because of the slope profile, the
mean and maximal values are slightly higher at the 100 year
than at the 30 year return period abscissa.

4.6. Reynolds numbers and drag coefficients
Reynolds numbers can be derived from Froude numbers
using Equation (5). The distribution obtained depends
strongly on the diameter of the obstacle considered. With
a small obstacle (d0 = 0.25m), the distribution shows an
exponential tail at a decennial abscissa (Fig. 11b), with a
mean value around 10. However, for a few avalanches the
Reynolds number given by Equation (5) is unrealistically
high and had to be set at 200 to allow realistic drag
coefficient and impact pressure computations. For a larger
obstacle (d0 = 5m), Reynolds numbers are much more
dispersed, so for many avalanches they had to be set at
200 (Fig. 11c). As for Froude numbers, lower Reynolds
numbers are observed at the 30 year return period abscissa
than at the centennial abscissa because of the topography of
the path (Table 14).

With Naaim and others’ (2008) formula, the Cx distri-
bution is a direct consequence of the distribution of
Reynolds numbers. With a large obstacle, the assumptions
of hydrodynamics for a prismatic shape are nearly fulfilled at
the decennial abscissa, with all values very close to 2 and
maximal values not higher than 2.4 (Fig. 12c). For a small
obstacle, this is not true, with drag coefficients ranging
between 2 and 12 and with a modal value around 6
(Fig. 12b). With Sovilla and others’ (2008) formula (Fig. 12a),
the results obtained are very close, which is not illogical
since the experimental measurements were done on a pylon,
which is in fact a small obstacle. The main drawback using
this instead of Naaim and others’ (2008) formula is that drag
coefficients <2 are generated for certain avalanches, which
is unrealistic in the studied case of a prismatic obstacle.

4.7. Impact pressures
At all the abscissas considered and whatever the formula
used, the pressure distributions obtained are very strongly
skewed to the right, with a modal value close to zero and an
exponential tail because of the velocity square dependency
(Fig. 13). Most of the avalanches are therefore characterized
by low pressures in the runout zone, but very high values
can be obtained for a few events. This is critical for hazard
mitigation and indicates that, for the structural design of a
defense structure or of an exposed building, very high
impact pressures must be considered even if such events are
very rare.

The impact pressures computed using Naaim and others’
(2008) formula for a large obstacle are, at a decennial
abscissa, close to the dynamic pressures in the free surface
flow (Fig. 13a). This is not surprising given the values of the
drag coefficient at this abscissa. The impact pressures
computed for a small obstacle (Fig. 13b) or with Sovilla

Fig. 10. Distribution of (a) velocity, (b) flow depth and (c) Froude number for a decennial avalanche.

Table 13. Froude number versus return period

Mean Std dev. q2.5 q97.5

FrT10 1.61 0.78 0.88 4.18
FrT30 0.94 0.68 0.29 2.80
FrT100 1.16 0.71 0.33 3.10

Table 12. Maximal velocity versus return period

Mean Std dev. q2.5 q97.5 P vT > 10ð Þ

vT10 (m s–1) 6.8 4.5 1.4 18.4 0.2
vT30 (m s–1) 3.6 4.0 0.8 15.7 0.09
vT100 (m s–1) 4.4 4.3 0.7 16.1 0.13
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and others’ (2008) formula are much higher (e.g. nearly
twice as high on average as using Naaim and others’ (2008)
formula (Table 15)). With each formula, the probability of an
event producing an impact pressure higher than the classic
limit of 30 kPa is easily obtained: 0.21 for a large obstacle,
which nearly corresponds to the probability of observing a
maximal velocity higher than 10m s–1, but 0.48 for a small
obstacle (Table 15). This indicates that at the decennial
abscissa the classic threshold of 30 kPa is exceeded every 50
years on average for a large obstacle, but nearly every 20
years on average for a small obstacle.

The differences between the formulas apply whatever the
return period considered. For example, the probability of a

centennial avalanche inflicting a pressure greater than
30 kPa is only 0.13 if the dynamic pressure in a free surface
flow is studied, whereas it is 0.25 with Naaim and others’
(2008) formula for a small obstacle (Table 16). All these
results indicate that a constant drag coefficient equal to 2
can possibly be used to compute impact pressures on a
large obstacle, but that a much higher drag coefficient must
be used for a smaller obstacle if one wants to use a constant
value. However, given the large range of variation of the
drag coefficient for a small obstacle, our results also
suggest that it is much more reasonable to compute the
Cx value to be used for a given reference event using the
flow properties.

