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Abstract
Aiming at the error estimation problem of a radar detection system when the variation law of system error is
unknown, an improved Gaussian mean-shift radar dynamic error registration algorithm (IGMSR) is proposed. The
algorithm can effectively adapt to the variation of system error when the variation law of system error is unknown.
The IGMSR algorithm uses the mean-shift method to contribute different characteristics to the estimation results
of different sample points, and constructs weight coefficients according to the deviation of sample points from the
mean and sampling time. The simulation results show that more than 90% of the constant system errors can be
eliminated; for the systematic error with slow change, more than 80% of the bias can be eliminated in real time,
while a previous method of Zhu and Wang (2018) can only eliminate 60% of the systematic error and require
the change law to be known. This method overcomes the influence of random error and abnormal point, and the
estimation results are more robust.

1. Introduction

In a multi-platform and multi-sensor target tracking system, information fusion can improve the perfor-
mance of detection, identification and tracking. However, the use of multiple sensors usually leads to a
more prominent problem, namely sensor calibration or registration. Sensor registration is an inherent
problem in a multi-sensor system, which requires the estimation of sensor bias and compensates the
measured data with the estimated bias, to remove the influence of system bias. If the sensor bias is
directly used for data fusion without registration, the bias will lead to a large tracking error or even mul-
tiple false points for the same target. Sensor bias mainly includes sensor registration deviation, sensor
clock deviation, sensor position bias and azimuth deviation. Due to the coupling relationship between
the different types of bias, there is no effective method to estimate all the biases at the same time. This
paper mainly considers the registration bias of the sensor, and assumes that the clock, position and
orientation of the sensor itself are not biased.

With the in-depth study of data fusion theory and technology, the registration problem has attracted the
attention of many scholars at home and abroad (Wang et al., 2013; Chen et al., 2018). Some registration
algorithms of constant bias for sensor networking have been proposed successively, such as the real-time
quality control method (RTQC) (Chen et al., 2018), Kalman filter (KF) (Chen et al., 2014), extended
state Kalman filter (ESKF) (Yong et al., 2018), least square (LS) (Ventikos et al., 2017) and accurate
maximum likelihood method (EML) (Antoniou et al., 2017), Gaussian mean shift registration (MSR)
(Qi et al., 2008), etc. In a real system, when the environment of the sensor changes suddenly, the sensor
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bias may change suddenly and then remain at a fixed value. In view of this registration deviation, Okello
and Challa (2004) described sensor registration and target track as a Bayesian estimation problem,
and proposed an equivalent measurement registration method. The Unscented Kalman Filter (UKF)
registration method was proposed by Li and Leung (2004). This involved the UKF estimation of sensor
bias and target state simultaneously by the expanded state equation and the measuring equation. In this
case, using the traditional registration algorithm, the estimation effect will be seriously worse when the
bias changes. In the literature (Tomas et al., 2014; Zhu and Wang, 2018), a mean-shift bias estimation
method is proposed to solve the registration when the variation law of systematic errors is known,
assuming that the variation law of systematic errors is known. However, in practical applications, the
variation law of systematic errors is generally unknown. However, none of the above methods can
estimate this type of bias. Lin, Bar-shalom et al. proposed an ‘exact’ (EX) estimation method that can
be used to solve dynamic deviations, which is essentially a root-mean-square minimum error estimator.
However, this method is based on the multi-frame and multi-target method. As the number of targets
decreases, the estimation accuracy of this method will decrease. To solve this problem, an improved
mean-shift-based sensor dynamic bias estimation method is proposed in this paper. The algorithm can
effectively adapt to the change of sensor system bias and has high estimation accuracy when the change
law of sensor system bias is unknown.

2. Problem description

Considering the detection of the target by n radars, (𝑟𝑖 , 𝛽𝑖 , 𝜀𝑖)(𝑖 = 1, . . . , 𝑛) represents the detection value
of the distance, azimuth and elevation angle of the i-th radar to the space target, and the relationship
between the detection value and the true value (𝑟𝑖,true, 𝛽𝑖,true, 𝜀𝑖,true)(𝑖 = 1, . . . , 𝑛) is as follows:

⎧⎪⎪⎨⎪⎪⎩
𝑟𝑖 = 𝑟𝑖,true + Δ𝑟𝑖
𝛽𝑖 = 𝛽𝑖,true + Δ𝛽𝑖
𝜀𝑖 = 𝜀𝑖,true + Δ𝜀𝑖

(1)

where radar error can be expressed as radar bias plus random noise:

⎧⎪⎪⎨⎪⎪⎩
Δ𝑟𝑖 = 𝛥𝑟𝑖𝑏 + 𝛥𝑟in
Δ𝛽𝑖 = 𝛥𝛽𝑖𝑏 + 𝛥𝛽in
Δ𝜀𝑖 = 𝛥𝜀𝑖𝑏 + 𝛥𝜀in

(2)

where 𝛥𝑟𝑖𝑏, 𝛥𝛽𝑖𝑏 and 𝛥𝜀𝑖𝑏 are the biases of the range, azimuth and elevation measurements, respectively,
𝛥𝑟in, 𝛥𝛽in and 𝛥𝜀in are independent Gaussian white noise.

The purpose of this paper is how to estimate the biases of each radar relative to the main radar on the
same platform in real time when the biases of each radar changes slowly. To simplify the description,
the following algorithm takes two three-dimensional (3D) radars as an example.

3. Bias estimation model

According to the expression of Equation (1), the true value of radar 𝑖(𝑖 = 1, 2) at detection time k is

⎧⎪⎪⎨⎪⎪⎩
𝑟𝑖,true (𝑘) = 𝑟𝑖 (𝑘) − Δ𝑟𝑖 (𝑘)
𝛽𝑖,true (𝑘) = 𝛽𝑖 (𝑘) − Δ𝛽𝑖 (𝑘)
𝜀𝑖,true (𝑘) = 𝜀𝑖 (𝑘) − Δ𝜀𝑖 (𝑘)

(3)

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑖,true (𝑘) = 𝑟𝑖,true (𝑘) sin(𝛽𝑖,true (𝑘)) cos(𝜀𝑖,true (𝑘))
𝑦𝑖,true (𝑘) = 𝑟𝑖,true (𝑘) cos(𝛽𝑖,true (𝑘)) cos(𝜀𝑖,true (𝑘))
𝑧𝑖,true (𝑘) = 𝑟𝑖,true (𝑘) sin(𝜀𝑖,true (𝑘))

(4)
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In the common geographic rectangular coordinate system, the truth value of the radar detection target
is ⎡⎢⎢⎢⎢⎣

𝑥𝑖,true (𝑘)
�̄�𝑖,true (𝑘)
𝑧𝑖,true (𝑘)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
𝑥𝑖,true (𝑘)
𝑦𝑖,true (𝑘)
𝑧𝑖,true (𝑘)

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝑢𝑖 (𝑘) − Δ𝑢𝑖
𝑣𝑖 (𝑘) − Δ𝑣𝑖
𝑤𝑖 (𝑘) − Δ𝑤𝑖

⎤⎥⎥⎥⎥⎦ (𝑖 = 1, 2) (5)

where
⎡⎢⎢⎢⎢⎣
𝑥𝑖,true (𝑘)
�̄�𝑖,true (𝑘)
𝑧𝑖,true (𝑘)

⎤⎥⎥⎥⎥⎦ (𝑖 = 1, 2) is the position of the target detected by radar i in the common coordi-

nate system,
⎡⎢⎢⎢⎢⎣
𝑢𝑖 (𝑘)
𝑣𝑖 (𝑘)
𝑤𝑖 (𝑘)

⎤⎥⎥⎥⎥⎦ (𝑖 = 1, 2) is the position of the i-th radar in the common coordinate system and

⎡⎢⎢⎢⎢⎣
Δ𝑢𝑖
Δ𝑣𝑖
Δ𝑤𝑖

⎤⎥⎥⎥⎥⎦ (𝑖 = 1, 2) is the platform position error.

In the common geographic rectangular coordinate system, the truth values of the targets detected by
the two radars should coincide, i.e.

