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The present day theory of finite groups might be regarded as the
outgrowth of the algebraic theory of equations. In much the same way
one might consider the modern theory of infinite groups as stemming from
late nineteenth century topology. The groups that crop up in topology
are of a particularly simple type in that they are both finitely generated
and finitely related. This means that every element in such a group can be
expressed in terms of a finite number of elements and their inverses and
every relation is an algebraic consequence of a finite number of relations
between these elements. In other words the legacy of topology to group
theory is the estate of finitely presented groups. This talk is concerned with
the seemingly simplest of the finitely presented groups, the so-called
groups with a single defining relator.

It may be as well to repeat and recall some relevant definitions.
Suppose that G is a group and that X is a (possibly empty) subset

of G. We say that X generates G if for each element g in G we can find
x1, • • •, xn e X such that

(1) g = a£ •••*£• (e,= ± l ) ;

by convention the empty set generates the unit group. Naturally enough
if X generates G we shall often refer to X as a set of generators of G. This
notion leads to a rough classification of groups via the cardinality of their
generating sets. Thus we say G is an w-generator group if it can be generated
by a set of cardinality n. If n can be chosen finite we say G is finitely
generated.

The simplest finitely generated groups are the finitely generated free

1 Invited talk given at the Annual Meeting oi the Australian Mathematical Society
held at the University of Adelaide in May, 1964.

* Acknowledgement. The author gratefully acknowledges support from the National
Science Foundation, Grant GP 27.

385

https://doi.org/10.1017/S1446788700025192 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025192


386 Gilbert Baumslag [2]

groups. We shall use them as a frame of reference with which to compare
other finitely generated groups.

The customary way of defining free groups is by means of a universal
mapping property. Our definition here is the old-fashioned one in terms
of generating sets whose elements have little interaction with each other —
these are the free sets of generators. To be more explicit, suppose X generates
the group G. In expressing an element g e G (g ^ 1) as a power product
of the generators x in X (cf. (1)) we can obviously avoid "useless" segments

(2) *«'**&>

where xt — xi+1 and et+ei+1 = 0. Let us call the right-hand side of (1)
a reduced X-product if it does not contain any segments of type (2); the
point made above is that every element g e G (g =yfc 1) can be expressed
as a reduced X-product. If every element g e G (g =£ 1) can be expressed
as a reduced X-product in precisely one way, we shall say that X freely
generates G. A group G is then free if it can be freely generated by some
set X; X is then a free set of generators of G.

The cardinality of a free set of generators of a free group turns out
to be an invariant (i.e. two sets of free generators have the same cardinality),
the rank of the free group in question. It is not difficult to show that free
groups of every rank exist; in particular one has then free groups of every
finite rank.

I spoke earlier of a universal mapping property. Indeed if X freely
generates a group G then it follows easily that for every group H and every
mapping 0 of X into H there exists a (unique) homomorphism <f> of G
into H which coincides with 0 on X. In particular, if H is an n-generator
group then we can "present" H as a factor group of a free group G of
rank n:

(3) G/R ~ H.

If n is finite, then the isomorphism (3) relates H, via a normal subgroup
R, to a finitely generated free group G. But, from our point of view, finitely
generated free groups are the simplest finitely generated groups. Therefore
the "size" of R measures the deviation from freeness of H and is therefore
a determining factor in the complexity of H.

The intersection of a family of normal subgroups of a group is again
a normal subgroup. Thus if S is a subset of a group G there is a unique
minimal normal subgroup of G containing S, namely the intersection of all
normal subgroups of G containing S. We denote this subgroup of G by <S>
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and term it the normal closure of S (in G). It is easy to verify that <S>
is simply the group generated by the conjugates g~*sg of the elements
s e S by the elements geG.

Suppose now that we represent a given group H in the form (3) as a
factor group of a free group G by a normal subgroup R. We shall say that
H is defined by the relators rx, r2, • • •, rm if

If m can be chosen finite we shall say that H is finitely related. The magnitude
of m enables us to attach a (vague, perhaps) meaning as to the size of R —
the smaller m can be chosen the "smaller" is R and the nearer to a free
group is H.