Table 14. Reynolds number versus return period

d0 = 0.25m d0 = 5m

Mean Std dev. q2.5 q97.5 Mean Std dev. q2.5 q97.5

ReT10 9.51 30.43 0.17 105.75 179.8 39.2 68.1 200.0
ReT30 4.50 15.50 0.13 54.02 165.9 49.1 50.5 200.0
ReT100 6.96 21.46 0.32 50.44 193.8 22.3 127.8 200.0

Fig. 11. Drag coefficient versus Reynolds number (a) and Reynolds number for a decennial avalanche for two sizes of obstacle, 0.25m (b)
and 5m (c). The relationship between Reynolds number and drag coefficient is for a prismatic obstacle shape.

Fig. 12. Drag coefficient for a decennial avalanche, evaluated with Savilla’s experimental formula (a) and Naaim’s semi-empirical formula
for two sizes of obstacle, 0.25m (b) and 5m (c).
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5. DISCUSSION
5.1. Identifiability, prior information and prior
sensitivity
5.1.1. Identifiability of friction coefficients
A first option for a deterministic calibration of the two
friction coefficients of a Voellmy friction law on a given
study site is to fit a parameter pair �i , �ið Þ for each recorded
event. Some data that are only measured on test sites (e.g.
velocities) are then required (Blagovechshenskiy and others,
2002)). Another option is to use the same pair �, �ð Þ to fit all
the events that have occurred on an avalanche path.
However this is not possible because, for a given snow
volume, various avalanche magnitudes can be observed due
to variations in snow quality (temperature, density, humidity,
etc.). Taking inspiration from traditional engineering prac-
tices (Salm and others, 1990) that continue to be debated,
we choose an intermediate approach, having one latent
friction coefficient �i, i 2 1,N½ � and the parameter � to be
estimated from the data.

Compared with having a parameter pair �i, �ið Þ for each
event, our choice reduces the number of unknown quantities
to be estimated. However, model identifiability is still not
ensured. The critical question is whether the available release
dimensions and positions xstarti , hstart i , Lstart i

� �
, i 2 1,N½ � are

sufficiently constraining to be as informative as at least one
runout distance, since N+1 friction coefficients must be
calibrated with N avalanche events. The answer to this
question depends on the data available on a given path and
on its topography. Correlations between release abscissas,
release dimensions and runout distance are generally weak
(see below), but may contain some information if the number
of recorded events is sufficiently high. Reasonably complex

runout zones with avalanches stopping both on flat regions
and steep slopes are also relatively constraining for the �
parameter, allowing only a small range of values to match all
observations. By contrast, extremely regular runout zones are
only very slightly constraining, giving an infinity of solutions
�,�ið Þ, i 2 1,N½ � to the calibration problem.
An important consequence is that the likelihood function

corresponding to our stochastic model cannot necessarily be
maximized using Fischer, Neyman and Pearson’s traditional
(frequentist) method, depending on the case study. Until the
relations between data, topography and model identifiability
are fully comprehended, which will require further research,
our proposal to work under the Bayesian paradigm is a
practical way to overcome the problem. At the cost of using
an informative prior for �, it makes the model fully
identifiable for any case study by restricting the research
domain to a weighted range of possible values.

If there is little information on � in the case study because
of a weak dataset and/or an overly simple path topography,
the posterior distribution of all the mi’s is computed with
respect to the variability of the prior distribution chosen,
which is more satisfactory than imposing a constant fixed
value for �. By contrast, if enough information exists in the
data or in the path’s topography, the prior knowledge on � is
updated. This is what happens in our example in which �’s
posterior distribution has a much lower variance and a
higher modal value than the prior distribution.

5.1.2. Prior subjectivity and sensitivity
Proposing an informative prior for � is technically easy in
light of recent advances in elicitation (Craig and others,
1998; Kadane and Wolfson, 1998; O’Hagan, 1998; Parent

Fig. 13. Dynamic pressure in the free surface flow (a) versus impact pressure evaluated with Naaim’s formula (b) for a decennial avalanche.

