GENERIC ISOTOPIES OF SPACE CURVES
by J. W. BRUCE and P. J. GIBLIN

(Received 25 March, 1985)

For a single space curve (that is, a smooth curve embedded in R?) much geometrical
information is contained in the dual and the focal set of the curve. These are both
(singular) surfaces in R, the dual being a model of the set of all tangent planes to the
curve, and the focal set being the locus of centres of spheres having at least 3-point
contact with the curve. The local structures of the dual and the focal set are (for a generic
curve) determined by viewing them as (respectively) the discriminant of a family derived
from the height functions on the curve, and the bifurcation set of the family of
distance-squared functions on the curve. For details of this see for example [6, pp.
123-8].

In this paper we consider instead a smooth one-parameter family of space curves,
which we refer to as an “isotopy” since for our transversality result of §6 we do need to
assume that it comes from an ambient isotopy of R>. We determine all the generic
transitions which occur on the dual and the focal set during this isotopy. Thus, for
example, at isolated moments of the isotopy there may be a point of zero curvature on
the curve, in which case every tangent plane at such a point is an osculating plane and the
dual acquires an extra cuspidal edge. Where this appears from (and goes to) can be
deduced from the geometry of the family of duals as described in §2 below.

The work in this paper uses essentially the same methods as a previous study of the
plane curve case by one of us [4], and so relies much on the results of Arnold [1]; see also
[2].

In §1 and §3 we determine the conditions under which an isotopy gives rise to the
local generic changes in dual and focal set that can be recognised by Arnold’s results. In
§6 a transversality theorem is proved which shows that the set of such isotopies is open
and dense. Meanwhile in §2 and §4 we give explicit examples of some of the more
interesting transitions in order to make the results easier to understand, and in §5 we
consider some of the “multi-local” questions which arise. Thus, for example, the dual
acquires self-intersections because a single plane can be tangent at two (widely separated)
points of the curve, and we show how to determine the conditions for all the stable
transitions which occur on the dual near these self-intersections. The results here are very
much what one would expect, and we do not dwell on them at length.

Throughout this paper smooth means infinitely differentiable, and all curves and
maps considered will be smooth.

Since the authors submitted this paper it has come to their attention that there is
some overlap of results discussed here with those in a paper of Shcherbak [8]. In particular
Shcherbak discusses fronts of space curves: these coincide with our duals discussed in §1
below.

Glasgow Math. J. 29 (1987) 41-63.
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1. Height functions. Let C be a circle, ¢ :C— R> an embedding and S° the unit
sphere in R* giving all directions in space. We shall use the families of functions on C

h:CxS8*>R
and
f:CxS*XR->R
given by
h(t, u)=o¢(t) - u
and

flt, u,w)=0¢@) u—w.

The discriminant of f,

()= {(u, w): f(t, u, w) =§—{(t, u, w) =0 for some t}

can be regarded as the affine dual of ¢(C), since (u, w) in D(f) determines the tangent
plane x -u=w to ¢(C). (Compare [6, p. 126]. Strictly we should factor by the
equivalence relation (u, w)~(—u, —w) but for examining the dual locally, or multi-
locally, 9(f) will serve.) Also, the smooth 2-manifold

o= {(t, v):%%(t, v) =0}

is the unit normal bundle to ¢(C) (a circle bundle over C), and the natural projection
p:0— S?is the Gauss map of ¢(C). (Again we could, but don’t, factor S*> by v ~ —v.)
The set of critical values of the Gauss map can be described in various ways, such as:
(i) the bifurcation set of the family 4;

(ii) the discriminant set 9(3h/3t) of the family dh/dt;

(iii) the projection to S? of the cusp edges on the dual.

Using (ii) we can deduce the local structure of the set of critical values at the same time as
deducing that of the dual. This is more significant when we come to a family ® of space
curves (below), since with a single curve we can even say what the Gauss map itself
is—see (1.1).

The following result is well known—see [6, p. 127] for most of it. Suppose that ¢(C)
has nowhere zero curvature and that, whenever the torsion 7 vanishes its derivative does
not. (These both hold for a generic curve ¢(C).) Let h(—, v) have type A, at ¢, and write
w = h(t, v).

(1.1) ProrosiTioN. With the above hypotheses,

(a) k =1 v is normal to ¢(C) at ¢(t) but not normal to the osculating plane there.
When k =1, the dual is smooth at (v, w) and the Gauss map is a local diffeomorphism at
(t, v), critical set empty.
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(b) k=2&uv is normal to the osculating plane at ¢(t) but t(t) #0. When k =2, the
dual is a cusp edge at (v, w) and the Gauss map has a fold at (t, v), critical set smooth.

(c) k=3 v is normal to the osculating plane, t(t) =0 (so t'(t) #0). When k =3,
the dual is a swallowtail at (v, w) and the Gauss map has a cusp (Whitney pleat) at (t, v),
critical set an ordinary cusp.

Note that the exclusion of T = t’ = 0 makes k& >3 impossible.

We now turn to a one-parameter family of curves. For most of the calculations below
it is enough to assume that we are given a smooth map

q)=((bl, (Dz, q):;):CX U—)RS, (1.2)

where U is an open interval of R containing [0, 1]. (Thus initially U can be (—1, 2) say,
but it may shrink.) This is regarded as a deformation of Cy=®(C x {0}) to C,=
@®(C x {1}). When proving our transversality theorem in §6, however, we do need to
make explicit use of an ambient isofopy, that is a smooth map
Q:R*x U—>R?
for which each map Q(—, u) is a diffeomorphism. A family @ is induced from Q and an
initial embedded curve ®(—, 0) in the obvious way:
(1, u) = Q(P(s, 0), u).

