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Abstract. The totally minimal flow (X, T) is said to have finite almost periodic rank
if there is a positive integer n such that whenever (xu x2,..., xn+1) is an almost
periodic point of the product flow (Xn + 1, T x • • • x T) then, for some i ̂  j , x, and
Xj are in the same orbit. The rank of (X, T) is the smallest such integer. If (Y, S)
is a graphic flow, (Y, S") has rank \n\ and it is shown that every finite rank flow
has, modulo a proximal extension, a graphic power factor. Various classes of finite
rank flows are defined, and characterized in terms of their Ellis groups. There are
four disjoint types which have basic structural differences.

This paper continues a program initiated by the authors in [2]. In that paper the
graphic minimal flows were studied. These are the totally minimal flows (X, T) for
which the only minimal subsets of the product flow are graphs of powers of the
generating homeomorphism. Equivalently, if (x, x1) is an almost periodic point of
the product flow, then x' = Tm(x) for some integer m (so x and x' are not 'indepen-
dent')- It is natural to consider the somewhat more general situation in which there
are only a finite number of 'independent' almost periodic points. That is, there is
a positive integer n such that if ( x l 5 . . . , xn+1) is an almost periodic point in the
product flow (Xn + 1, Tx • • • x T), then for some i, j with 1< I < J < n + 1, xf and
Xj are on the same orbit. The study of such 'finite almost periodic rank' minimal
flows is the purpose of the present paper.

An almost periodic set mod T is defined to be a subset of X such that no two
points are in the same orbit and which defines an almost periodic point in the
appropriate product flow. The almost periodic rank is then defined to be the
cardinality of a maximal almost periodic set mod T (all such sets have the same
cardinality). Our interest here is in the case that the rank is finite, but we expect
that the notion of almost periodic rank will be useful for arbitrary flows. For this
reason we have developed the basic properties of the almost periodic rank in a
general setting.

If (Y, S) is a graphic minimal flow and n is an integer, it is immediate that the
flow (Y, S") has rank |n|. Our main result (theorem 3.5) is that every finite rank
totally minimal flow (X, 7") has a proximal extension which has a graphic power
factor and that the structure of (X, T) can be described by means of this graphic
power factor, which is an invariant of the proximal class of (X, T). This structure
of (X, T) is based on finite group extensions, regular minimal flows, and the
regularizer of a minimal flow. The latter turns out to be intimately connected with
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the almost periodic rank of a flow and a new ab initio treatment of regularizers is
included.

As indicated above, this paper is a successor to [2], which was itself inspired by
[6]. We assume familiarity with the first half of [2], as well as the standard notions
of topological dynamics. (A brief discussion is in § 1 of [2], and a general reference
is the monograph of Glasner, [4].)

A large portion of this paper relies only on the standard topological notions of
dynamics. However, because our point of view is more or less to regard proximally
equivalent flows as the same, there are important connections with the algebraic
theory of minimal sets - specifically the Ellis group, which is a complete invariant
for proximal equivalence. We have tried to organize the material so that the proof
of the main theorem on the structure of finite rank minimal flows requires the least
background and that the algebraic components are developed.

We would like to thank our colleagues Gertrude Ehrlich and James Schafer for
valuable discussions concerning group theory. We also wish to thank Professor
Andres del Junco for a number of penetrating observations on the subject of this
paper. In particular he suggested proposition 1.11, which has several consequences
including a proof of proposition 2.8 which is shorter and more elegant than our
original proof.

1. The rank of a flow
Given a flow (X, T) and an index set F, we consider the flow (X1, Tv) on the
product space X1 in which T acts on each coordinate. Specifically, X1 is the set
of all functions from F into X with the Tychonoff topology and Ty:X

l -> X1 is
denned by [T,(z)] y = T(zy) where wy denotes the value of weX1 at y e F . Let z
be an almost periodic point of (X1, Tr). Because permutations of F define
automorphisms of (X1, Tr) and projections are homomorphisms, only the range of
z denoted by zl={zy:yeF} is relevant for almost periodicity. In particular it is
easy to prove the following remarks.

Remark 1.1. Let z be a point of X r , let F' be a subset of F, and w e X 1 be the
restriction of z to F'. If z is an almost periodic point of (X1, Tr), then w is an
almost periodic point of (X1 , Tr). Conversely, if w is an almost periodic point of
(X1 , Tr) and wr = zr, then z is an almost periodic point of (X1, Tv).

Remark 1.2. Let F and F' be any two index sets and let zG X1 and we X' be such
that z r = wr. Then z is an almost periodic point of (X r , Tr) if and only if w is an
almost periodic point of (X1 , Tr) .

A subset A of X is said to be an almost periodic set if there exists an index set F
and an almost periodic point z of (X r , Tr) such that zr = A. It follows from the
second remark that if A is an almost periodic set, then any point z in any X1 such
that zr = A is an almost periodic point of (X1, Tr). When it is convenient we can
choose F and z e X r such that zr = A and z is injective. Also note that by the first
remark non-empty subsets of almost periodic sets are themselves almost periodic sets.
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Using the basis for the Tychonoff topology, we see that A is an almost periodic
set if and only if every finite subset of A is an almost periodic set. It follows that
if A, is a family of almost periodic sets which are linearly ordered by inclusion,
then U Aj is also an almost periodic set. Hence by Zorn's lemma maximal almost
periodic sets exist. If A is an almost periodic set and x e A, then A u { ? ( x ) : j e Z}
is also an almost periodic set. Thus any maximal almost periodic set A is an invariant
set.

A general approach to finding dynamical invariants is to count orbits in some
way. We will show that the cardinality of the set of orbits in a maximal almost
periodic set is an invariant of the flow. To this end we say a subset A of X is an
almost periodic set mod T if it is an almost periodic set and distinct points of A lie
on distinct orbits, i.e. x ^ e A and x = T'{y) implies j = 0. Clearly maximal almost
periodic sets mod T exist. The following remarks will be useful:

Remark 13. Let z e X r and let weO{z). If zy=V(zs) for some y, SeT, then

Remark 1.4. Let A be an almost periodic set, let zeX1 be such that zv-A, let
we O(z), and let A'= wr. Then the following hold:

(a) A' is an almost periodic set and |A'| = |A| where | | denotes the cardinality of
a set.

(b) A' is maximal if and only if A is maximal.
(c) A' is an almost periodic set mod T if and only if A is an almost periodic set

mod T.
(d) A' is a maximal almost periodic set mod T if and only if A is a maximal

almost periodic set mod T.

THEOREM 1.5. All maximal almost periodic sets mod T of the flow (X, T) have the
same cardinality.

Proof. Let A and A' be maximal almost periodic sets mod T. Choose index sets F
and F and points Z G X 1 and z ' eX r such that TnT' = 0, zr = A and z'r = A'.
Consider (z, z') e X ' x X 1 ' and let T, x Tr act on this space. There exists a Tr x Tr

minimal set Y in the orbit closure of (z, z') which projects onto O(z). Hence there
exists a Trx Tr almost periodic point of the form (z, w). Set Ao= wr. Since we O{z'),
Ao is a maximal almost periodic set mod T and |A'| = |A0|. NOW it suffices to show
that |A0| = |A|. But (z, w) can be thought of as an almost periodic point of (XIu1',
7"rxTr). Hence AuA0 and all its non-empty subsets are almost periodic sets.
Because A is a maximal almost periodic set mod T, for each x e Ao there exists a
unique ye A and j such that xe TJ(y). This defines a map o-:A0->A. Because Ao

is a maximal almost periodic set mod T, a is a bijection.