Table 15. Impact pressure for a decennial avalanche

Mean Std dev. q2.5 q97.5 P Pr > 30ð Þ

PrT10 (kPa) in a free surface flow 20.0 27.6 0.6 101.2 0.2
PrT10 (kPa) (Sovilla and others, 2008) 28.8 19.3 2.8 71.1 0.45
PrT10 (kPa) (Naaim and others, 2008), d0 = 0.25m 54.9 72.6 0.8 265.2 0.48
PrT10 (kPa) (Naaim and others, 2008), do ¼ 5m 20.8 28.6 0.6 103.6 0.21
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and Bernier, 2003), and of the expert knowledge available
concerning the link between � and the path’s roughness,
altitude and exposure (Salm and others, 1990). The drawback
is that it undeniably introduces subjectivity into the analysis.
Indeed, encoding the partial knowledge of an unknown is
historically the main argument against the Bayesian theory.
It is denied as a matter of principle when probability is
interpreted as an objective limit of frequencies rather than as
a subjective bet that quantifies a probabilistic judgment.

However, using prior information is for us nothing more
than a modeling choice, such as choosing an avalanche
model and the stochastic operators describing the input–
output variability (see sections 5.3 and 5.4). It has the
advantage of bringing into the analysis extra-data informa-
tion. As shown by the case study, it also favors a reasonably
quick convergence of the MCMC algorithm by orienting the
numerical search in regions of high presumed probability.
While using our stochastic model, we therefore advocate
using informative priors not only for �, but also for all other
parameters for which knowledge is available except
b2,d , eð Þ. For these latter correlation parameters, vague
priors must be preferred, so as to possibly infer weak
correlations between the different variables.

The robustness of the results to the prior choice can easily
be investigated through a sensitivity analysis using vague
priors instead of informative ones for all parameters except
�. This has been done for the case study, with results very
close to those detailed in section 3. This indicates that there
is enough information in the dataset studied for the
sensitivity of the prior to be low. However, convergence
took longer to reach because the algorithm did not as easily
find the region of high posterior probability. The related
increase in computation times is another argument in favor
of informative priors for practical applications.

5.2. Advantages and disadvantages of the proposed
MH algorithm
Beyond the question of the theoretical feasibility of
inference, there remains the difficulty of its practical
implementation. Like all MCMC methods, the MH algorithm
has the advantage of being consistent with the direction of
an avalanche model’s specification, i.e. the candidate values
are generated for the input variables and the credibility of
the outputs is evaluated after the propagation. Moreover, the
MH algorithm is very general, unlike the Gibbs sampler
(Geman and Geman, 1984). In theory, Bayesian inference
using the MH algorithm and suitable informative priors
should therefore be able to achieve the calibration of any
avalanche propagation model. In practice, however, obtain-
ing a good numerical approximation of the posterior pdf
may be extremely tricky because of a too low convergence
or numerical traps.

Even if convergence for the � parameter is difficult
because of the high autocorrelation level of the MCMC
chains, the algorithm proposed in this paper has proved its
efficiency in the case study. One of its main advantages is
that it is sequential, which reduces for each jump the
difficulty of finding a new point of relatively high credibility
in the parameter space. When the algorithm is tuned, this
makes relatively high jump strengths correspond to the
optimal acceptance rates, thus reducing the burn-in period
(only 1000 iterations for the case study). The proposed
algorithm may therefore be a good starting point for any
avalanche practitioner or scientist willing to use their own
depth-averaged propagation model within a Bayesian stat-
istical framework. One must, though, keep in mind that the
jump functions proposed in this paper are case-study
specific, and, for a new case study, the strength of the
different marginal jumps must be tuned again with respect to
Gelman and others’ (1995) optimal acceptance rates, which
can be difficult and time-consuming.

More generally, even if its sequential nature makes the
proposed algorithm relatively efficient, computation times
remain quite high, first to reach convergence (burn-in period)
and then to obtain a good approximation of the posterior pdf.
A first option to reduce these computation times would be to
test even more efficient versions of the MH algorithm to
explore more quickly the regions of high probability as soon
as they are reached using adaptive jump strengths. A second
option would be to abandon the MH algorithm and to use a
noniterative numerical method such as importance sampling
(Parent and Bernier, 2007, ch. 14), with an auxiliary
distribution based on the inferential results from a much
simpler statistical–dynamical model (Eckert and others,
2007b). This would not necessarily be technically easier
given the large dimension of the parameter space.

