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POINTWISE BOUNDS FOR A SOLUTION OF A
NONLINEAR BOUNDARY VALUE PROBLEM IN

PARTIAL DIFFERENTIAL EQUATIONS
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Abstract

Pointwise bounds are obtained for the solution of a Dirichlet problem involving the
nonlinear Liouville equation in the plane. Illustrative calculations are performed for a
square domain.

1. Introduction

Consider the boundary value problem described by the equations

V2« = e" in V, (1.1)

u = 1 onB, (1.2)

where V is some closed domain in the plane with B as its boundary. Taken on its
own, the differential equation (1.1) possesses an exact solution due to Liouville
[3], and for simple domains V this can be used to solve the complete boundary
value problem in (1.1) and (1.2). For instance the exact solution of the problem
when V is a disc has been obtained by Hart [2]. For other domains it may not be
possible to find the exact solution and in such cases approximate solutions must
be sought, using numerical or variational approaches for example. The main
drawback of these approaches, however, is that extensive computation is often
required. Here we shall adopt a very much simpler approach and present
analytical pointwise bounds on the exact solution by using the maximum princi-
ple for differential equations [1]. Illustrative results are obtained in a simple case.
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2. General pointwise bounds

The boundary value problem can be written as

- V 2 w = / ( « ) inF, (2.1)

with

u = 1 on B, (2.2)

where

/(«) = ~e". (2-3)

We note that/(w) is a continuous function of u, and

df/du = -e" < 0. (2.4)

At the end of this section we establish the existence and uniqueness of a solution
of (2.1) and (2.2). We shall denote the solution by u. Now suppose that two
functions u, and u2 can be found so that

- V 2 H , </(«,) in V, M, = 1 on5 , (2.5)

and

-V2u2>f(u2) in V, M 2 = 1 o n B. (2.6)

Then (2.5) and (2.1) with (2.2) imply

-V2(«, - u) < / (« , ) - / ( « ) ^ -K(U] - u)

for K > 0, since 3/ /3M < 0. Hence

- V 2 ( M , - u) + A:(M, - u) < 0 ,

implying, by the maximum principle, that

u, — u « 0

or
M, < M.

In the same way, with (2.6) instead of (2.5), we find that

u < M2-

Combining these we therefore have shown that the upper and lower bounds

ul(x,y)<u(x,y)<u2(x,y) in V (2.7)

are valid.
One way to obtain bounding functions w, and u2 in practice is to choose two

functions/, and/2 such that

/ . ( " ) < / ( " ) for all u, (2.8)
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and

and let «, and u2 be solutions of

/ 2 ( K ) > / ( « ) for all u, (2.9)

>of

-V2«, =/,(«,) inK, (2.10)

and

- V 2 « 2 = / 2 ( « 2 ) inK, (2.11)

subject to the boundary conditions (2.2). Because of (2.8) and (2.9) the inequali-
ties in (2.5) and (2.6) are then satisfied. The functions/, and/2 can be taken to be
linear functions, and so (2.10) and (2.11) are readily solved analytically for the
bounding functions M, and u2. This procedure for obtaining u, and u2 has been
exploited recently in one-dimensional problems by Villadsen and Michelsen [5]
and by Varma and Streider [4].

The existence of a solution to the problem in (2.1) and (2.2) can be established
by using a result due to Amman [1]. To apply this result we rewrite (2.1) and (2.2)
in the form

_V2c = g(i>) in V, v = 0 onB, (2.12)

where

g(v)- el~v, v= 1 - u. (2.13)

Since g(0) = e > 0, and the boundary condition satisfies v 3s 0 trivially, Amman's
theorem A enables us to state that a necessary and sufficient condition for the
existence of a non-negative solution v of the boundary value problem (2.12) is the
existence of a non-negative C2 function w satisfying

- V 2 w > g ( w ) in V, wX) onB. (2-14)

To construct such a function w we consider the problem

-V 2 w = g2(w) = e in V, w-0 onB. (2-15)

Since - V 2 w > 0 here, it follows that w, if it exists, cannot have a minimum in V,
and therefore

w > 0 in V. (2.16)

For such values of w,

g2(
w)^s(w)' (2-17)

and so (2.14) is satisfied. In addition, (2.15) has the explicit solution

cosh ni
w\ - 2

n=\
odd ft
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This function w satisfies (2.16) and (2.14), and hence by Amman's theorem there
exists a non-negative solution v of (2.12). Since v = 1 — w, we have therefore
established the existence of a solution u to the problem in (2.1) and (2.2).

To show that the solution u of

V2u = eu in V, M = 1 on B, (2.19)

is unique we suppose the contrary and let ua and Up denote two distinct solutions
of the boundary value problem. If we define the quantity

Pap = / [{gr«K«« - "0)}2 + («« - "fi)(eu" ~ eu»)]dV, (2.20)

we see that for any distinct functions ua and Up

PaP>0. (2-21)

But, using the divergence theorem in (2.20), we have

and if ua and Up are distinct solutions of (2.19) then

Pat = 0- (2-23)

which contradicts (2.21). Hence the solution u of (2.19) is unique.