We define the almost periodic rank (or just rank) of a flow to be the cardinality
of a maximal almost periodic set mod T.

Recall that a minimal flow (X, T) is graphic if it is totally minimal, and every
almost periodic point of the product flow (X x X, Tx T) is of the form (x, T"(x))
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for x e X and some integer n. Thus a totally minimal flow is graphic if and only if
it has rank one.

Moreover, it is easy to see that a totally minimal flow is graphic if and only if
whenever x and y-are not proximal there is a k^O such that Tk(x) and y are
proximal. If we replace 'x and y are not proximal' in the preceding sentence by
'x ;* y' we obtain the definition of a POD flow [2], [5]. Thus graphic may be regarded
as the 'proximal weakening' of POD.

We omit the simple proof of the following proposition.

PROPOSITION 1.6. Let (X, T) be a flow and let A be a maximal almost periodic set
mod T. If h ^ 0, then A u T(A) u • • • u Th~l(A) is a maximal almost periodic set
mod Th and rank Th = \h\ rank T. In particular, if (X, T) is a graphic minimal flow
and h^O, then (X, Th) has rank \h\.

If, however, we calculate the rank of a proper Th invariant subset, we can get a
different answer as the next proposition shows.

PROPOSITION 1.7. Let (X, T) be a flow, let h be a positive integer and suppose Xo is
a closed Th invariant subset of X such that Xo, T(X0), Th~l(X0) arepairwise disjoint
sets whose union is X. Then rank (Xo, Th \X0) = rank (X, T).

Proof. Let A be a maximal almost periodic subset mod T, and let Aj = An TJ(X0),
7 = 0, l , . . . , / i - l . Set

A* = A o u r ' ( A , ) u •• • u T-"+1(A/,-i)-

Then A* is a maximal almost periodic set mod Th\X0 and |A*| = |A|.

In a similar manner we can define the almost periodic rank of a homomorphism.
Let (X, T) and (Y, S) be flows with (Y, S) minimal and | Y\ infinite and let TT : X -> Y
be a homomorphism. The rank of TT is defined to be the cardinality of a maximal
almost periodic subset of a fiber (that is, rank n = |A|, where A is an almost periodic
subset of 7T \y) for yeY, and A is maximal with respect to this property. Since Y
is infinite, any such almost periodic set is necessarily almost periodic mod T). The
following proof that the rank of n is well defined is very similar to the proof of
theorem 1.5: Let A and A' be maximal almost periodic sets of the fibers ir~x{.y) and
•n~1(y'). If y — y', proceed as in the proof of theorem 1.5 to construct Ao with
|Ao| = |A'| and check that Ao^ ir~l(y). Because A n Ao is again an almost periodic
set, A = Ao by maximality. Ify^y', first choose z"e O(z') such that A" = z"r<<= ir~\y)
and check that A" is a maximal almost periodic subset of n~\y). Then |A'| = |A"|
and by the above |A"| = |A|.

THEOREM 1.8. Let (X, T) and (Y, S) be infinite minimal flows and let 7r:X-> Y be
a homomorphism. Then

(a) rank (X, T) = (rank TT) rank (Y, S).
(b) rank ( y , S ) < rank (X,T).
(c) / / v is a group extension by the group H, then rank IT = \H\.
(d) The homomorphism TT is proximal if and only if rank TT = 1.
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Proof, (a) Let Ao be a maximal almost periodic set mod S. We need to construct A,
a maximal almost periodic set mod T, such that 7r(A) = A0 and n~\y)nA is a
maximal almost periodic subset of ir~l(y) for all ye Ao. This can be done directly
with a suitable almost periodic point of 'X77 {A"h, or with the algebraic machinery
of /3Z. We choose the latter. Let M be a minimal left ideal in /3Z. There exists an
idempotent u in M such that uy = y for all ye\0. For each yeA0 let Av be a
maximal almost periodic subset of TT'\V). Since «A,, = {ux: x e Av} is also a maximal
almost periodic subset of TT~l(y), we can assume ux = x for all x e Ar.

Let A= U(AV: y e Ao}. Clearly A is an almost periodic set mod T. We will show
that A is maximal. If not, there is an x'eX — A such that { i }uA is an almost
periodic set mod T.

If y'= ir(x') then {y'}e Ao is an almost periodic set, so by maximality of Ao,
S'(y') = y £ Ao for some integer r. Then Tr(Tr(x')) = y, so Tr(x ')e ir~\y) and
T'(x') u Ay is an almost periodic set. By maximality of Ay, Tr(x') e Ay <= A. This is
a contradiction, so A is maximal mod T. This proves (a) and (b) follows immediately.

(c) If E is any set of automorphisms, then [<j>(x)\<t>e E] is an almost periodic
set. It follows that ir~l(y) is itself an almost periodic set of cardinality \H\.

(d) If ir is proximal and x, x' e ir~l(y) with x ^ x', then (x, x') is not an almost
periodic point of 7"x T because Ac O(x, x')- So rank n must be 1. Now assume
rank n= 1 and consider x, x 'e ir~\y). There exists an almost periodic point (w, w')e
O(x, x'). If w 9^ w', then the rank TT > 2. Hence w = w' and x and x' are proximal.

Note that (d) implies that the rank of a minimal flow depends only on its proximal
class (equivalently on its Ellis group). Moreover, the proof of (a) in theorem 2
yields the following corollary.

COROLLARY 1.9. Let (X, T) and (Y, S) be flows with (Y, S) minimal and infinite
and let w: X -» Y be a homomorphism. Let Ao be an almost periodic set mod S. Then
there exists A an almost periodic set mod T, such that ir(A) = Ao. If Ao is maximal
then A can be chosen to be maximal.

The connection between the rank of a homomorphism and the Ellis groups of the
flows involved is given by the next proposition. Recall that the Ellis group ^(X, T, x)
(where ux = x) is the set of g e G = uM such that gx = x. (A brief discussion is on
page 491 of [2]; for more details consult [4].)

PROPOSITION 1.10. Let (X, T) and (Y, S) be infinite minimal flows, let IT: X -> T be
a homomorphism, and let x e X. The rank ofir is the index of the Ellis group "S(X, T, x)
in <§( Y, S, TT-(X)).

Proof. Let F be a set of coset representatives for ^(X, T, x) in $( Y, 5, -rr(x)) and
check that A = {yx: yeF} is a maximal almost periodic subset of ^ ' ( T J ^ X ) ) .