There are associated big height functions:

H:CXxUxS$->R
F:CxUxS$*xXR—-R
given by
H(t,u,v)=®(t, u) v
and
F(t,u, v, w)=®o(t, u) - v—w.

Thus the “big dual” is the discriminant 2 (F) of F and the set of critical values of the
“big Gauss map” is the discriminant @(3H/3t) of OH/5t. We need to determine when
the projections of these discriminants to U are generic functions in Arnold’s sense. We
shall do this, for convenience, at the values t=0, u=0€ U, v=(0, 0, 1). Write

O(1, 0) = (1, d,(t), ¢5(1))

(1.3)
%%(t, 0) = (¥1(0), ¥a(0), ¥5(0))
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where
Px(t) = axt® + ast® + ayt* +ast’ + hoo.t.
$3(t) = byt* + bst> + hoo.t.
Yi(t) = co+ 1t + o> + hoo.t.
Po(t) =dy+ dyt + drt* + hoo.t.
Y3(f) =€+ eyt + ext* + h.o.t.

The first thing to observe is that for local calculations we can replace F by the germ
(also called F)

F:RxR*xRXR, (0,0,0,0)—»R
¢ v, u, w)y—»v,®, +v,®0, + ©; —w.
(That is, $* is replaced by {(v,, v,, 1)}.) Similarly with H. It is then clear that
F(-,0,0,0) or H(—, 0, 0) has type A, at ¢t =0 if and only if (1.4)
by,=...=b,=0, b, #0.

Next we need the conditions for F to be a versal unfolding of this function at t =0, so
that the dual @(F) is locally diffeomorphic to a standard discriminant of A, in R*. These
conditions coincide with those for the critical values of the Gauss map &(3H/dt) to be a
standard discriminant—but of A,_; this time—in R>. The conditions are:

k =1:no condition
k =2:no condition

(1.5)
k=3:a,#¥0o0re,#0

k=4:a,e5— ase, #0.

Finally we need the additional conditions for the projection 2(F)— U to be one of
Arnold’s generic functions. (Again these coincide with the conditions for @(8H/dt)— U
to be generic.) The conditions are obtained as in [3]; we shall state them here and then
give more detail in one case.

Arnold’s generic functions [1] have the following form for a standard (k + n)-
parameter versal unfolding

RXR*XR"—>R
G Ay Ay Ty, T) D R R A AR 2 4 A,
of a standard A, singularity (k=1, n=0), at t =0:
(A, t)> A £73+... £ 72 (signs independent)

A, 1)—>15. (L.6)
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The second we call trivial; the first, for n > 0, is called a Morse function. For n = 0 we call
it the standard projection.

In the present case (where k +n =4 for F and for 3H/3¢) the additional conditions
are as follows, where we write x for the curvature of the u = 0 curve.

k =1 or 2: projection always trivial.

k=3 {trivial@azaéO@K(O) #0,
Morse (~ (4 + 1)) ©a, =0, 2, 0 k(0) =0, (&' (0) 0. L7

k = 4:standard & a, # 0 x(0) #0.

Note that we have to say (x°)"(0)#0 rather than k'(0)#0 since kx is not
differentiable when k = 0. The easiest way to check the connections with curvature is to
use the formula x = |y’ x y”|/|y’|® for a parametrized curve y, remembering that b, =0
for k=3, by (1.4). We also note that there is a unique direction in which the height
function has type A., at t =0, if and only if a, #0 (i.e., k(0) #0), and that when a,=0
there is a unique direction giving A at ¢t =0, if and only if a; #0.

Most of the conditions in (1.7) are very easy to check. Triviality requires that the
(k —1)-jets (with constant) of 8F/dv,, dF/3v,, 8F/dw spanR[¢]/(¢*), while for a
standard projection the (k — 2)-jets need to span R[¢]/{(¢*7").

The Morse case requires more calculation. Assuming b,=b;=0, b,#0, a,=0,
e, #0 (from (1.4), (1.5) and the assumed non-triviality of the projection), &(F) is of the
form “swallowtail X R” and the set of A; points is the “‘swallowtail edge”, corresponding
to the R factor. We need to check (see [3]):

(i) the projection restricted to a section of 2(F) transverse to the swallowtail edge is
a generic function on the swallowtail;

(ii) the projection restricted to the swallowtail edge is a Morse function R— R, in
the ordinary sense.

We use the map
0:RxR>xR xR— R*

taking (¢, v, u, w) to the 3-jet with constant of F(—, v, u, w) at t. Then 67(0) is, close to
0, the swallowtail edge. The Jacobian matrix of 6 at r=0 is
0 0 0 e -1
0 1 0 ¢ 0
0 0 0 2, O
24b, 0 6a; 6e; O

Columns 1, 2, 4, 5 are linearly independent, so v, is a local coordinate on the swallowtail
edge, and v, =0 is transverse to the edge. For (i) we only need the 1-jets of 3F/dv,,
9F (3w to span R[¢]/(¢*), which is easily checked to be so.

For (ii) we can assume v,,u,w and c are functions of v, on 67'(0) and proceed to
calculate u"(0): it comes to 3a3/4be,, so that indeed u"(0) # 0> a; # 0. The fact that the
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normal form is £(A; + 73) actually follows geometrically, for the sections of the standard
discriminant given by A, — 7} = constant are impossible for the dual of a space curve.
These sections are drawn in [2, p. 31, Fig. 32(1)] and [1, p. 577, second from right], and
some of them have no cusp edge; however, the cusp edge corresponds to osculating
planes of the space curve, which always exist. (Equally the critical points of the Gauss
map cannot exhibit a “lips” transition.) Naturally this geometrical fact also follows by
calculation: in fact using the method of 7] to find normal forms explicitly we find that the
sign of A, is that of bse, and the sign of 72 is that of 1”(0), and these agree by the above
formula for #"(0). (Note incidentally that the height function for u=0, v=0 is
right-equivalent at ¢ =0 to +¢* when b,>0 and —¢* when b,<0.)