5.3. Why a depth-averaged model with a Voellmy
friction law?

5.3.1. Advantages and disadvantages
Many numerical avalanche models exist, with different
levels of description, different friction laws and different
simplifying hypotheses (e.g. Pudasaini and Hutter, 2007).
Depth-averaged fluid descriptions of avalanche flows are
now standard in many European countries as soon as
numerical modeling is used for hazard zoning (Gruber and
others, 1998; Hopf, 1998). They give access to space and
time velocity, pressure and flow-depth profiles much closer
to real avalanche flows than the single values provided by
simpler block models. Even if it remains time-consuming,
our stochastic model may therefore be useful for many
practical configurations, as a reasonable compromise
between a realistic description of the avalanche flow and
computation times.

Table 16. Impact pressure for a centennial avalanche

Mean Std dev. q2.5 q97.5 P Pr > 30ð Þ

PrT100 (kPa) in a free surface flow 11.4 20.4 0.2 78.1 0.13
PrT100 (kPa) (Sovilla and others, 2008) 19.4 17.5 2.3 65.8 0.23
PrT100 (kPa) (Naaim and others, 2008), d0 = 0.25m 29.8 54.0 0.3 193.7 0.25
PrT100 (kPa) (Naaim and others, 2008), d0 = 5m 12.2 21.6 0.2 80.3 0.13

Eckert and others: Long-term avalanche hazard assessment580

https://doi.org/10.3189/002214310793146331 Published online by Cambridge University Press

https://doi.org/10.3189/002214310793146331


The search for physical realism would call for an even
more complete 2-D avalanche model (Naaim, 1998;
Pudasaini and Hutter, 2007) to possibly take into account
several layers and/or the geometrical aspects of the flow.
However, as stated in section 2.1, such models cannot for
the moment be used in a statistical–dynamical setting
because of the computation times needed for each simu-
lation. This may become possible in the future with the
continuous increase of PCs’ computational power. Methods
for approximating the distribution of the outputs of a
complex numerical code more rapidly than a standard
Monte Carlo set-up, whose convergence rate is only 1=

ffiffiffi
n

p
,

will also be required to reduce the number of iterations
necessary to achieve the predictive simulations with
sufficient precision (Skaggs and Barry, 1997).

Because of the complexity of snow flows and a lack of
knowledge about snow rheology (Dent and Lang, 1980;
Dent, 1993), the choice of one friction model remains a
source of constant debate in the avalanche community.
Since a Voellmy friction model implies the identifiability
problems discussed in section 5.1, its choice can be
questioned. Our justification is partly that the Voellmy
model remains the most practised. In addition, as stated in
section 2.1, it is consistent with the even stronger assump-
tion of no erosion routine in the model. Both assumptions
regarding the friction law and the erosion–deposition model
could, however, be relaxed in later work within the same
framework because of the generality of the MH algorithm
pointed out in section 5.2.

5.3.2. Propagation model sensitivity
We have shown that our propagation model provides
distributions of variables such as velocities and pressures
that are not reliable enough with a simpler sliding block
model. It can also be claimed that the runout distance
distribution obtained with our statistical–dynamical fluid
model is closer to reality than those obtained with simpler
statistical–dynamical sliding block models, which allow
more accurate estimation of return periods. To test this
statement, the Voellmy fluid model discussed in this paper is
compared in our case study with the statistical–dynamical
sliding block model with a Coulombian friction law from
Eckert and others (2007b), and with a similar stochastical–
dynamical sliding block model with a Voellmy friction law
(Fig. 14).

Eckert and others (2007b) used 40 data to calibrate the
Coulombian model. Here only the 26 used in this paper are
considered, to compare the three models with similar
information. With these data, the Coulombian model is
clearly too pessimistic, with ‘small’ return periods associated
with very high runout abscissas and an overestimation of
high return periods. Eckert and others (2007b) obtained
much more reasonable results. This shows that the Coulom-
bian model needs a large calibration dataset to give accurate
results. We believe this is because it has insufficient physical
constraints (e.g. no increase of friction with velocity).