Recall that the minimal flows (X, T) and (Y, 5) are disjoint- if the product flow
(X x Y, Tx S) is minimal. Disjointness properties of finite rank minimal flows will
be discussed at length in § 5, but now we obtain a simple consequence of non-
disjointness.
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P R O P O S I T I O N 1 . 1 1 . Let (X, T) be a totally minimal flow of rank k and let ( Y, S) be 
minimal. Suppose X and Y are not disjoint. Let N be a minimal subset ofXx Y. Then 
the projection TT from N to Y has rank at most k, and rank N £ (rank X ) (rank Y). 

Proof. Suppose { (x , , y), (x2, y),..., (xk+i, y)} is an almost periodic set in N (so 
y) = y, 1 = 1, 2 , . . . , k+ 1 ) . Then {xlf x2,.. •, xk+1} is an almost periodic set in 

X, and since X has rank k, JC, = T" (*_,•) for some i,j with /' ̂  j and some n ^ 0 . Then 
(xj,y)e N and (T"{xj),y) = (x„y)e N so (TnxI)(N)c N. Since (X, T) is totally 
minimal, it follows that Xx(y)a N and therefore N = XxY which contradicts 
the assumed non-disjointness of X and Y. By theorem 1.8(a), rank N = (rank TT) X 
(rank Y ) < ( r a n k X ) ( r a n k Y). 

Note that the above proof is valid even if k is not finite. 

C O R O L L A R Y 1.12. If (X, T) is a totally minimal flow offinite rank, and n is a positive 
integer, then every minimal subset ofX" has finite rank less than or equal to (rank X)". 

This corollary will be applied in the next section to obtain a bound on the rank of 
the regularizer of a finite rank minimal flow. 

P R O P O S I T I O N 1 .13 . Let (X, T) be a minimal flow whose only equicontinuous factors 
are finite. Then there is a minimal q>0 such that the Tq-minimal subsets of X are 
totally minimal. 

Proof. Let q be the largest cardinality of the equicontinuous factors. (Such a q 
exists, for if Zj denotes the flow on j points and if Z7 is a factor of X for j arbitrarily 
large, then some minimal subset of the product of these Z} is a factor of X. Such 
a minimal set must be infinite.) Write Zq = { 0 , 1 , . . . , q - 1 } and let Tr:X^>Zq. If 
X0 = 7 7 ~ ' ( 0 ) and S = Tq\X0, then (X0, S) is totally minimal, because otherwise X 
would have a finite factor of more than q points. 

P R O P O S I T I O N 1.14. Let (X, T) be a minimal flow of finite or countable rank. Then 
(a) all equicontinuous factors of X are finite, 
(b) X is weakly mixing if and only if it is totally minimal. 

Proof. Suppose Y is an infinite equicontinuous factor of (X, T) with TT : X -> Y. Then 
Y is uncountable and so has uncountable many orbits. Let A 0 be a set consisting 
of a point from each orbit. Since V is uniformly almost periodic [ 3 ] , A 0 is an almost 
periodic set mod S. Let A be an almost periodic set mod T such that 7r(A) = A 0 . 
Hence A is uncountable. This contradiction proves (a) and (b) follows immediately 
from (a). 

The last two propositions imply that a finite rank minimal flow (X, T) has subsets 
which are totally minimal for some power of T. This is important for two reasons. 
First it reduces the study of finite rank minimal sets to the totally minimal case. 
Secondly, our method of studying finite rank totally minimal sets depends on the 
regularizer which need not be totally minimal. (The regularizer is defined and 
discussed in the next section.) These propositions will guarantee that some positive 
power of T has a totally minimal regularizer. 
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2. The regularizer revisited
Let (X, T) be a minimal flow and let 4> be an automorphism of (X, T), that is, a
homeomorphism of X onto itself such that <£T= Tcj). Obviously {(x, (f>(x)): x e X } ,
the graph of 4>, is a minimal subset of (X x X, Tx T) and is isomorphic to (X, T).
When all minimal subsets of ( X x X , Tx T) are of this form, we say (X, T) is
regular. In other words, {X, T) is regular if whenever (x, x') is a TxT almost
periodic point, then there exists an automorphism <f> of (X, T) such that x '= <f>(x).

If (X, T) is a minimal flow, a regularizer of (X, T) is a regular minimal flow
(X, T) such that (X, T) is a factor of (X, f1) and (X, f ) is a factor of every regular
minimal set having (X, T) as a factor. (Thus (X, T) is a 'smallest' regular minimal
flow which has (X, T) as a factor.) Regular minimal sets were introduced by the
first author [1]. Although the existence of the regularizer was established in his
paper (page 477) using the enveloping semi-group and the lattice of regular minimal
sets, we prefer to reconstruct the regularizer in a more elementary way using almost
periodic sets. We begin with a few immediate consequences of the definitions.

Remark 2.1. If (X, T) is a regular minimal set, then every minimal subset of every
(X1, Tr) is isomorphic to (X, 7").

Remark 2.2. Let i/>,, i//2:(X, T)->(Y,S) be homomorphisms of minimal flows. If
(X, T) is regular, then there exists an automorphism <f> of (X, T) such that i/̂  = il>24>-

Remark 2.3. If <$> is an endomorphism of a regular minimal flow, then 4> is a n

automorphism.

Remark 2.4. Any two regularizers of a minimal flow are isomorphic.

We can now use the phrase 'the regularizer of (X, T)' to refer to the isomorphism
class of all the regularizers of (X, T). However, when we are working with a particular
representative of this isomorphism class we will continue to refer to it as 'a regularizer
of (X, T)\

Remark 2.5. Let TT:(X, T)-*(Y, S) be a homomorphism of minimal flows, and let
(X, f ) and (Y, S) be regularizers of (X, T) and (Y, S) with homomorphisms
a : (X, T)-> (X, T) and /8: (Y, S)-» (Y, S). Then there exists a homomorphism
n:(X,f)-*( V, S) such that pn = va.

THEOREM 2.6. Let (X, T) be a minimal flow and let Ao be a maximal almost periodic
set mod T. If z e X 1 is an almost periodic point satisfying zr=> Ao, then O(z) is a
regularizer of (X, T). (It is understood that the homeomorphism on O(z) is just the
restriction of Tr.)

Proof. We first establish the case when zr = A0 and z : r -»A 0 is one-to-one. Let
w, w'e O(z) such that (w, w') is an almost periodic point of T r x Tr. We will construct
an automorphism </> of (X1, Tr) such that w' = <f>(w). It then follows that 4>(O(z)) =
O(z) and O(z) is regular. Set A= wr and A'= w'r. By remarks 1.3 and 1.4 both w
and w' are one-to-one and both A and A' are maximal almost periodic sets mod T.
Since (w, w') is almost periodic point of T r x Tr, A u A ' is an almost periodic set.
Now as in the proof of Theorem 1.5, for each y e T there exists a unique point XG A
(which gives us a unique o-(y)eT such that x=wCT(y)), and k(y)eZ such that
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w'y= Tk(y)(x)= Tk(y){w^y)). It is easy to check that cr: F-» F is a bijection and hence
the formula

for z'e Xr defines ah automorphism of (X r , TT). Clearly <f>(w) = w'.
Now let 4>:(Y, S ) ^ ( X , T) with (Y, S) regular. Then iA induces iA:(Vr, Sr)->

(X1, Tr) by [iA(z)]r = (A(z-y). Let W be a minimal subset of (Yr, Sr) such that
ip(W) = O(z). Now by Remark 2.1, O(z) is a factor of ( Y, S) and O(z) is a regularizer
of (X, T).