⎡⎢⎢⎢⎢⎣
𝑥1,true (𝑘)
�̄�1,true (𝑘)
𝑧1,true (𝑘)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
𝑥2,true (𝑘)
�̄�2,true (𝑘)
𝑧2,true (𝑘)

⎤⎥⎥⎥⎥⎦ (6)

In the common geographic rectangular coordinate system, the value of the target actually detected
by the i-th radar is

⎡⎢⎢⎢⎢⎣
𝑥𝑖 (𝑘)
�̄�𝑖 (𝑘)
𝑧𝑖 (𝑘)

⎤⎥⎥⎥⎥⎦ = 𝑟𝑖 (𝑘)

⎡⎢⎢⎢⎢⎣
sin(𝛽𝑖 (𝑘)) cos(𝜀𝑖 (𝑘))
cos(𝛽𝑖 (𝑘)) cos(𝜀𝑖 (𝑘))
sin(𝜀𝑖 (𝑘))

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝑢𝑖 (𝑘) − Δ𝑢𝑖
𝑣𝑖 (𝑘) − Δ𝑣𝑖
𝑤𝑖 (𝑘) − Δ𝑤𝑖

⎤⎥⎥⎥⎥⎦ (7)

According to Equation (7), the observation equation of the two radars’ bias can be calculated by
making the difference between the two radars’ detection data:

Ψ(𝑘) =

⎡⎢⎢⎢⎢⎣
𝑥1(𝑘)
�̄�1 (𝑘)
𝑧1(𝑘)

⎤⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎣
𝑥2 (𝑘)
�̄�2 (𝑘)
𝑧2(𝑘)

⎤⎥⎥⎥⎥⎦
= 𝑟1(𝑘)

⎡⎢⎢⎢⎢⎣
sin(𝛽1(𝑘)) cos(𝜀1 (𝑘))
cos(𝛽1(𝑘)) cos(𝜀1(𝑘))
sin(𝜀1 (𝑘))

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝑢(𝑘)
𝑣(𝑘)
𝑤(𝑘)

⎤⎥⎥⎥⎥⎦ − 𝑟2(𝑘)

⎡⎢⎢⎢⎢⎣
sin(𝛽2 (𝑘)) cos(𝜀2 (𝑘))
cos(𝛽2 (𝑘)) cos(𝜀2 (𝑘))
sin(𝜀2 (𝑘))

⎤⎥⎥⎥⎥⎦ (8)

where
⎡⎢⎢⎢⎢⎣
𝑢(𝑘)
𝑣(𝑘)
𝑤(𝑘)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
𝑢1(𝑘)
𝑣1(𝑘)
𝑤1 (𝑘)

⎤⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎣
𝑢2(𝑘)
𝑣2(𝑘)
𝑤2(𝑘)

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
Δ𝑢2 − Δ𝑢1
Δ𝑣2 − Δ𝑣1
Δ𝑤2 − Δ𝑤1

⎤⎥⎥⎥⎥⎦ is the relative position of the two radars and Ψ(𝑘)

is the bias value of two radars detecting the same target in the geographic coordinate system.
Furthermore, in the actual system, the bias is generally small, so the Taylor first-order expansion of

the bias parameters can be carried out. According to Equations (6) and (8), the following bias equation
can be obtained:

Ψ(𝑘) ≈ 𝐻 (𝑘)𝑏(𝑘) + 𝑀 (𝑘)𝑉 (9)

where 𝐻 (𝑘) = [𝐽1(𝑘),−𝐽2(𝑘)] = [ℎ𝑖 𝑗 (𝑘)]3×6; 𝑀 (𝑘) = 𝐻 (𝑘);

𝑏(𝑘) = (Δ𝑟1𝑏 (𝑘), 𝛥𝜃1𝑏 (𝑘), 𝛥𝜀1𝑏 (𝑘),Δ𝑟2𝑏 (𝑘), 𝛥𝜃2𝑏 (𝑘), 𝛥𝜀2𝑏 (𝑘))
𝑇 ;

https://doi.org/10.1017/S0373463324000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000341


430 Jiang Huai Pan

𝑉 = (𝛥𝑟1𝑛, 𝛥𝜃1𝑛, 𝛥𝜀1𝑛, 𝛥𝑟2𝑛, 𝛥𝜃2𝑛, 𝛥𝜀2𝑛)
𝑇 . The formula for 𝐽𝑖 (𝑘) (𝑖 = 1, 2) is

𝐽𝑖 (𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑥𝑖 (𝑘)

𝜕Δ𝑟𝑖 (𝑘)
𝜕𝑥𝑖 (𝑘)

𝜕Δ𝛽𝑖 (𝑘)

𝜕𝑥𝑖 (𝑘)

𝜕Δ𝜀𝑖 (𝑘)
𝜕𝑦𝑖 (𝑘)