The two models with a Voellmy friction law show a more
realistic and relatively similar one-to-one mapping between
runout abscissa and return period for small return periods.
Nevertheless, the runout distance distribution obtained with
the Voellmy sliding block model looks too optimistic for
high return periods, with, for example, a presumably far too
high return period of �2200 years associated with the
highest recorded event discussed earlier. As stated in

section 4.3, the depth-averaged model presented proposes
a 340 year return period for this event, which is much more
credible. Moreover, the runout distance distribution is more
regular with the fluid model than with the Voellmy sliding
block model, with avalanches possibly stopping when the
slope increases, which is not possible with a sliding block.

This short comparison suggests that an accurate fluid
description of the avalanche flow can compensate a small
data quantity, the model being less rough than a simple
sliding block. The physical description of the flow thus adds
information to the analysis, in the same spirit as prior
knowledge balances information conveyed by the data in
Bayes’ theorem.

The intermediate assumption of a depth-averaged fluid
model with a Coulombian friction law could also have been
tested, but at the cost of presumably unrealistic pressure and
velocity distributions because of the absence of erosion in
the propagation model. We therefore prefer to reserve this
approach for further work including the erosion–deposition
model described by Naaim and others (2004).

5.4. Stochastic modeling choices

5.4.1. Input variable description
We have modeled the latent friction coefficient with a
conditional Gaussian mixture model. Since basal friction
results from several perturbations on the same order of
magnitude (avalanche size, snow quality, etc.) the central
limit theorem suggests this is appropriate. The numerical/
observation errors xstopdata� xstop were also assumed Gaus-
sian for the same reason, with a zero mean because the
propagation model and the observation process are sup-
posed good enough to be unbiased.

The conditional gamma mixture model employed for
release depths was based on the consideration that the
amount of available snow increases with altitude (Durand
and others, 2009). By contrast, the beta distribution used
for the release abscissa had no real physical grounding, and
it is probably too simple when the topography in the
release zone shows substantial concavity changes. Further-
more, largely speculative operators have been used to
transform the observed deposit volumes into release
dimensions because of problems with collecting these data
in the field.

Fig. 14. Comparison with sliding block propagation models. The
Voellmy fluid model of this paper is compared with the statistical–
dynamical sliding block model with a Coulombian friction law
from Eckert and others (2007b) and with a statistical–dynamical
sliding block model with a Voellmy friction law.
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A sensitivity analysis of the choice of distributions
describing the input variables was performed with a simpler
model (Eckert and others, 2007b). It showed the low
sensitivity of runout distance distribution to the variability
of the input quantities, but also that, as soon as any
variability is neglected, high runout distance quantiles are
underestimated. Our model can therefore be used in first
approximation even if it is oversimplified, but more work is
needed to find a stochastic structure that more satisfactorily
models the entire random vector of input variables. Priority
should be given to the most debatable assumptions
regarding the distribution of release positions and dimen-
sions. This includes the reparation along the path of
available snow for mass incorporation during the flow.

5.4.2. Intervariable correlation
The proposed conditional model is designed to take into
account all correlations between the input variables of the
propagation model, using the b2, d , eð Þ parameters.
Although it is a rough first attempt since only linear
correlations are considered, this makes it better able to fit
the variability of the data than independent standard
distributions. From a more practical point of view, when
the model is used for prediction, this should allow large
avalanches that result from a combination of extreme
constraining factors not to be underestimated.

For the case study, these correlations have been shown to
be very small. For instance, the correlation between the
friction coefficient � and the avalanche size, in our model
the initial depth hstart, has been found to be much lower than
is assumed in traditional engineering practices (Salm and
others, 1990). This may indicate that release conditions are
quickly ‘forgotten’ by the flow, or, as stated in section 5.1,
that the information conveyed by the data is too weak to
infer this parameter from the data given the friction law
chosen. More generally, it illustrates the usefulness of the
proposed framework for inferring unobservable quantities in
avalanche flows, which may be an interesting outcome for
further developments.

5.5. Reference scenarios for avalanche hazard
management
5.5.1. Multivariate reference scenarios and impact
pressure distribution
The case study shows that there is an infinity of avalanches
corresponding to the same return period. However, with the
proposed approach, at least the joint distribution of all
events corresponding to a given return period is obtained.
Figures 9–13 give a complete picture of the decennial
scenarios, from maximal velocities and flow depths to flow
regimes and impact pressures. A few pertinent reference
scenarios can be selected (e.g. those corresponding to the
upper bound of the 95% confidence interval of the critical
variables). Important information for hazard zoning is also
provided, such as the link between the different variables
of interest and the return period (Tables 12–16), as well as
the probability of exceeding any threshold (Tables 12, 15
and 16).