For the general case there exists a subset of F' of F such that the restriction z' of
z to F' is a bijection of F' onto Ao. For each y e F\F', there exists a unique cr( y) e F'
and k(y)eZ such that z7 = T'C(7)(ZCT(T)). Set <r(y) = 'y and fc(-y) = 0 for yeF ' . Then

defines an isomorphism tA of O(z') onto O(z). (The inverse is just the restriction
of the projection of X1 onto X1 .) Since O(z') is a regularizer by the first part of
the proof, we are done.

PROPOSITION 2.7. Let (X, T) be a minimal flow, let k be a positive integer and let
(X, f) be a regularizer of' (X, T). IfX* is a minimal subset of (X, f k ) , then (X*, fk)
is a regularizer for the minimal subsets of (X, Tk).

Proof. First the result is a property of the isomorphism class of (X, T), so we can
construct a convenient (X, f ) . Let Y be a minimal subset of (X, Tk) and let A be
a maximal almost periodic set mod Tk of Y. Now choose z e V ' c X 1 such that
zr = A. Note that Yl is a closed Tk invariant set of X r . Since a Tp-almost periodic
point is automatically a 7"r-almost periodic point, A is an almost periodic set of
(X, T). Then by theorem 2.6 the closure of O(z^tk) is a regularizer of (Y, Tk) and
a Tk minimal subset of O(z, Tr). Now by theorem 2.6 it suffices to show that A
contains a maximal almost periodic set mod T.

Clearly A contains A' an almost periodic set mod T such that every point in A
lies in the T orbit of exactly one point in A'. Suppose A' is not maximal, that there
exists xe X such that xi A' and A'u{x} is an almost periodic set mod T. Without
loss of generality xe Y. Because every point in A is in the T orbit of some point
in A', A u {x} is an almost periodic set, and then by the maximality of A, x = Tnk(y)
for some ye A and neZ. It follows that A'u{y} is an almost periodic set mod T
contained in A. Thus ye A' which contradicts the choice of x.

PROPOSITION 2.8. If a minimal flow has finite rank, then its regularizer has finite rank.

Proof. By theorem 2.6 and corollary 1.12 the rank of the regularizer of a minimal
flow of rank k is at most kk. (Actually, the rank is at most kl This can be established
by using theorem 2.6 to represent automorphisms of (X, T") as permutations com-
posed with powers of T and then applying the next proposition.)

PROPOSITION 2.9. Let (X, T) be a regular minimal set with automorphism group s£( T),
and let [ T] be the cyclic subgroup generated by T. Then [ T] is a normal subgroup of
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s4( T) and rank (X, T) = \s4( T)/[ T]\. Moreover, si{ T) is isomorphic to Z if and only
if there exists Se$2{T) such that T = Sk for some k > 0 and rank (X, S) is 1.

Proof. [T] is normal because T is in the center of s4{T). Let {h(: ieF} be
representatives of the cosets of [ T] in s£( T), and let x e X. It is easy to see that
{hj(x): I'eF} is a maximal almost periodic set mod T.

To prove the second statement we first assume si(T) = Z. Then there exists a
generator S of s&( T) such that Sk = T for some fc > 0. If (x, x') is an S x S almost
periodic point, then it is a TxT almost periodic point and x' = S'(x) for some i.
For the converse let i p e ^ ( 7 ) and x e X. Then (x, <p(x)) isa T x T and hence 5 x S
almost periodic point. Because rank (X, S) is 1, <p(x) = S'(x) for some i, <p = S\ and

The proximal class of a minimal flow is the equivalence class of minimal flows
determined by proximal equivalence. (Two minimal flows are proximally equivalent
if they have a common proximal extension.) The Ellis group is a complete invariant
for proximal equivalence (see [4] for further details).

A proximal class is called regular if it contains a regular minimal flow. The regular
proximal classes will play an important role in the determination of the structure
of totally minimal finite rank flows described in the next two sections.

The following proposition gives several characterizations of regular proximal
classes.

PROPOSITION 2.10. Let SP be a proximal class of minimal flows. Then the following
are equivalent:

(i) 9* is regular.
(ii) If (X, T) is in 9 then its regularizer is a proximal extension of (X, T).
(iii) If (X, T) is in &, then for every index set T and every minimal subset W of

(Xr, Tr), every projection of W onto X is proximal.
(iv) / / (X, T) is in Sf and W is a minimal subset of (XxX,Tx T), then both

projections of W onto X are proximal.
(v) If (X, T) is in 5P and u is an idempotent in the minimal left ideal M of f3Z,

then the Ellis group is a normal subgroup of the group G = uM.

This proposition can easily be established using the algebraic theory. Alternatively
the first four equivalences can be proved topologically. The details are left to the
reader.

The fundamental relationship between the Ellis groups of (X, T) and its regularizer
(X, f) is also easy to establish from our construction of (X, f).

PROPOSITION 2.11. Let (X, T) be the regularizer of the minimal flow (X, T). Then
the Ellis group of (X, T) is the largest normal subgroup of G contained in the Ellis
group of (X, T). In particular, the Ellis group of a regular minimal flow is normal.

Proof. Choose x e X such that ux = x and set A = {gx: g e G}'r Since ugx = gx, A is
an almost periodic set. Choose z e X r such that zr = A. Then

<${O{z), Tr, z) = n »(X, T, zy) = 0 'SiX, T, gx) = fl g«(*. T, x)g~\
yeV geG geC
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It now suffices by theorem 2.6 to show that A contains a maximal almost periodic
set mod T.

Let Ao be a maximal almost periodic set mod T, and let weX[ with wr = A0.
Then uwe O(w) and ~(uw)r is a maximal almost periodic set mod T contained in
{y: uy = y}. Since uy = y implies y = gx for some geG, (uw)r <= A and the proof is
complete.

3. The graphic invariant
In this section we show the proximal classes of the graphic minimal sets can be
used as a set of invariants for finite rank totally minimal flows. Actually we are
primarily interested in the proximal classes of the latter. This is not surprising since
rank cannot be used to distinguish non-isomorphic flows which are in the same
proximal class. Our point of view is that proximal equivalence is somewhat analogous
to measure theoretic isomorphism in ergodic theory.

We first restrict our attention to regular finite rank totally minimal flows. The key
result of this section occurs in this setting and depends on the following group
theoretic fact:

LEMMA 3.1. Let H be a group whose center has finite index. Then the commutator
subgroup of H is finite.

The proof of this result can be found in 'Group Theory' by Scott [7, page 443].

THEOREM 3.2. Let (X, T) be a regular totally minimal flow of finite rank. Then (X, T)
is a finite group extension of a power of a graphic flow. Moreover, the finite subgroup
is a normal subgroup of si{T).