𝜕Δ𝑟𝑖 (𝑘)
𝜕𝑦𝑖 (𝑘)

𝜕Δ𝛽𝑖 (𝑘)

𝜕𝑦𝑖 (𝑘)

𝜕Δ𝜀𝑖 (𝑘)
𝜕𝑧𝑖 (𝑘)

𝜕Δ𝑟𝑖 (𝑘)
𝜕𝑧𝑖 (𝑘)

𝜕Δ𝛽𝑖 (𝑘)

𝜕𝑧𝑖 (𝑘)

𝜕Δ𝜀𝑖 (𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(𝑖 = 1, 2) (10)

Since the distance between the radars is small (relative to the observation target), 𝜕𝑥2(𝑘)/𝜕Δ𝑟2(𝑘) ≈
𝜕𝑥1(𝑘)/𝜕Δ𝑟1(𝑘), 𝜕𝑦2(𝑘)/𝜕Δ𝛽2(𝑘) ≈ 𝜕𝑦1 (𝑘)/𝜕Δ𝛽1(𝑘), 𝜕𝑧2(𝑘)/𝜕Δ𝜀2(𝑘) ≈ 𝜕𝑧1(𝑘)/𝜕Δ𝜀1(𝑘) can be
approximated, so Equation (9) can be approximated as

Ψ(𝑘) ≈ 𝐶 (𝑘)𝑏′(𝑘) + 𝑁 (𝑘)𝑉 ′(𝑘) (11)

where k stands for detection time, 𝐶 (𝑘) = [𝐽1(𝑘)] = [𝑐𝑖 𝑗 (𝑘)]3×3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑥1(𝑘)

𝜕Δ𝑟1(𝑘)

𝜕𝑥1(𝑘)

𝜕Δ𝛽1(𝑘)

𝜕𝑥1(𝑘)

𝜕Δ𝜀1(𝑘)

𝜕𝑦1 (𝑘)

𝜕Δ𝑟1(𝑘)

𝜕𝑦1(𝑘)

𝜕Δ𝛽1(𝑘)

𝜕𝑦1(𝑘)

𝜕Δ𝜀1(𝑘)

𝜕𝑧1(𝑘)

𝜕Δ𝑟1(𝑘)

𝜕𝑧1(𝑘)

𝜕Δ𝛽1(𝑘)

𝜕𝑧1(𝑘)

𝜕Δ𝜀1(𝑘)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

𝑁 (𝑘) = 𝐶 (𝑘);

𝑏′(𝑘) = (Δ𝑟1𝑏 (𝑘) − Δ𝑟2𝑏 (𝑘), 𝛥𝛽1𝑏 (𝑘) − 𝛥𝛽2𝑏 (𝑘), 𝛥𝜀1𝑏 (𝑘) − 𝛥𝜀2𝑏 (𝑘))
𝑇 ;

𝑉 ′ = (𝛥𝑟1𝑛 − 𝛥𝑟2𝑛, 𝛥𝛽1𝑛 − 𝛥𝛽2𝑛, 𝛥𝜀1𝑛 − 𝛥𝜀2𝑛)
𝑇

4. Gaussian mean-shift bias estimation

4.1. Gaussian mean-shift algorithm

The Gaussian mean-shift algorithm is a non-parametric density estimation algorithm, which is a method
of recovering the probability density function of a set of data and finding the extreme points of the
probability density function (Tomas et al., 2014). The Gaussian mean-shift algorithm can be expressed
as follows (Yang et al., 2021).

For a given d-dimensional space 𝑅𝑑 with N sample points 𝑥𝑖 , i= 1,. . . ,N, the basic form of the
mean-shift vector at point 𝑥 is

𝑀ℎ (𝑥) =
1
𝑘

∑
𝑥𝑖 ∈𝑆ℎ

(𝑥𝑖 − 𝑥) (12)

Here, k means that there are k sample points in the area 𝑆ℎ, and 𝑆ℎ is a high-dimensional spherical area
with a radius of h, that is, the set of y points that satisfy the following relationship (Bhat et al., 2021):

𝑆ℎ (𝑥) = {𝑦 : (𝑦 − 𝑥)𝑇 (𝑦 − 𝑥) ≤ ℎ} (13)

It can be seen that (𝑥i − 𝑥) is the offset vector of sample point 𝑥𝑖 relative to 𝑥 , and the mean-shift
vector is the sum and average of the offset vectors of the k sample points falling in the area 𝑆ℎ relative
to 𝑥 , so the mean-shift vector points to the direction of the probability density gradient.