2. Pictures and examples for height functions. There are five cases in (1.7). The
first three, where the projection is trivial, give uninteresting pictures for the dual: k=1
gives a smooth dual, k =2 a cusp edge and k = 3 a swallowtail, independently of the value
of u close to 0. (The critical values of the Gauss map are respectively empty, smooth and
an ordinary cusp.)

The Morse case for k =3 gives the pictures of Fig. 1 for the evolution of the
dual—compare (2, p. 31, Fig. 32(2)], or [1, p. 577, right].

‘r

N

Figure 1.

The critical values of the Gauss map evolve by means of a “‘beaks” transition—Fig. 2. It
is worth expanding a little on the geometry underlying these pictures. Recall that for u =0
(the central picture) the curvature of the space curve vanishes at t =0. When k() #0
there is a unique osculating plane at the point with parameter ¢, but when k(¢) =0 every
tangent plane is osculating. Thus for u # 0 the dual, which models all the tangent planes,

- ¥
A

Figure 2.
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has a single circuit of cusp edge corresponding to the osculating planes at all points of the
curve; it acquires an extra circuit of cusp edge for u =0, corresponding to the point of
zero curvature. (We can suppose that, for u close to 0, no other point of zero curvature
appears.)

@ ®) @
Figure 3.

In Fig. 3(a), A must eventually be joined to B or C along the cusp edge, but in Fig.
3(c), if A were joined to B this would produce two circuits. Thus A is joined to C and the
whole cusp edge has the form schematically drawn in Fig. 3, where the arrows come from
an orientation of the space curve, and in 3(b) only one part can be oriented since the
other circuit all comes from ¢ =0.

The fundamental change here is that, in the sequence (a)— (b)—(c), a pair of
torsion zero points is born (corresponding to the cusps in (c)). But this happens via a
k=0 point (at which the torsion is undefined) rather than via a multiple zero of the
torsion. One “‘half” of the circuit in 3(c) corresponds to the section of the space curve
between the torsion zero points whose length tends to zero as u— 0. When the length is
very small we can treat the normal planes to the curve at points along this section as
parallel, and can speak of the binormal direction as lying in a fixed plane. This direction
then spins round very rapidly through an angle which approaches a multiple of & as
u— 0. (In the example below it is .)

As for bitangent planes (self-intersections of the dual) these form a curve in Fig. 1
which splits into two as u passes through 0. In the example which follows we work out
how the points of contact are related to the torsion zero points.

We emphasise here (compare [4, p. 204]) that although we can produce all the local
models for changes in the dual, Gauss map and focal set we do not have normal forms for
the families ® themselves. The examples which we give in (2.1), (2.2), (4.1) and (4.2)
certainly exhibit the typical local changes as far as dual and Gauss map, or focal set, are
concerned, and very likely they capture other typical aspects of the changing geometry as
well. The general problem of saying what all the relevant geometry is, and producing
normal forms typifying all the generic changes, appears to be difficult but interesting.

(2.1) ExampLe. (1, u) = (¢, £, t* + wr?). This satisfies all the conditions given in §1
for a generic isotopy in the k =3, Morse projection case. We have:

F(t,v,u,w)=uvt+ v, +t* +ur> —w,
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using the version of F given following (1.3). The cusp edge on the dual is given by
F = 3F |3t = 8*F/3f* = 0; for a fixed u this is the set of points

(vy, U3, w) = (26 — ut, —(66% + u)/3t, t* — ur*/3).

The torsion zero points on the curve give cusps on the cusp edge where 3°F/ar° =0,
namely where v, = —4¢. This gives £ =u/6, so there are two such points when u > 0 and
none when u <0.

Note that the cusp edge goes to infinity: this is because our coordinates (v,, v,) do
not account for all of §%. In fact this means that we have to be careful about deducing the
binormal direction, since it is +(vy, v, 1)/(v3+v3+1)"? and it will be necessary to
switch signs when v goes to infinity if we are to follow a continuous movement of the
binormal itself.

Thus, when u >0, as ¢ goes from —(u/6)"* to +(u/6)* the (v,, v,)-curve obtained
by projection of the cusp edge goes from ((2u’/27)"?, (8u/3)"?) to (0, <) and then from
(0, ~») to (—(2u?/27)"%, —(8u/3)"?). As u—0 this approaches a closed curve with one
excursion to infinity, but on the sphere it will approach a curve joining (0,0,1) to
(0,0, —1) (or vice versa). This indicates that the binormal spins through an angle which
approaches 7, between the two torsion zero points on the curve.

Bitangent planes correspond to (v, v,, w) on the dual where F =0, dF/3t =0 has
two solutions ¢,, ¢,. Thus F has the form (¢ — ¢,)*(¢t — t,)* which gives

t% + 4t1t2 + t% =u,

on comparing coefficients of ¢>. This relationship between ¢, and ¢, is represented in Fig.
4. (Of course we are concerned with unordered pairs {t,, t,}, so Fig. 4 should be
“factored” by reflexion in the line ¢, =1,.)