Proof. We first suppose that the automorphism group s£(T) of {X, T) is abelian.
Since (X, T) has finite rank, [T] (the cyclic subgroup of s&(T) generated by T) has
finite index in sd{T) and s£(T) = Z®F, where F is a finite group. (Note [T] can
be a proper subgroup of the direct summand Z.) Since s£(T) is abelian, F is normal
and the quotient flow (X/ F, T/ F) is regular. Moreover, the automorphism group
of {X/F, T/F) is sd{T)/ F which is isomorphic to Z. Therefore, T/F is a power
of a graphic (proposition 2.9 and the remarks following theorem 1.5).

Now consider the general case. As observed above [T] has finite index in si(T)
and [T] is a subgroup of the center of si(T). Therefore, the center has finite index
in si{T). By the group theoretic lemma, the commutator subgroup K of s&(T) is
finite. Since K is normal, the quotient flow (X/K, T/K) is regular, with abelian
automorphism group M(T)/ K. Thus we may apply the previous case to conclude
that (X/K, T/K) is a finite group extension of a power of a graphic by some finite
normal subgroup Fo of si(T)/ K. There exists a finite normal subgroup F of si(T)
such that F0=F/K. Clearly si{T)/F = (si{T)/K)/{F/K) = ~I and as in the abelian
case (X/F, T/F) is the desired power of a graphic.

LEMMA 3.3. Let (X, T) and (Z, U) be infinite minimal flows with (Z, U) regular,
and let n: (Z, U) -» (X, T) be a homomorphism. If (Z, U) has finite rank, then (Z, U)
is a finite group extension of a proximal extension of (X, T).
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Proof. Let x e X and let A = { z , , . . . , zm} be a maximal almost periodic subset of
ir~l{x). Set H = {<pe sd{U): <p(z,) = z, for some /}. By minimality w((p(z)) = w(z)
for all zeZ and cpeH. It is easy to see that Au<,c(A) is also an almost periodic
subset of 77~\x). Therefore, <p(A) = A from which it follows that H is a subgroup
of si( U). Because (Z, U) is regular, for each i there exists a unique <p e s£{ U) such
that z, = <p{zx). Thus \H\ = m and A = {<p(Z]): <p e H}.

Now form the flow (Z/H, U/H). There exists a homomorphism
TT':(Z/H, U/H)-*{X, T) s ince TT<P(Z) = TT(Z) for all z e Z a n d <p e H. S ince r a n k
77 = |W|, we have by theorem 1.8

rank (Z/H, U/H) = rank (Z, l / ) / |H |

= rank (Z, t/)/rank v = rank (X, T).

Applying this theorem again gives rank v' = 1 and n' is proximal.

LEMMA 3.4. Let (Z, (7) be a totally minimal finite rank flow which has a factor (Y, Sk)
such that ( Y, S) is graphic. If {X, T) is any non-trivial factor of (Z, U), then (Y, Sfc)
15 a factor of a proximal extension of [X, T).

Proof. Let i/f.(Z, U) -> (Y, 5k) and cp: (Z, [/) -* (X, T) denote the homomorphisms,
and consider the minimal subset M = {(i/»(z), <p(z)): z e Z } of ( Y x X , S* x T). It
suffices to show that the projection w.M^-X has rank 1. If not there exists an
almost periodic set A = {(>>, x), ( / , x)} <= M, y ^ y'. It follows that (y, y') is an almost
periodic point for SkxSk and y' = S"(y), p # 0 . Therefore, Sp x T°(M) n M ^ 0,
S p xT°(M) = M, and M = Y x X by the minimality of S". It follows that
{(Sk(y), x)|fc = 0, ±1, . . .} is an almost periodic set in TT~\X) SO the rank of tr, and
hence the rank of M, is infinite. But M is a factor of the finite rank flow Z, so the
rank of M is finite (theorem 1.8(b)). This contradiction completes the proof.

THEOREM 3.5. Let (X, T) be a totally minimal flow of finite rank. Then there is a
graphic minimal flow (Y, S) and a positive integer r such that (Y, Sr) is a factor of a
proximal extension of (X, T). The integer r and the proximal class of ( Y, S) are unique
and depend only on the proximal class of (X, T).

Proof. Let (X, T) be the regularizer of (X, T) and let p be the smallest positive
integer such that the minimal sets of (X, Tp) are totally minimal (propositions 1.13,
1.14, and 2.8). Let Z be a fp minimal set and let V denote the restriction of fp to
Z. Then (Z, V) is a regular totally minimal flow of finite rank (proposition 1.7), and
the restriction of the known homomorphism of (X, T) onto (X, T) defines a
homomorphism 0:(Z, V) - (X , Tp).

Since (Z, V) is regular, it has an automorphism U satisfying OU = TO (so 0 may
also be regarded as a homomorphism from (Z, U) to (X, T)). Consider the
automorphism <p = UpV~l of (Z, V) and let z&Z. Then {z, <p(z), <p2(z),...} is an
almost periodic set for (Z, V) and since the rank of V is finite, we must have
(pm(z)= VJ(z) for some integers m and j with m > 0 . Hence <pm = VJ. Note that
e<p = eUpV^ = TpT-p6=e, so dq>m = e. Since also 6<pm = 0Vj = TPJ6, this forces
7 = 0, so <pm= identity and Upm = Vm and (Z, U) is totally minimal. If we put q = pm
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then U" = Vm is regular and by lemma 3.3, (Z, Uq) is a finite group extension of
a proximal extension of (X, Tq).

By theorem 3.2 there is a graphic minimal flow (Y, S) and a positive integer k
such that the regular ftnite rank flow (Z, Vm) is a finite group extension of (V, S*1).
Since U is an automorphism of Vm it induces an automorphism R of S \ and since
all automorphisms of a graphic power are themselves powers of the generating
homeomorphism, R = Sr (see the discussion preceding theorem 4 in [2]). Thus if
IT is the homomorphism of (Z, Vm) to (Y,Sk), IT may also be regarded as a
homomorphism of (Z, £/) to ( Y, Sr). Furthermore U" = Vm implies 5r<! = S \ so
r<? = /c and r > 0 . Thus, both (X, T) and (Y, Sr) are factors of (Z, U). By lemma
3.4, (Y, Sr) is a factor of a proximal extension of (X, T).

Now we use lemma 3.4 to prove the uniqueness assertions. If ( Y, S) and ( V", 5')
are graphic flows such that (Y, Sr) and (Y1, S'J), (r and j positive integers), are
factors of proximal extensions of (X, T) and (X', T') where (X, T) and (X', T)
are proximally equivalent totally minimal flows of finite rank, then both (Y, Sr) and
( y , S'J) are factors of some (Z, U), a common proximal extension of both (X, T)
and (X1, T). By lemma 3.4 each of (Y, Sr) and (Y', S'j) is a factor of a proximal
extension of the other. Thus they have the same Ellis group and are proximally
equivalent. Since r and j are positive, ( Y, S) and (Y', S') are proximally equivalent
[2, theorem 1.8] and r=j [2, theorem 1.9] completing the proof.

In the course of proving Theorem 3.5, we have proved the following theorem.