3. Pointwise bounds

To illustrate the procedure for finding bounding functions we shall consider the
problem when V is the region

V= {-\<x<\,-\<y<\} (3.1)

in cartesian coordinates, with boundary B. Since by (1.1) V 2 M > 0 , the exact
solution M cannot have a maximum in V, and it therefore follows that

M < 1 in V. (3.2)

Figure 1 shows the relevant part of the u, /(«) diagram for/(«) = -e", where the
parameter a < 1 will be determined later.
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*(*>)

- e

Figure 1. The relevant part of the u, /(«) diagram for/(u) = e~".

3.1 Lower bounding function
To obtain a pointwise lower bound M, for u we first choose the function/,(«) as

the horizontal line in Figure 1 through the point (1, -e). This line lies below the
function/(M) = -e" in the region specified by (3.2) and is given by

/,(«) = -e. (3.3)

For this choice of/,(») the inequality (2.8) holds and by (2.10) the function M,
satisfies

V2M, = e in V, (3.4)

M, = 1 on B. (3.5)

Equations (3.4) and (3.5) have the solution

- , ) , (3,)
odd n

which from the theory of Section 2 is a lower bounding function for the exact
solution u of (1.1) and (1.2). The smallest value of u{(x, y) in (3.6) occurs at
x = 0, y = 0, and is given by

K,(0,0) = 0 - 198966

= a0 say, (3.7)
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and this therefore provides a global lower bound on u. Thus we now know that

ao<u<\ in V. (3.8)

Referring to Figure 1 we see that we can confine u to the region (3.8) by choosing
the value of the parameter a appropriately. If we do this we can improve on the
bounding function in (3.6) by replacing the function f\(u) in (3.3) by the chord
joining the points (a, f(a)) and (1,-e). This chord lies below the function
/(u) = -e" for the range (3.8) and is given by

fl(u) = -k*(u-a)+f(a), (3.9)

where

For this choice of/,(«) the inequality (2.8) holds and by (2.10) the function w,
satisfies

V2u, = k2(u{ - a) - f(a) inK, (3.11)

M, = 1 on B. (3.12)

The solution of (3.11) and (3.12) is

u,(je, y) = a + k^f(a) + (l - a - Ar2/(«))w,(x, y), (3.13)

where

and

( \ i j _ V 4kl t i\(»-D/2 nmx [ coshknw^x, y) — 1 + 2 :(-l) cos —z-- '

odd n

with

^ = ^ 2 + ̂ - (3.16)

With a — a0 given by (3.7), we find from (3.13) that the exact function u is
bounded below by

u,(0,0;a = ao) = 0-436983

= a, say. (3.17)

This allows us to make an immediate improvement in the lower bound function
by working in the region

a,=£M<l (3.18)
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instead of that in (3.8). With a = ax we find from (3.13) that the exact function «
is bounded below by

u,(0,0;a,) = 0-455458

= a2 say. (3.19)

Continuing in this way we generate a sequence {a,} of global lower bounds on u
by

al+1 = K1(0,0;a,)> i = 0,1,2,. . . . (3.20)

The numbers a, form a monotonic increasing sequence that is bounded above.
This sequence therefore has a limit which after generating a3, a4,...,ag we find to
be

a = 0-457094 (3.21)

to six places of decimals. This therefore is the best value of a, to take in the lower
bound calculation based on a single chord. Some values of the corresponding
lower bounding function are given in Table 1.

TABLE I. Lower bounding function u^(x, y) = u^y, x).

0 0
0-2
0-4
0-6
0 -8
1 0

±x 00

0-457

0

0-
0-

• 2

473
488

0

0-
0-
0-

• 4

524
537
580

0 - 6

0-618
0-628
0-660
0-721

0-8

0-769
0-774
0-792
0-826
0-886

0

• 0

0
0
0
0
0

3.2 Upper bounding function
To obtain a pointwise upper bound w2 for u we choose the function/2(«) as the

tangent to/(M) at the point {a, f(a)) where a is given by (3.21). From Figure 1 we
see that this tangent lies above/(M) and is given by

f2(u) = -K2(u-a)+f(a), (3.22)

where

K2 = -/ ' (a) = ea. (3.23)

For this choice of/2(M) the inequality (2.9) holds and by (2.11) the function u2

satisfies

V2u2 = K2(u2~a)~f(a) in V, (3.24)

u2= 1 on B. (3.25)

As for (3.11) and (3.12) this boundary value problem has the solution

u2(x, y) = a + K-2f(a) + (l - a - K-2f(a))w2(x, y), (3.26)
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f(u) = -e", K2 = e",
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(3.27)

cos
odd n

4 '

r - l ) > (3-28)

(3.29)

Some values of the function w2
 a r e given in Table 2, the parameter a being given

by (3.21).

c

±y
0
0
0
0
0
1

•0
• 2

•4
•6
•8
0

TABLE 2. Upper bounding function «2(^,

±x 0 0 0-2

0-470 0 • 486
0-502

0 - 4

0-537
0-551
0-594

y) =
0

0-
0-
0-

o-

U2(>

• 6

631
641
673
733

0

0-
0-
0-
0-
0-

•8

779
784
801
835
893

1 0

1 0
1 0
1 0
1 0
1 0
1 0

From Tables 1 and 2 we see that the exact solution u has been determined to
within a few per cent throughout the domain V. These are the best bounds that
can be obtained by taking a single chord and single tangent in the «,/(«)
diagram. To improve on these it is necessary to introduce more elaborate
functions/, and f2, but, since the main ideas have been illustrated, we shall not
pursue this further here.
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