Note that ¢, =t,, for u =0, gives the torsion zero points at ¢, = +(u/6)'%, and the
points of contact of one bitangent plane have coincided. For each ¢, other than this value
there are 0 or 2 values of ¢, giving a genuine bitangent plane. Following the fate of a
particular ¢, and its corresponding t,’s giving bitangent planes we have something like Fig.
5. For each u there is on the self-intersection line of the dual a symmetrical (2,2)
correspondence. For u <0 this has four special points (at t = +(—u/3)"?, t = +2(-u/3)'?)
where there are coincidences among corresponding points. For u =0 only ¢ =0 is special.
For u >0 there are two special points (at t = +(u/6)"%) which are self-corresponding and
where the torsion is zero. These are visible on the dual as end-points of the
self-intersection line. There are bitangent planes with their points of contact astride each
torsion zero point on the curve. ‘

We now turn to the A, transition of (1.7). The pictures of the dual are shown in Fig.
6 (compare [2, Fig. 32(5)] or [1, p. 577, left]). Because of its comparative complexity the
last one is shown in an “exploded” form; the two cut off ends are to be identified
according to the letters. The critical values of the Gauss map evolve through a swallowtail
transition.

What is happening on the curve here is the coalescence and disappearance of two
torsion zero points via a double zero of the torsion. This time there is always a unique
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—

t, = (—2 + \/3)t|

t=(-2-V3),

\
\

\
\

Wiu/6) =
\

L=(=2+V3),

=(-2~ \/3)t1

\
t
u=>0

Figure 4.
A = PN
_ — 4 _ _ =O =0 =0
t= = V(-u/3) t=V(-ul3) « t=—\/§u/6) rt=\/(u/6)
u<g u=0 u>0
Figure 5.
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Figure 6.
osculating plane at each point of the curve and two cusps on the cusp edge of the dual
come together and are annihilated.
(2.2) ExampLE. ®(t, u)=(t, 2, £ + ut®).
F(t, vy, Uy, u, w) =0yt + 0,00+ £ +ul’ — w.
The cusp edge of the dual, for fixed u, consists of points
(15¢* + 3ur?, =106 — 3ut, 6¢° + ut’)

and cusps on this have u = —10¢% Thus for u <0 there are two and for u >0 none. The
calculation of bitangent planes is a little more complicated than before, but we find that ¢,
and ¢, are the points of contact of such a plane if and only if

324408, +36=—u.

For u > 0 this has no solutions and for u =0 only t, =, = 0. For u <0 the solutions form
an ellipse as in Fig. 7. The points where ¢, = ¢, correspond to ends of the self-intersection
set on the dual, and are the torsion zero points on the curve. The self-intersection set
itself has cusps (Fig. 6) which lie on the cusp edge of the dual; thus the corresponding
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Figure 7.

bitangent plane is osculating at one of its points of contact. When ¢, has the extreme value
+(—3u/5)"? (Fig. 7) the values of ¢, coincide at ¥2(—37/5)"%/3 and the bitangent plane is
osculating at ¢,.

3. Distance-squared functions. We use the same notation for curves ¢ and
isotopies @ as in §1, but now consider the functions

g:CXR*>R
and
G:CXxUXR*-R
given by
g(t, x)=|lo(t) — x|
and

G(t, u, x) = ||®(, u) —x|*
The bifurcation set of g,
B(g) = {x:9g/3t = 3%g/3*=0 at (¢, x) for some ¢}

is then the focal set of ¢ and the bifurcation set of G is the “big focal set”; we are
interested in the local structures of %B(g) and %(G), and in the projection B(G)— U.
One way of viewing this situation is to think of ¢(C) as a light filament and the focal set
as the resulting caustic. We are studying the way this caustic changes as the filament is
moved about.
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For a single curve ¢, with curvature kx and torsion 7, the condition for g(—, x) to
have type A, at ¢t is that k() # 0 and
x=¢()+ N()/ k() + uB(t)
(N, B being principal normal and binormal), where
t(t)#0 and p#*—k'(t)/*()T(t)

t(t)=0 and «x'(£)#0.

In either case we find that g versally unfolds the singularity. The first alternative just says
that x is not the centre of spherical curvature at ¢. In the second case this centre has
merely gone to infinity. For type A; or A, the conditions are complicated but (see [6,
p. 124]) the singularities are versally unfolded, provided only 7(¢) # 0 for A, (a generic
condition). We have the following result.

or

(3.1) ProposITION. For a generic curve ¢ the focal set is, locally at x,
(i) smooth whenever g(—, x) has type A, at x,

(i) cusp edge whenever g(—, x) has type A; at x,

(ili) swallowtail whenever g(—, x) has type A, at x.

Now we turn to isotopies, using the notation of (1.2) and (1.3), and writing
(x4, x5, x3) for x.

(3.2) G(—, 0, x) has type A, at t if and only if
k=1 x,=0;

k=2:also 1 —2x,a,~2x3b,=0;
k =3: also x,a;+ x3b;=0;
k=4: also a3+ b3 — 2x,a, — 2x3b, = 0;
k=5:also aa; — x,a5+ b,b; — x3b5=0;
k=6:also a5+ 2a,a, — 2x,a6 + b3+ 2b,b, — 2x3b = 0.
Write (¢ —x)y¥1(t) + (¢1(t) — x2)2(t) + (P3(f) — x3)ys(¢) as a formal series py+ pif +

P2+ ...

(3.3) The conditions for G to be a versal unfolding of the function G(—, 0, x) of type
A, att=0, are
k <3: no condition,
either (a3 #0 or b3 #0)

k=4: {
oras;=b;=0, ¢, +dya,— dsx, + e;b, — e3x; 70,

a, a3 a4
k=5 b2 b3 b4 #0.
P2 P3 Pa
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These are of course all straightforward but tedious verifications.

Finally we need the additional conditions for the projection %(S)— U to be one of
Arnold’s generic functions. Since we are dealing with A, singularities the bifurcation set
of an A, is diffeomorphic to the discriminant of an A4,_,, and the methods of [1, 3] apply.
We need k =2 for B(G) to be nonempty.