We say that the group H is finitely presented if it can be written in
the form (3) with G a finitely generated free group and R the normal
closure of a finite set of elements of G. If G is freely generated by
*i. *»»"•.*« and R is the normal closure of rx, r2, • • •, rm, then we shall
often write

Notice also that it is easy to give a meaning to the right hand side of (4)
without there being any prior connections with a group H, namely simply
by putting

( * ! , - • • , * „ ; rlt---,rm) = G/R

where G is the free group freely generated by xlt • • •, xn and

R = <»i. • • •. rm>.

We shall call H a group with one defining relator if we can write it in
the form

H= (*lt ••-,*„; r) (n<oo).

So by the remarks we have been at great pains to make, groups with a
single defining relator should be very near to finitely generated free groups
and indeed should then have many of their properties.

The simplest groups with a single defining relator are the finite
cyclic groups Zt of order k:

Zh = (x; x*) (k = 1, 2, • • •)•

However the first groups with a single defining relator which underwent
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intensive study were the fundamental groups of orientable, two-dimensional
surfaces. Now orientable surfaces in two dimensions are of a particularly
simple type — if the genus k is prescribed then such a surface is home-
omorphic to a sphere with k handles. The fundamental group Fk of such
a surface of genus k is not quite so simple despite the patent simplicity of
its presentation

Fk = K- K. • • •• «*. K, a^b^dih • • • a^b^a^)

(k = 1, 2, • • •). Many of the secrets of present day topology are hidden in
its structural vagaries; notwithstanding this fact we shall still show that
Fk is in many ways nearly free.

One of the most extraordinary features of infinite group theory is
the fact that many problems involving finitely presented groups do not
admit an algorithmic solution (cf. e.g. Rabin [1], Baumslag, Boone and
B. H. Neumann [2]). I shall contrast this situation with the fact that many
of these same problems do have algorithmic solutions when restricted to
groups with a single defining relator.

The most celebrated problem of this type is the "word problem".
To explain what this means let H be a finitely presented group with presen-
tation

H = (xlt x2, • • -, xn; rx, • • •, rn) (« < oo, m < co)

and suppose G is the free group freely generated by xl,---,xn and
R = <VX, • • •, rmy. The word problem for H may then be put into the fol-
lowing form: Does there exist an algorithm whereby one can determine
whether any element g in G is contained in R. P. S. Novikov [3] was first
to produce a finitely presented group with an unsolvable word problem i.e.
no such algorithm exists. For free groups the uniqueness of reduced X-
products makes the solution of the word problem a triviality. However for
groups with a single relation it is by no means straightforward, the
remarkable solution being due to W. Magnus [4],

THEOREM 1. (Magnus) Every group with a single defining relator has a
solvable word problem.

Of fundamental importance in the proof of this theorem is the so-called
Dehn-Magnus Freiheitssatz, which was formulated by Max Dehn for the
fundamental groups Fk, and proved explicitly by Magnus [5]. To be precise
we have the

THEOREM 2. (Magnus) Let H be a group with a single defining relator

https://doi.org/10.1017/S1446788700025192 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025192


[5] Groups with one defining relator 389

H = fa,---,*,,; r).
Suppose that the first letter in {the reduced {xlt • • •, xn}-product for) r is not
the inverse of the last letter in r and that every xt appears in (the reduced
{x1, • • •, xn}-product of) r. Then every proper subset of {xlt • • •, xn} freely
generates a free group modulo the normal closure of r.

Notice that both Theorem 1 and Theorem 2 are in keeping with the
previously publicised and promised niceness of groups with a single defining
relator. But there is more of a similar nature to come. Firstly one might
observe that there is no general and effective procedure whereby one can
determine whether any finitely presented group is free (cf. 0. Rabin [1]).
However for groups with a single defining relator we have the following
theorem of J. H. C. Whitehead [6] (cf. also E. S. Rapaport [7]).

THEOREM 3. (J. H. C. Whitehead) There is a general and effective
procedure whereby one can determine whether a group with a single defining
relator is free.

Secondly, although the corresponding problem for finitely presented
groups has a negative solution (cf. e.g. [1]), the following theorem for
groups with a single defining relator holds.

THEOREM 4. (Karass, Magnus and Solitar [8]) There is a general and
effective procedure whereby one can determine whether any group with a
single defining relator is torsion-free.

This theorem has recently been successfully exploited by E. S. Rapaport
[9] to settle a question of Papakyriakopolous connected with the Poincare
conjecture.