To study the level of exposure of the elements at risk, the
distributions of the impact pressures obtained are of
particular interest. The case study shows that very high
pressures remain possible for very high return periods, even
if they seldom occur (Tables 15 and 16). It also shows that
computation of the drag coefficient distribution is necessary

to account for the high pressures exerted by avalanches
characterized by low Froude numbers, especially on small
obstacles such as pylons (Figs 11–13). Even if they are based
on semi-empirical equations, these results are coherent with
full-scale measurement (Sovilla and others, 2008).

5.5.2. Associated uncertainty
As shown in section 3, the estimation error related to the
limited data quantity used for inference is clearly quantified
in the Bayesian framework by the dispersion of the posterior
distribution of model parameters �. However, this source of
uncertainty has not been considered for prediction in this
paper: the reference scenarios were computed using the
posterior mean b� of the model’s parameter, and only the
Monte Carlo error was investigated. This has restricted the
Bayesian computations to a powerful way of calibrating the
parameters of a noninvertible and only partially identifiable
propagation model. As illustrated with a sliding block model
(Eckert and others, 2008a), the computation of credible
intervals resulting from the lack of local data is, however,
possible in the Bayesian framework using simulation
sequences that reconstruct the predictive distribution of
the return periods of interest. This could also be done for the
depth-averaged model proposed here, at the cost of a
significant additional computational effort. It would, for
example, somewhat relax the debatable assumption of a
constant � by sampling its posterior distribution with respect
to the information conveyed by the data.

5.5.3. Validation
Of even greater concern is the problem of validating the
reference scenarios obtained. In stochastic hydrology, the
‘true’ model is known because of asymptotic properties
assuring the convergence of a sample of independent
exceedances to a family of limit distributions (Coles,
2001). Sources of uncertainty are therefore essentially
related to data (missing values, measurement errors, spatial
extrapolation, etc.). By contrast, a stochastic snow avalanche
model remains at least partly speculative, and is therefore
highly questionable. For our case study, an extreme event
was registered, allowing a qualitative check of the results
obtained, at least for runout distances. In general, however,
such an event is not available, and one cannot wait a few
hundred years to see whether the proposed return periods
are correct. Moreover, the number of recorded runout
distances is usually so small that split-test approaches are
not possible. Therefore other validation procedures must be
employed. They include comparison between different
modeling approaches (e.g. Barbolini and others, 2000),
and comparison with naturalistic data from dendrochronol-
ogy that may help to incorporate evidence of past extreme
avalanches.

6. CONCLUSION AND OUTLOOK
A depth-averaged fluid propagation model has been used
within a hierarchical Bayesian framework, thus implement-
ing a statistical–dynamical approach with the actual stand-
ard in avalanche numerical modeling. Using a case study,
the proposed sequential MH algorithm proved its ability to
perform the joint calibration of a Voellmy friction law.
Model identifiability was ensured by the choice of an
informative prior for the friction coefficient �, and it was
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shown that this practical trick does not preclude capturing
the information conveyed by the data as soon as it is
valuable. In predictive simulation mode, it was demon-
strated how the multivariate nature of avalanche hazard is
acknowledged by the available joint distribution of all
model outputs at any abscissa of the runout zone. For
example, recent advances taking into account the particular
rheology of snow have been used to compute realistic (i.e.
compatible with the range measured on instrumented test
sites) high-impact pressures for small obstacles.

This all shows that, even if the computations remain
relatively complex and time-consuming, they are feasible on
a real path and are worth the effort. We therefore believe
that our Bayesian approach is a valuable framework for new
developments in the field of avalanche dynamics. It allows
different information sources (data, prior) and knowledge
(deterministic modeling of avalanche propagation and
stochastic modeling of the input variables), even if
imperfect, to be brought together and exploited for oper-
ational risk assessment. From a more physical point of view,
it is a consistent way to learn about unobservable parameters
(e.g. correlation and friction coefficients).