(3.4) k =2 or 3: projection always trivial.
k=4 {trivial<:>a3 #0or b3 #0,
Morse (~1(A, + 13))Sa;=b; =0, arb, # ab,.
(Equivalent to t=k"=0, 7' #0 for the u =0 curve at t =0.)
k = 5:standard & a,b;y — a3b, # 0.

The conditions a;=b;=0 (or v =k'=0) say that the line of points x of the form
¢(0) + N(0)/x(0) + uB(0) (where pu e R, and ¢(r) = @(¢, 0) is the u =0 curve) gives a
singularity A.; for G(—, 0, x) at t=0. The condition a,b,# a,b, says that there is
nevertheless precisely one point of this line giving type A.,, namely the one with
u=x"/K*t" at t=0.

The proofs of the statements in (3.4) are similar to those in (1.7). Again, the fact that
the Morse projection equivalent to +(4; — t7) does not occur follows geometrically: the
cusp edge of the focal set contains the centres of spherical curvature, and these always
exist. Thus, as for height functions, the cusp edge cannot vanish completely. An algebraic
argument based on explicit reduction to normal form gives the same result.

4. Pictures and examples for distance-squared functions. The pictures are, natu-
rally, the same as those in §2, though since we are dealing with bifurcation sets an A, here
has picture the same as A,_, in §2. Thus the first three cases of (3.4) give focal sets which
are smooth, cusp edge and swallowtail, independently of u.

Consider first the Morse case, k =4, for which the transition of focal sets is shown in
Fig. 1. The cusp edge is the set of A, points for k = 3; this acquires an extra line when
u =0, corresponding to the vanishing of both t and k' at t = u = 0. For other values of u
close to 0 the cusp edge is connected, allowing for excursions to infinity at points where
7 =0 (but k' #0). The direction in which the cusp edge goes to infinity for ¢ close to 0
provides, as u— 0, the direction of the extra line which appears at ¥ =0. The ways in
which the cusp edge is connected up follow Fig. 3, but now the loops have points at
infinity on them. The following example exhibits this transition; recall the remarks
preceding Example 2.1 above.

(4.1) ExampLE. ®(t, u) = (¢, t*, * + £ + ut). This satisfies all the conditions for a
generic A, Morse transition. Thus G(t, u, x) = (x; — £)* + (x, — £*) + (x3— 2 — £ — ut)*.
The extra line which appears in the A.; set of G (cusp edge) for u =0 is the line x, =0,
x3=3% and in this example ¢ =0 always gives a point of zero torsion, where the cusp edge
goes to infinity. Naturally the formulas for points (x;, x,, x3) on the cusp edge are rather
complicated, but computer plots of the projection to (x; + x3, x;) look like Fig. 8.
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The self-intersection locus on the focal set does not have the geometrical interest that
it does on the dual: it is the locus of points which are centres of two spheres touching the
curve with 3-point (A,) contact at two different places, that is the A,/A, locus. The
end-points of this locus (Fig. 1, right) are centres of spheres having A, contact with the
curve: the two different places of contact have coalesced.

The picture for the generic A; transition is Fig. 6. Here two points of the curve giving
swallowtail points (A4 points) coalesce—but, as was pointed out above, this does not have
any direct connexion with the geometry of the curve apart from its contact with spheres.
An example of a generic A; isotopy for distance-squared functions is

O, u)=(, 2+, 2 +ur). (4.2)

Here, the cusp edge (A,-set) of the focal surface has two cusps when u <0 and none when
u>0. Thus in Fig. 6 the diagrams correspond respectively to u >0, u =0, u <0.

5. Multi-local phenomena. The dual of a space curve, being a surface in R?, will in
general intersect itself. For instance if a single plane is osculating at one point of the curve
and tangent at another, then we expect that a cusp edge on the dual will cross a smooth
part of the dual at the corresponding point. Likewise a tritangent plane will give a triple
crossing of smooth parts of the dual. How do these multi-local (or quasi-global)
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phenomena evolve as the curve moves through an isotopy? There will be isolated
moments u € U when more degenerate situations, such as quadri-tangent planes, occur,
and it is geometrically rather clear what we can expect to occur on the evolving duals.

In this section we show how to handle this situation and to find explicitly the
conditions for multi-local transitions to have the expected generic forms. Calculation
shows that nothing unexpected happens, so we do not go into great detail, giving the
actual genericity calculation only in one case ((5.4) below). Our methods are based on [5]
and apply to any situation where there are intersections of discriminants of A,
singularities for various k, but the example to keep in mind is that of the big family F in
§1 associated to height functions. In that case the degenerate phenomena which occur
generically at isolated moments of the isotopy turn out to be the following.

(5.1)
Singularities of F Geometrical interpretation
A}=A,A|A|A, Plane tangent at 4 points.
AlA, Plane tangent at 2 points, osculating at a third.
AyA, Plane osculating at two points.
A A, Plane tangent at one point, osculating at
another, where 1 =0.
Al Plane tangent at three collinear points.
A A, Plane tangent at one point and osculating

at a second, the first lying on the tangent
line at the second.
A? A self-intersection on the curve.

The last three cases are all ““Morse transitions” where the projection to the U parameter
of the intersecting discriminants has a Morse component—in the normal form of [5] a
square 77 for A} and A,;A, and a sum tix 73 for A} In fact the + and — are
distinguishable by the presence or absence of bitangent plane: the + sign occurs precisely
when the two branches of the curve are locally on opposite sides of the plane spanned by
the tangent lines at the node. Of course A} is very special in another way: it could not
possibly occur during an isotopy of embedded curves! Presumably it is possible to relax
the definition of isotopy so that parts of the curve close to two parameter values can be
moved independently, but we do not go into such modifications here.