THEOREM 3.6. Let (X, T) be a totally minimal flow of finite rank. Then
(i) there is a totally minimal finite rank extension (Z, U) of {X, T) and a positive

integer q such that (Z, Uq) is regular. (Z, Uq) is a finite group extension of a proximal
extension of {X, Tq).

(ii) If ( Y, S) is the graphic minimal flow whose existence was established in theorem
3.5, then there is a positive integer r such that (Z, U) is a finite to one extension of
(Y, Sr). (Z, Uq) is a finite group extension of (X, Srq) and the fibers of the extension
are the orbits of a finite normal subgroup of s&(Uq).

Proof. The first part summarizes what was accomplished in the initial steps of
the proof of theorem 3.5 and the second part summarizes the relationship
between Uq = Vm and Srq = Sk. The normality of the finite subgroup follows from
theorem 3.2.

COROLLARY 3.7. Let (X, T) be a finite rank totally minimal flow. Then the Ellis group
of (X, T) is a maximal r-closed subgroup if and only if (X, T) is proximally equivalent
to a power of a graphic flow.

Proof. If (X, T) is proximally equivalent to a graphic power, then its Ellis group is
a maximal r-closed subgroup by Corollary 16 of [2]. If (X, T) is not proximally
equivalent to a graphic power, then it is proximally equivalent to a flow (X', T)
which has a graphic power factor 77: (X', T) -> ( Y, Sm), with n not proximal. Hence
the Ellis group of (Y,Sm) properly contains the Ellis group of (X', T) (which
equals the Ellis group of (X, T)).
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Motivated by theorem 3.5 we define the graphic invariants of a finite rank totally
minimal flow to be the positive integer k and the proximal class of any graphic flow
(Y, S) such that ( Y, Sk) is a factor of a proximal extension of (X, T). Equivalently
we may define the graphic invariants as a pair {k, B} where B is the Ellis group of
(Y, S) and k is as above. By theorem 3.5 the graphic invariant is uniquely defined
and depends only on the proximal class of (X, T).

If (X, T) is proximally equivalent to a power of a graphic flow, and (Y, S) is
minimal, then (X, T) is either disjoint from (Y, S) or is a factor of a proximal
extension of (Y, S) ([2, corollary 17]; a proof can also be given using corollary 3.7
above). Thus there is a dichotomy for graphic power flows. An interesting general
question is to determine the class of minimal flows which satisfy such a 'dichotomy'
condition. (It is known that this class is larger than the the graphic power flows.)
Related ideas are discussed in [5].

4. Structure of minimal finite rank flows
In this section (X, T) will always be a minimal flow of finite rank. If (X, T) is not
totally minimal, by propositions 1.13 and 1.14 there exists p>0 and a Tp-minimal
set Xo such that X = X o u T(X0)u • • • u Tp~l(X0) (disjoint) and (Xo, T") is totally
minimal. If we set F = Xox{0, ...,p- 1} and define S: Y-» Y by

i = p-\,

then (Y, S) is isomorphic to (X, T). Consequently, all the finite rank flows which
are not totally minimal can be constructed from those which are totally minimal
and distinguished by the invariant p. From now on we will assume (X, T) is also
totally minimal.

Now we partition the totally minimal finite rank flows into four classes. These
classes are suggested by the results of the previous section and, as we shall see, can
be characterized in terms of Ellis groups.

Definition. Let (X, T) be a totally minimal flow of finite rank. We say that (X, T)
is of

(i) type PG if (X, T) is proximally equivalent to a power of a graphic flow,
(ii) type RE if (X, T) is proximally equivalent to a regular non-trivial finite group

extension of a power of a graphic flow,
(iii) type RR if (X, T) is proximally equivalent to a minimal flow (Z, V) where

for some integer q > 1, (Z, V) is regular and of type RE, and V is not in the center
of the automorphism group of (Z, V),

(iv) type QR if it is not of type PG, RE, or RR.
The abbreviations PG, RE, RR, and QR stand for, respectively, 'power of a graphic,'
'regular extension,' 'root of a regular,' and 'quotient of a'-root' (a dynamical
characterization of type QR will be given in theorem 4.2).

The four types are exhaustive and mutually exclusive. This is not difficult to see
directly, but it will follow immediately from the next theorem, in which these types
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are characterized in terms of their Ellis groups. To this end, let A=CS(X, T, x) be
the Ellis group of (X, T) and let Aq = <g(X, Tq, xq), as A, A (As usual, ux = x and
UXq = Xq.) .

THEOREM 4.1. Let (X, T) be a totally minimal flow of finite rank. Then (X, T) is

of
(i) type PG if and only if A, is a maximal r-closed normal subgroup of G,
(ii) type RE if and only if Ax is a normal subgroup of G, but not maximal, r-closed,
(iii) type RR if and only ifA, is not a normal subgroup ofG, but for some q> 1,

Aq is normal,
(iv) type QR if and only if no Aq (q>\) is a normal subgroup of G.

Proof. Assertion (i) is just a restatement of corollary 3.7. If (X, T) is of type RE,
then the proximal class of (X, T) is regular, so Ax is normal and, since a proximal
extension has a non-trivial group factor, A; is not maximal. On the other hand, if
A; is normal but not maximal, then it follows from proposition 2.10 and theorem
3.2 that (X, T) is of type RE.

Suppose Ax is not normal, but for some q> 1, Aq is normal. We show (X, T) is
of type RR. Since Aq is normal, the proximal class of (X, Tq) is regular, and
there exists a regular minimal set (Z, U) and a proximal homomorphism
77: (Z, U) -»(X, Tq). By regularity, there is an automorphism V of (Z, U) such that
77-V= Tn, and hence irV = Tqn. Because n is proximal it follows that V = U.
Clearly TT:(Z, V)->(X, T) is a proximal homomorphism. If V is in the center of
the automorphism group of (Z, V9), then (Z, V) and (Z, V) have the same
automorphism group. It follows that (Z, V) is regular because Vx V and V x V
have the same almost periodic points; hence Ax is normal. Thus V cannot be in the
center of the automorphism group of (Z, V9). Clearly (Z, V) is of type PG or RE.
If (Z, V) is of type PG, then its automorphism group is Z which is abelian. This
proves sufficiency for (iii) and necessity follows similarly. Having established the
first three parts, (iv) becomes trivial.

THEOREM 4.2. The flow (X, T) is type QR if and only if it is proximally equivalent
to a flow of the form (Z/H, U/ H) where

(a) (Z, U9) is regular and of type RE for some q>0; i.e. (Z, U) is of type RR.
(b) H is a finite non-normal subgroup of the automorphism group of (Z, Uq).
(c) U is in the normalizer of H. (This condition is necessary and sufficient for U to

induce a homeomorphism U/H on Z/H by U/H(Hx) = HU(x).)

Proof. Suppose (X, T) is of type QR. By Theorem 3.6 there exists v: (Z, U) -* (X, T)
where (Z, U) is a finite rank totally minimal flow and a positive integer q such
that (Z, Uq) is regular. Furthermore, there exists a subgroup H of s£(Uq) and a
proximal homomorphism IT': (Z/H, Uq/H)-»(X, Tq) such that TT=TT'O- where
cr:(Z, Uq)->(Z/H, Uq/H) is canonical. Hence Aq is also the Ellis group of
(Z/H, Uq/H). Since A, is not normal, (Z/H, Uq/H) is not regular and H is not
a normal subgroup of sd(Uq).