We are fully aware that this approach, being relatively
new, includes numerous subjective choices. Some of them,
such as the operators used for transforming avalanche
deposits into release dimensions, are very speculative and
were made because of the weakness of available know-
ledge. Others, such as the choice of a Voellmy friction law,
are more classical debates in the avalanche community. We
made the modeling assumptions that we believed were the
most sound, as an example of how all computations can be
made, rather than with the objective of obtaining a definitive
model that works in all situations. Most of our choices could
easily be replaced by alternatives within the same frame-
work, since it should be possible to adapt the proposed MH
algorithm to any propagation model and many modeling
assumptions.

Implementing the approach using various propagation
models and friction laws on various datasets would improve
our knowledge of avalanche flows (e.g. which variables are
correlated, and which model structures and friction laws are
best supported by the data). For this, the use of additional
data such as velocity and pressure measurements acquired
on test sites would be worthwhile. This would make
identifiability problems less challenging and make it pos-
sible to infer additional parameters such as �sv and ksv in the
depth-averaged equations, as well as the relations between
velocity and pressure in real flows.

For practical applications, the reference scenarios ob-
tained must be validated before the model can be routinely
used for engineering purposes (Naaim and others, 2010).
This will require greater sensitivity analysis and a com-
parison with other data sources on a selection of case
studies. Research is also needed to reduce computation
times, which could be done by improving the proposed
calibration algorithm and implementing simulation methods
that are more efficient than a Monte Carlo approximation.

Finally, as suggested in section 5.5.2, a direct continua-
tion of the approach would be to perform Bayesian
predictive simulations to take into account parameter
uncertainty, especially concerning the friction coefficients.
Another appealing outlook would be risk computations
taking into account the elements at risk (Arnalds and others,
2004) to fully address the absence of one-to-one mapping

between a multivariate hazard and a return period. This
could be done using a combination of the Bayesian risk
computations proposed by Eckert and others (2008b, 2009)
with the hazard model described in this paper.

LIST OF SYMBOLS

a Generic notation for avalanche frequency
a1; a2 Parameters of beta distribution of normalized

runout abscissas
a	; b	/a

0
	
; b

0
	

A priori/a posteriori parameters for gamma
distribution of 	

b1; b2; 
h Parameters of the gamma mixture model of
release depths

c; d ; e; 
 Parameters of the Gaussian mixture model of
latent friction coefficient �

CI� Confidence interval corresponding to the
significance level �c

Cx Drag coefficient
d0 Typical size of obstacle impacted by

avalanche flow
data Local data
f1 Topography
f2 Jump function
F ; Fxstop ; bF ; F�1 Cumulative distribution function (cdf), run-

out distance cdf, estimated cdf, inverse cdf
Fr Froude number
Fric Generic notation for the friction term
g Gravity constant
GðÞ Deterministic propagation model
h Flow depth
hstart; Lstart; lstart Release dimensions
n Number of simulated avalanches
N Number of avalanche events
pðÞ Stochastic avalanche model, posterior

distribution
PðÞ Probability
Pr Impact pressure
q, qN�c

Quantile, quantile of the standard normal
probability density function (pdf)
corresponding to the significance level �c

q thres Threshold discharge
Re Reynolds number
T Return period
Tobs Observation period
v Velocity
vstarteq Equivalent release volume
vstop Deposit volume
x Abscissa
xmin ; xmax Minimal and maximal abscissas of the

release zone
xstart; xstartn Release abscissa, normalized release abscissa
xstop Runout abscissa
xstopdata Observed runout abscissa
y Generic notation for avalanche magnitude
yT Magnitude corresponding to the return period

T
z Altitude
�sv; ksv Parameters in Saint-Venant equations
�ðÞ Dirac distribution

 Propagation errorb� Point estimate for the parameter �
�ðCÞ Candidate for the parameter �
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�F Generic notation for the parameters of the
frequency model

� kð Þ= �1; �2ð Þ kð Þ Value k of a sample of the parameter �= of
the �1; �2ð Þ parameter pair

�M Generic notation for the parameters of the
magnitude model

	 Mean annual avalanche number
�; � Coefficients of the Voellmy friction law
�1; �2 Parameters of Sovilla’s experimental law
�ðÞ Prior distribution
�N Density of flowing snow

num Standard deviation of numerical propagation

error
�; � xð Þ Local slope, local slope at the abscissa x
�start Mean slope of release zone
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