We start with the case of a point stratum, that is for F one of the first 4 cases in (5.1).
We recall some results from [S] for functions on unions of transversally intersecting A,
discriminants.

Let P:R X R*®, 0> R,0 be, for 1 <i=<r, the germ

P(t, @) = KO+ 4 gifk D=1+ ak,

where we write a’' € R*? as (a}, . . ., ai(). Thus P, is a miniversal unfolding of a germ of
type Agq- The germs P, give a multigerm P:RXR*>R (k=1 k;), defined on
neighbourhoods of points ¢, ..., in R by P(t; +¢,a', ..., a") = P(t, a') for ¢ close to 0.
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The discriminant 2 (P) is then
B(P)={(a',...,a")eR*:for some iand ¢, P,=38P/3t=0 at (¢, a")}.
This is the union of r “discriminant cylinders” in R¥, each of the form
(discriminant of A;)) X R¥=*®,

In [5] one of us classified functions on such standard discriminants. In fact if
p:R*0—R,0 satisfies 3p/3aj(0)#0 for i=1,...,r then p is stable as a function on

9(P) and equivalent to i g:a; where each ¢ is 1. In order to apply this to a situation
i=1

where the unfoldings and discriminant are not in such a convenient normal form, we need
to interpret the conditions in an invariant way.
Suppose then that we have a family of functions

F-MxXAXU-R

where M is a manifold (for us a closed curve in R?), A is a parameter space and U is the
one-dimensional “time parameter” space. We are thinking particularly of the F of §1,
where A =5%x R, but the method is general, and of course easily adapted to cover
bifurcation sets of multigerms having A, singularities. Write F,, for the function
F(—, a, u). The discriminant 2(F) is

@(F)={(a, u):for some te M, TF, (t):M,— R is zero and F(¢, a, u) = 0}.

Now fix a = ao, u = u, and suppose that F, , has a singularity of type A, at ¢, e M, for
i=1,...,r (and no other singularity), with F(t;, ay, uo) = 0 for each i.

We need to write down the condition that the discriminant 2(F) is near (a,, u,), a
transversally intersecting collection of discriminants of versal unfoldings of A,
singularities—and so, when Y k(i) =dim(A X U), diffeomorphic at (ao, uo) to the
standard model @(P) above. This condition is the natural multitransversality condition,
as follows. Let L be the submanifold of the multijet space J*(M, R) (K > max k(i))
consisting of r-tuples (ji, . . ., j,) with each j; of type A, and all constant terms zero.
Then we require the following.

(5.2) The multijet extension
JF = JEF M@ X A X U—),JK(M, R)
is transverse to L at (t,, . . . , t,, ay, Up).

Note that this automatically implies that all the singularities are versally unfolded by
F.

We now assume Y, k(i) = dim(A x U) and (5.2), so that (jF)~'(L) is the single point
(ti, ..., 1, ag, ug). Write N; for the submanifold of J*(M, R) for which all jets have
constant term zero, j; has type A, for [ #i, and j; is in the closure of the A, orbit.
(This closure appears as N(Agq) in [3, p. 324]. For k(i) =2 this just requires zero
constant term; for k(i) =1 it is no condition.)
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(5.3) ProrosiTioN. The projection
w:D(F), (ag, uo)— U, u,

is equivalent to one of the stable functions on 9(P) listed above provided the restricted
multijet map

JoF :M© X A X {up}, (ts, . . ., t,, ag, ug)—> JX(M, R)
is, for each i (and all sufficiently large K), transverse to N,.

Proof. The idea is, for each i, to find a smooth manifold in A X U at (a,, uy) which
meets @(F) in the discriminant of a miniversal unfolding of an A, singularity. The
condition for stability is then (using [3]) that the projection to U of each of these
discriminants is stable (this corresponds to each 8p/3aj(0) # 0 in the standard situation),
and" these conditions, using [3, Proposition 1.2], follow from those of the above
proposition. Write (jF), for the ith component of jF (regarding J*(M, R) as, locally, the
product of r copies of JX(M, R)) and let L, = JX(M, R) consist of jets of type A, with
zero constant term. Thus, by (5.2), jF is transverse to L, X ... X L, = L. Finally write Q;
for L;x...X L,y XJ¥XL;,;x...XxL,. Then it is not hard to see that

(1) jF is transverse to Q;,

(2) (F): | GF)™'(Q)) is transverse to L,,

(3) GF)7 (L) N GF) Q) = (GF)T'(L).

It is (2) which assures us that each A, is versally unfolded by F.

Now projecting (jF)~'(Q;) to the parameter space A X U gives a smooth manifold S;
say, of dimension (i), which meets the part of 9(F) corresponding to the ith copy of M
(points giving a singularity with zero value for F near ) in the discriminant 9; of a
miniversal unfolding of an A, singularity. In Fig. 9 A X U is of dimension 3 so that we
can draw something. It is the projections (S;, 2;)— R given by (a, u)— u, which have to
be stable maps on discriminants, the local splitting A X U=S§, X ... X S, corresponding
with the splitting R*® x . . . X R*) of the standard example P above.

Ss [
T ":7’?'7
!‘:—--n : J;Sz
S N
D =2,=9,
A}
Figure 9.
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It remains to identify this condition with that in the proposition. In fact let S;, be
{(a, ue)} € S; and consider the composite

M XS5 S MDD x A X {u} 25 J5M, R) = J5(M, R).