Thirdly the following recent (and as yet unpublished) theorem contrasts
favourably with the corresponding negative result for finitely presented
groups (cf. [10]):

THEOREM 5. (G. Baumslag and T. Taylor) There is a general and
effective procedure whereby one can determine whether any group with a
single defining relator has a non-trivial centre.

Let P be a property pertaining to groups. Then a group G has the
property P resr" tally (i.e. the property RP) if for each geG fe#l)
there exists a normal subgroup Na of G with g $Na and GjN, having P
(P. Hall [11]).

If P stands for any one of the properties: torsion-free-nilpotence,
being a finite p-group and finiteness, then free groups are residually P
(cf. [12]). Of course one cannot expect that all groups with a single defining
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relator share all these residual properties with free groups. However if one
suitably restricts the groups considered one can find analogues of these
theorems for free groups; the following four theorems are illustrations of
this remark.

THEOREM 6. (G. Baumslag [13]) The group

H = (xlt • • •, xn, ylt • • •, ym; u(xx, • • •, xn)v(y1, • • -, ym)~l),

whereu(x1, • • •,*„) andv{y1, •••,ym) He respectively in the subgroup generated
by x-y, ••', xn and the subgroup generated by ylt • • •, ym, is residually
finite.

THEOREM 7. (G. Higman [14]) Let H be the group defined in Theorem 6.
/ / neither u{xlt • • -, xn) nor v(y±, • • •, ym) are proper powers in the sub-
groups generated respectively byxlt • • -,xn and ylt • • •, ym, then H is residually
a finite p-group for every prime p.

Whether the group H in Theorem 7 is residually torsion-free-nil-
potent is unknown. In this direction one has

THEOREM 8. (G. Baumslag [15]) Let I be a positive integer and let

J = (*i, • • •, xn, x; xlu(x1, • • •, x^-1).

If u(xlt • •', xn) is not a proper power in the subgroup generated by xx, • • -, xn

then J is residually torsion-free-nilpotent.
One might term a group P pseudofree if the intersection of the terms

Pe of its lower central series is 1 and there exists a free group G such
that

PIP. S GIG.

for c = 1, 2, • • •. Theorem 8 provides examples of groups with one defining
relator which are pseudofree but not free. For example the group

(arlf *„ x; x*x?x?)
is not free, but pseudofree.

Finally one has the following specialisation of Theorem 7.

THEOREM 9. (G. Baumslag [16]) Let H be as in Theorem 7 and suppose
n = m. If the isomorphism of the subgroup generated by xlt • • -,xn onto the
subgroup generated by ylt • • •, ym defined by x, ->• yf (i = 1, • • •, n) takes
u(xt, • •', xn) onto v{ylt • • •, ym) then H is residually free.

It is not difficult to prove that the fundamental groups Fk are sub-
groups of a group satisfying the hypothesis of Theorem 9 (k > 1). Since
subgroups of residually free groups are residually free it follows that the
Fk are residually free, substantiating a remark made earlier.
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In 1950 B. H. Neumann [17] constructed a finitely generated group
which is isomorphic to one of its proper quotient groups. Later G. Higman
[18] even constructed a finitely presented group with this property. In a
way groups of this type must be complicated and for a long time it was
commonly believed that groups with one defining relator cannot behave
in this fashion. Indeed finitely generated free groups G are Hopf (i.e. if
GjR ^ G, then R = 1) since finitely generated residually finite groups are
always Hopf (A. I. Mal'cev [19]).

However

THEOREM 10. (G. Baumslag and D. Solitar [20]) The group

(a, b;

is isomorphic to a proper quotient group of itself.
So groups with one defining relator are not quite as simple as has

been suggested here. Curiously enough G. Higman [21] has quite remarkably
characterised the finitely generated subgroups of finitely presented groups.
No such characterisation exists for the finitely generated subgroups of
groups with one defining relator. Here almost nothing is known. For
example the Klein four-group is not a subgroup of a group with one defining
relator. One might however ask just which abelian groups are subgroups
of a group with one defining relator. I would like to put on record some
related conjectures:

The additive group of rationals is not a subgroup of a group with one
defining relator.

A simple subgroup of a group with one defining relator is of prime order.
Wilhelm Magnus has tantalisingly, albeit tentatively, suggested that

every knot group (cf. [22]) is a subgroup of a group with one defining
relator! Be that as it may, groups with one defining relator offer a host of
exciting possibilities to the researcher and further understanding of them
will increase understanding of finitely presented groups in general.
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