The next step is to show that U is in the normalizer of H. If <p e H, then

TrU<pU~'= Tir(pU~'= Tn'aipU''= Tir'o-U~l = 1
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Thus Tr'aUtpU"1 = TT'CT. Because TT' is proximal o-U<pU~l{z) = cr(z) for some z and
hence for all z. Clearly aUyU'1 = u implies U<pU~l e H.

It follows that U induces a minimal homeomorphism U/ H on Z/ H and 77' is
a homomorphism of (Z/H, U/H) onto (X, 7). Finally, because 77' is a proximal
homomorphism from V/H = (U/H)q to Tq it is a proximal homomorphism from
C//H to T.

Once again the converse is straightforward.

Note that in the definition of types PG, RE, and RR and in the dynamical
characterization of type QR in theorem 4.2, 'proximally equivalent' can be
strengthened to 'a proximal factor of. For types RR and QR this follows from the
proofs of theorems 4.1 and 4.2, respectively. The other two types, PG and RE, have
regular proximal classes, so we may apply theorem 3.2 to the regularizer of the flow,
(which is a proximal extension of it).

It is also evident that the two types which are not regular, RR and QR, are
intimately connected with the structure of the group of automorphisms of a regular
finite rank flow. We conclude this section by determining the structure of such a
group of automorphisms.

PROPOSITION 4.3. Let (X, T) be a regular flow of type RE with automorphism
group si(T) and with graphic invariants k and (Y, S). Then the following hold:

(a) The group s£{T) is a semi-direct product of Z and a finite group.
(b) The group s£(T) is a direct product of Z and a finite group if and only if there

exists U in the center of s£{T) satisfying Up = Tq for some positive integers p and q
such that p/ q = k.

(c) If k = 1, then si{ T) is a direct product of Z and a finite group.

Proof, (a) There exists a homomorphism v.(X, T)->(Y, Sk). Let H be the kernel
of the induced onto homomorphism TT: stf(T)^>[S] where [S], the infinite cyclic
subgroup generated by S, is the automorphism group of (Y, Sk). (For the definition
and properties of the induced homomorphism see [2, pages 487 and 488].) Because
(X, T) has finite rank, H is a finite group. (By theorem 1.8 rank (X, T) = k\H\.) Let
U be an element of si{ T) such that T?( U) = S. Then [U]nH = {Id}, \_U]H = M{T),
and si{T) is a semi-direct product of [U] and H. (For a concrete representation
of st( T) as a semi-direct product of Z and H let i/»: H -> H by iji(h) = U^hU, define
(n,h)(m,h') = (n + m,t{/m(h)h') o n Z x H, a n d n o t e t h a t (n,h)^Unh is a n
isomorphism.)

(b) Suppose s£( T) is the direct product of an infinite cyclic group [ U] and a
finite group H. It follows that H must be the kernel of 77 and TT{U) = S. Clearly U
is in the center of s£(T) and T= Ukh for some he H. Since H is finite and U is
in the center, Tq = Ukq where q is the order of h.

For the converse, suppose n( U) = S". Then Snp = Sqk, np = qk, and n = 1. Hence
ir{ U) = S and because U is in the center the semi-direct product constructed above
is a direct product.

(c) Let U = T, let p = q = 1, and apply part (b).
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Let (Y, S) be graphic and let H be a finite group. Suppose we can construct
(X, T) a regular totally minimal group extension of (Y, S) by H, (e.g. with a cocycle
/ : Y^>H). Then by the previous proposition the automorphism group si(T) of
(X, T) is the direct sum of [T] and H. Let h e H and set U = Th. Then (X, U) is
also totally minimal with finite rank. Moreover, (X, U) is regular if and only if h
is in the center of H. Hence, if h is not in the center of H, (X, U) is of type RR.
If K is a non-normal subgroup of H and hKh~l = K, then (X/K, U/K) would be
of type QR. Consequently to construct examples of type RR and QR it is only
necessary to construct one of type RE over a graphic with a finite group H containing
a non-normal subgroup. This can be done with a flow proximally equivalent to
(Y, S) and will appear elsewhere.

5. Disjointness
Two minimal flows (X, T) and (Y, S) are said to be disjoint, written (X, T)±{ Y, S),
if (XxY,TxS) is minimal. Let A = <&(X, T, x) and B=<8(Y, S,y) where as usual
MX = x and uy = y for a given idempotent u. Then (X, T) and ( Y, S) are disjoint if

'and only if AB = G. (For an elementary proof see [2, lemma 13].) Since A and B
depend only on the proximal classes of (X, T) and (Y, S), (X, T) is disjoint from
(Y, 5) if and only if every flow proximally equivalent to (X, T) is disjoint from
every flow proximally equivalent to (Y, S). We will use also use the obvious fact
that factors of disjoint flows are disjoint.

In this section we will show that the class of flows disjoint from a totally minimal
finite rank flow is determined by its graphic invariant flow. We start with a flow of
type RE.

THEOREM 5.1. Let (X, T), a finite rank totally minimal flow, be of type RE with
graphic invariants k and (Y, S) and let (Z, U) be a minimal flow. Then (Z, U) is
disjoint from (X, T) if and only if (Z, U) is disjoint from (Y, Sk).

Proof. The 'only if is trivial. Assume (Z, U)L( Y, Sk) and without loss of generality
that TT:(X, T)-»( Y, Sk) is a finite group extension. Let M be a minimal subset of
(X x Z, T x U). Hence ir x id(M) = Y x Z and there exist (x, z) and (x', z) e M such
that 77(x') = ST7(X) = TTT(X). Since TT is a finite group extension, there exists an
automorphism <p of finite order such that x' = (pTx. Thus cpTx id(M) = M and for
some k, (<p7)k = Tk. Therefore, Tk x id(M) = M and M = X x Z because (X, T) is
totally minimal.

PROPOSITION 5.2. Lef (X, T) and (Y, 5) fee disjoint minimal flows and p a positive
integer. If (X, T") and (Y, Sp) are minimal, then (X, T") and (Y, 5") are disjoint.

Proof. We suppose that p is prime. Let V = T x S and let Mo be a minimal set for
V. Suppose Mo ̂  X x Y. Then because (X x Y, V) is minimal

XxY = "\J VJ(M0)

where the union is disjoint and each VJ(M0) is a V-minimal set. Since 7 x / ,
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/ = identity map, is also an automorphism of V,

TxI{M0)=Vj(M0)

for some j and hence T" x I(M0) = Vjp(M0) = Mo. Pick (x0, y0) e Mo. By the above
(Tkp(x0), y0) e Mo for all k e Z and hence X x {y0} c Mo because (X, Tp) is minimal.
Finally by the minimality of (Y, Sp), X x Yc Mo completing the proof for p prime.
The general case follows easily.