Here a(t, a, ug) = (t1, . .., ti1, t, tiv1, L,y @, Ug) and 7; is projection to the ith factor. The
condition of the proposition is joFf N; (for all /). Note that M X §; can be identified
locally with (jF)™'(Q;)—in fact the projection (jF)™'(Q;)—>M XA X U (ignoring M
coordinates near ¢ for j#1i), is an immersion at (¢, ..., ¢, ao, Uo) and its image is
M X S;. Likewise M X S, can be identified locally with (joF)~}(Q)), i.e., a(M X S;) =
(joF)~'(Q,). Using this it is an easy exercise in linear algebra to check that the above
composite is transverse to m;(N;), which is the N(A) of [3, Proposition 1.2]. Thus the
criterion for a stable function on % is satisfied.

When we consider cases where dim(A X U) — ¥, k(i) = n >0 then there are, as in [3],
two kinds of conditions to check. The stratum (jF)~!(L) is then locally R” and we have to
check (i) that s restricted to a transversal to this R” in A X U satisfies the condition of
(5.3), and (ii) that s restricted to this R” has a Morse singularity. Of course there are
problems caused by the fact that the R” and its transversal will present themselves as
submanifolds of A X U in a less than transparent way. Rather than give all the details of a
general method we present an example.

(5.4) ExampLE. With the F of §1 we consider the case of A;A,, so that n =1 above.
The standard discriminant in R* with coordinates (a, b, c, d) can be written as
{(a, b, c,d):a=0 or b>+c*=0} and the stable Morse projection is (a, b, ¢, d)—a +
£,b + £,d*> where &, £, are +1. Examining the fibres of this projection and their
intersections with the discriminant gives one of the two pictures of Fig. 10, according as
£,&, is +1 or —1. Note that in Fig. 10(a) the central diagram (u = 0) shows that there are
(locally) no bitangent planes other than the one giving rise to the A,A, singularity pair,
whereas in Fig. 10(b) the central diagram shows that there are other bitangent planes
arbitrarily close by. The fact that the tangent plane to the smooth part of the dual
contains the tangent line to the cusp edge is interpreted on the original curve in the
statement of (5.1)—this is because the tangent line to the cusp edge is dual to the tangent
line to the original curve.

For a multi-local calculation we can take the u =0 curve to have two branches

(5, b, +...,c38%+...) and (I+t,dit+...,et%+...)

for small s and ¢, where ¢; # 0 and e, # 0 so the singularities are A;, A, and for simplicity
we have taken the second branch to pass through (1, 0, 0). Furthermore, we can change
parameters so that the isotopies of the two branches are ®(s, u) = (s, (s, u), Ps(s, u))
and O(t, u) = (t, O,(t, u), O5(t, u)) for small s, ¢, u. We take height functions in directions
(vy, v2, 1).

For the multitransversality condition (5.2) it is enough to consider

JIRZXREIX R x R—J%(1, 1) x J'(1, 1)
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Figure 10(b).

given by (s,t, vy, vy, u, w)—(jy, j) where j, is the 2-jet with constant at s of
®(s, u) - (vy, U5, 1) —w and j; is the 1-jet with constant at ¢t of O, u) - (v,, v,, 1) — w.
We require transversality at 0 to the A,A;-set in J2 x J' which is {(0,0)}. In fact writing
down the Jacobian matrix of j we find that v, is a local coordinate on j~'(0, 0) and on the
projection L of this to the parameter space R* (coordinates (v,, v,, u, w)) provided

3D, 00, 3*®,
du du ©) 3s du ©) )
If (1) fails then j is not a submersion at 0, so (1) is the multitransversality condition, and a

transversal to the A,A, set L in R* is the v, = 0 plane, provided (1) holds.
Next we restrict j to the plane v, =0 and check the condition of (5.3), that is we use

0)#
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the restriction
JorRPXR X R—J>x J!

with coordinates s, f, v;, w on the left. Write ay, @, a, for the coefficients in the 2-jet
and By, B, for those in the 1-jet. Then we need to check transversality of j, at 0 to

N ={(j, j2): &= Bo=B1 =0}
and

N, = {(jl:iz)5ao= a; = a, = 0}.
These are easily checked to be automatic.

Finally we need to consider the map L— U given by projection to the u-coordinate
and find the condition for this to be a Morse function. In fact we can equally well use
j~'(0)— U, since j~'(0)— L is an immersion. Using the local coordinate v, on j~'(0), so
that s, ¢, v;, u and w are all functions of v,, we find s’(0) = —b,/3c3, t'(0) = —d,/2e,,
v1(0) =0, ©'(0) =0, w'(0) =0. Further calculation shows that

30, 30, 3@, d?  2b}

u"(0) (‘37 O-7; O-337, (0)) “2e, 3

and since the expression in brackets is non-zero by (1) the other condition for a stable
function is u"(0) #0, i.e.
3d%C3 - 4b%ez #0 (2)

Unfortunately (2) does not appear to have a simple geometrical interpretation.
However it is easy to distinguish the two cases of Fig. 10 by calculating the condition for
the existence of bitangent planes (i.e. coplanar tangent lines) to the two branches close to
s =t=0. In fact we have Fig. 10(a) or (b) according as the left hand side of (2) is >0 or
<0.

6. A transversality theorem. We shall use the same method as that of [4, §3] to
show that, generically, isotopies of space curves give rise only to the transitions of the
dual, critical values of the Gauss map and focal set detailed in §§1-4 above. In order to
apply the “Monge-Taylor technique” of [4] (compare also [6, Chapter 9]) we need to set
up a local coordinate system at each point of each curve in the isotopy. Unfortunately the
standard triad of tangent, principal normal, binormal will not do, since we must allow for
curves which have points of zero curvature, at which the principal normal is not defined.
{Indeed, the example of (2.1) above illustrates rather graphically why it is hopeless to
extend principal normals to points of zero curvature—recall how the binormal spins
between the two 7 =0 points.)

Let ¢ : C— R? be an oriented space curve. To each ¢ € C assign a unit normal vector
N(t) to ¢(C) at ¢(t), making ¢t~ N(t) smooth. We want to extend this “normal field”
from one curve in an isotopy to all of them. Let w:R*— R? be a diffeomorphism; then
w ° ¢ is an oriented space curve and certainly Dw(¢(¢))(N(t)) will be non-zero and not
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tangent to the curve w ° ¢ at w o ¢(¢). Thus projecting this non-zero vector to the normal
plane of wo° ¢ at w o ¢(r) and dividing by its length, we get a uniquely defined unit
normal vector N,,(¢), which equals N(¢) when w equals the identity. Completing “tangent,
normal” to a right handed triad T,(¢), N,(¢), N,(¢) provides a uniquely defined triad at
each point of each curve of an isotopy given by Q:R* x U— R?, once we assign N to the
curve u = 0. The triad varies smoothly with & and ¢.

Write V' for the real vector space of polynomials in ¢ of degree =p and <k. Then for
any family @ as in (1.2) which is induced by an isotopy € there is a smooth map

T:CXU->VEXVEXVEXVEXVE

defined as follows. Given (fy, ug) € C X U choose axes at ®(t,, uo) along the T,N,N
directions as above, and by a change of the ¢ variable write ®(z, uy) = (¢, $,(¢), ¢s(¢)) for ¢
close to #,. The first two components of I' are the k-jets of ¢,, ¢ at ¢,. For the other
three components we use the k-jets at ¢, of

aa;is)' (t, ug+s) o
for i =1, 2, 3. (Compare (1.3).)

Of course I' depends not only on the isotopy but on the choice of normal field N.
However, we shall only be considering geometrically defined subsets of the target of T,
which will be invariant under a change of N. By using as deformations maps R*>— R?
whose components are polynomials of degree <k, one proves the following in exactly the
same way as for Theorem 3.2 of [4].

(6.1) THEOREM. Let X be a Whitney (A) regular stratified subset of (V4)* X (V§)?,
and let ® be an isotopy between the generic curves (see note below) C, and C,. Then there
is an arbitrarily small deformation of ® to an isotopy between the same curves C, and G
for which the corresponding map T is transverse to X.

Notes. (1) In the applications, “generic curve” can be given a specific meaning: in

fact when we are concerned with height functions it has the usual meaning that the family
of height functions 4 on the curve should have jet extension transverse to the natural

stratification of J*(1, 1), for all k sufficiently large. Thus, as in (1.1), only singularities A -,
appear and they are versally unfolded by h. Similarly, with distance-squared functions
(compare (3.1)).

(2) The only essential difference between the situation here and that in [4] is that,
here, we need our isotopies to be given by families of diffeomorphisms of R* in order to
carry over the choice of normal vectors from one curve to another. Fortunately all the
constructions of the proof of [4, §3.2] use explicitly difftomorphisms of balls in R*, which
can of course be extended to diffeomorphisms of the whole of R?. Thus at every stage the
normal vectors to all the curves are well-defined.

When we apply (6.1) we need to specify the set X, which represents some conditions
on the isotopy we want to avoid, and to check that X is semi-algebraic of codimension at
least 3. (The A-regularity condition is then automatic.) The transversality of I' to X then
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ensures that the image of I' misses X: the nearby isotopy does avoid all the unwanted
conditions. This will then prove that such isotopies are dense, and openness will always be
automatic. In this way we prove that isotopies avoiding the chosen conditions are generic,
that is open and dense.

First consider the height functions. Given (¢, up) € C X U we choose axes as specified
above; the only problem is that generally the direction for the height function will not be
along the third (N) axis. However for a singular height function (the only case of interest)
the direction will be in the normal plane at ®(%,, u,), so by a rotation of axes in this plane
we can use the formulas of (1.4), (1.5) and (1.7). Before rotation the subset of
(V3)? % (V3)? corresponding to bad isotopies is given by

a2=a3=b2=b3=0 or az=b2=b3=ez=0
or 02=b2=b3=b4=0 or b2=b3=b4=a2e3—a3ez=0

or b2=b3=b4=b5=0,

using the a, ..., e coordinates as in (1.3). This is algebraic of codimension 4, and the
effect of introducing rotations is to make it semi-algebraic of codimension at least 3. Thus
the set X to be avoided for height functions has k=5 and is semi-algebraic of
codimension =3. Thus we have the following result.

(6.2) TueorREM. The isotopies, for which all transitions on the dual and the critical
values of the Gauss map are of the four types in (1.7), are generic (open and dense).

For distance-squared functions the situation is very similar, except that here the bad
set is initially a subset of R> X (V$)?x (V§)®=R> x V, say, since the conditions of (3.2)
and (3.3) involve the (xi, x,, x3)-coordinates in R*. However each case that we want to
avoid certainly gives an algebraic subset Y of this bigger space whose projection X to V is
a semi-algebraic set. Since projection cannot increase dimension we need only check that
Y has codimension at least 6. Take for example the “bad condition” given by the
vanishing of all 6 polynomials of (3.2).

This defines a map

R’x V—R®
an'd all we have to do (!) is to verify that the defining polynomials are irreducible and that
this map has rank 6 at some point whose image is zero. Naturally we spare the reader the

details of such verifications. Note that when k =4 we obtain a ““bad condition™ given by
the vanishing of the first 4 polynomials of (3.2) and either

a3=b3=C2+d1a2_d3X2+e]b2_e3X3=0

or

a,= b3 = a2b4 - a4b2 = 0
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But this is not 7 conditions since the third condition of (3.2) becomes redundant. In this
way we prove our final result.

(6.3) THEOREM. The isotopies, for which all the transitions on the focal set are of the
four types in (3.4), are generic (open and dense).
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