PROPOSITION 5.3. Let (X, T) and (Y, S) be minimal flows, let p>0 and let Xo and
Yo be Tp and Sp minimal subsets of X and Y respectively. If (X, T) and (Y, S) are
disjoint, then (Xo, T") and (YO,SP) are disjoint.

Proof. We will show there is a p > 0 such that p\p, TP(XO) = Xo, S"( Yo) = Yo and
(Xo, Tp)±( Yo, Sp). The proof then follows immediately from proposition 5.2.

The set of integers k such that Tk(X0) = Xo is a non-trivial subgroup of Z, so
there is a q>0 such that Tk(X0) = Xo if and only if q\k. Similarly, there is an r > 0
such that Sk{Y0) = Yo if and only if r\k. In particular, both q and r divide p. Note
that the finite flows (Zq, \q) and (Zr, l r) are factors of (X, T) and (Y, S) respectively,
so that (ZqxZr, lq x l r) is a factor of the minimal flow (X x Y, TxS). Therefore
(Zq x Zr, \q x \r) is minimal, and so q and r must be relatively prime. If p = qr, then
p\p and (Xo, T"), (Yo, S") are both minimal.

Now X x Y = U' = o U = o T' X Sj(Xox Yo), and this union is disjoint. Moreover,
each V xSJ(Xox Yo) is a closed Tp x Sp invariant set. Hence there are at least
p = qr minimal subsets of (X x Y, Tp x Sp). But since (X x Y, TxS) is minimal,
{X x Y, Tp x Sp) is pointwise almost periodic and contains at most p minimal sets.
Therefore, there are exactly p minimal sets for T" x Sp, and they must coincide
with the sets 7 ' x 5 J ( X 0 x Yo), 0<i<<7, Osj<r. In particular, (Xox Yo, T" x S")
is minimal. Therefore, (Xo, T") and (Yo, S

p) are disjoint, and as mentioned above,
we may apply proposition 5.2 to complete the proof.

Although the converse of proposition 5.3 does not hold, there is a partial converse
which is the content of the next proposition.

PROPOSITION 5.4. Let (X, T) and ( Y, 5) be minimal, let p > 0 and let Xo and Yo be

T" and S" minimal subsets ofX and Y respectively. Let q = min {k > 0: Tk(X0) = X0}
and r = min {k> 0: Sk{ Yo) = Yo}. / / (Xo, T") and ( Yo, S

p) are disjoint and q and r
are relatively prime, then (X, 7") and (Y, S) are disjoint.

Proof. As in the proof of proposition 5.3, X x Y is the disjoint union of V x
SJ(XoxYo) (O<i<<?-1 , 0 < ; < / > - l ) . Now each TxS]{XoxYQ) is a T p x 5 p

minimal set so X x Y is Tp x Sp pointwise almost periodic, and hence TxS is
pointwise almost periodic.

Now there is a homomorphism TT of (X x Y, Tx S) onto (Zq x Zr, 1, x l r) which
maps Xox Yo to the point (0,0). Since (q,r) = l, (ZqxZr,\qx\r) is minimal.
Moreover, since (Xo, Tp) and (Yo, Sp) are disjoint, Xox Yo is contained in the TxS
orbit closure of (x0,y0), for any (xO)>'o)eXox Yo. Hence T T ^ O , 0) = X o x Yo is
contained in a TxS minimal set. The proof is completed by applying the following
lemma.
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LEMMA 5.5. Let (Z, U) and (Z', U') be flows with (Z, U) pointwise almost periodic,
and (Z', U') minimal, and let v: Z -> Z' be a homomorphism. Let Z* be a minimal
subset of Z and suppose there is a zoe Z' such that ir~l(z0)<^ Z*. Then (Z, U) is
minimal.

Proof. Each point of Z is in some minimal subset Mo of Z. Then -rr(M0) = Z',
M0nv~\z0), Mo = Z * ^ 0 , so MonZ**0, and Z^Z*.

COROLLARY 5.6. Let (X, T) be totally minimal and let (Y, S) be minimal. Letp>0
and let Yo be an Sp minimal subset. Then (X, T) and (Y, S) are disjoint if and only
if (X, Tp) and (Yo, S") are disjoint.

Proof. The 'only if part follows from proposition 5.3 with Xo = X. The 'if part
follows from proposition 5.4 because q = l.

THEOREM 5.7. Let (X, T) be a finite rank totally minimal flow with graphic invariants
k and (Y, S) and let (Z, U) be a minimal flow. Then (Z, U) is disjoint from (X, T)
if and only if (Z, U) is disjoint from (Y, Sk).

Proof. Assume (Z, U)±(Y, Sk). By theorem 5.1 we need only consider the cases
when (X, T) is of type RR or QR. Since a flow of type QR is a factor of one of
type RR, it suffices to prove the result for (X, T) of type RR. Because disjointness
depends only on the proximal class we can assume (Y, Sk) is a factor of (X, T)
and (X, Tp) is regular for some p > 0. The graphic invariants of (X, Tp) are kp and
(Y, S). Let Zo be a Up minimal set. By corollary 5.6, ( Y, Skp)±(Z0, Up); by theorem
5.1, (X, TP)±(ZO, Up); and finally by corollary 5.6, (X, T)±(Z, U).

COROLLARY 5.8. Let {X, T) and (X', T') be finite rank totally minimal flows with
graphic invariants k, ( Y, S) and I, (Y', S'), respectively. Then

(i) (X,T)±(X',T) if and only if ( Y, Sk)L(Y', S'1).
(ii) Ifm,nel with m, n * 0 andmk*±nl, then (X, Tm)±(X', T'").

Proof, (i) Apply theorem 5.7 twice, first to obtain (X,T)±{Y',Srl) and then
(X1, T')±(X, T). (ii) Use theorem 18 of [2] and (i) of this corollary.

In [2] it is shown that if (Y, S) is a graphic minimal flow, and i and j are non-zero
integers with i # ±j then ( Y, S') and ( V, SJ) are disjoint (theorem 19). Combining
this with (i) of corollary 5.8, we immediately obtain

COROLLARY 5.9. Let (X, T) be a finite rank totally minimal flow and let m and n be
non-zero integers with m ^ ±n. Then (X, Tm)_L(X, T").

R E F E R E N C E S

[1] J. Auslander. Regular minimal sets I. Trans. Amer. Math. Soc. 123 (1966), 469-479.
[2] J. Auslander & N. Markley. Graphic flows and multiple disjointness. Trans. Amer. Math. Soc. 292

(1985), 483-499.
[3] R. Ellis. Lectures on Topological Dynamics. Benjamin, New York, 1969.
[4] S. Glasner. Proximal Flows. Lectures Notes in Mathematics, vol. 517, Springer-Verlag, Berlin, 1976.
[5] H. B. Keynes & D. Newton. Real prime flows. Trans. Amer. Math. Soc. 217 (1976), 237-255.
[6] N. Markley. Topological minimal self joinings. Ergod. Th. & Dynam. Sys. 3 (1983), 579-599.
[7] W. R. Scott. Group Theory. Prentice Hall, 1964.

https://doi.org/10.1017/S0143385700004399 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004399