It can be seen from Equation (9) that all sampling points contribute equally to the calculation of
𝑀ℎ (𝑥) no matter how far they are from x. However, generally speaking, the closer the sampling point is to

https://doi.org/10.1017/S0373463324000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000341


The Journal of Navigation 431

x, the more effective it is to estimate the statistical properties around x. Y. Cheng introduced the concept
of kernel function to expand the basic mean-shift concept. The expanded form is (Liu et al., 2019)

𝑀ℎ (𝑥) ≡

𝑛∑
𝑖=1

𝐺
( 𝑥𝑖−𝑥

ℎ

)
𝑤(𝑥𝑖)𝑥𝑖

𝑛∑
𝑖=1

𝐺
( 𝑥𝑖−𝑥

ℎ

)
𝑤(𝑥𝑖)

− 𝑥 (14)

Among them, 𝐺 (𝑥) is a unit kernel function, h is the bandwidth coefficient and 𝑤(𝑥𝑖) ≥ 0 is the
weight assigned to the sampling point 𝑥𝑖 .

4.2. Improved Gaussian mean-shift dynamic bias registration (IGMSR)

When there are N measurement values, the sample set of bias observations that can be obtained is
(Δ𝑟 (𝑘),Δ𝛽(𝑘),Δ𝜀(𝑘))𝑘 = 1, . . . , 𝑁 .

���
Δ𝑟 (𝑘)
Δ𝛽(𝑘)
Δ𝜀(𝑘)

��� = ���
𝑟1𝑏 (𝑘) − 𝑟2𝑏 (𝑘)
𝛽1𝑏 (𝑘) − 𝛽2𝑏 (𝑘)
𝜀1𝑏 (𝑘) − 𝜀2𝑏 (𝑘)

��� (15)

Take the following kernel function for Equation (11):

𝐺
( 𝑥𝑖 − 𝑥

ℎ

)
= 𝑒𝑥𝑝

(
−

1
2

���| 𝑥𝑖 − 𝑥

ℎ

��� |2) (16)

where 𝑤(𝑥𝑖) is determined according to the sampling point time and the latest point time as follows:

𝑤(𝑥𝑖) = 𝜆𝜅 | |𝑡𝑖−𝑡𝑘 | | (17)

Among them, 𝜆 is a constant in the range of (0,1), 𝜅 is a non-negative constant, 𝑡𝑖 is the sampling
time and 𝑡𝑘 is the current time.

Write the first term on the right of Equation (11) as 𝑚ℎ (𝑥), namely:

𝑚ℎ (𝑥) =

𝑛∑
𝑖=1

𝐺
( 𝑥𝑖−𝑥

ℎ

)
𝑤(𝑥𝑖)𝑥𝑖

𝑛∑
𝑖=1

𝐺
( 𝑥𝑖−𝑥

ℎ

)
𝑤(𝑥𝑖)

(18)

Given an initial value x, the allowable error 𝜀, the Improved Gaussian Mean-Shift Dynamic Bias
Registration algorithm performs the following steps:

(1) calculate 𝑚ℎ (𝑥);
(2) assign 𝑚ℎ (𝑥) to x;
(3) if | |𝑚ℎ (𝑥) − 𝑥 | | < 𝜀 is satisfied, end the loop; otherwise, continue to execute step (1).

The convergence of the mean-shift algorithm is discussed in detail in the literature (Comaniciu and
Meer, 2002). The convergence of the above algorithms can be referred to the related discussion.

5. Analysis of simulation results

Relative to the fusion centre, the position of radar 1 is [10 m, 10 m, 4 m], and the posi-
tion of radar 2 is [45 m, 45 m, 5 m]. The detection noise of radar 1 and radar 2 is
𝛥𝑟1𝑛 = 𝛥𝑟2𝑛 = 100 m, 𝛥𝛽1𝑛 = 𝛥𝛽2𝑛 = 0.3◦, 𝛥𝜀1𝑛 = 𝛥𝜀2𝑛 = 0.3◦. Target 1 in a straight line, target 2
in a serpentine manoeuvre. Assume that the platform position error of radar 1 is Δ𝑢1 = 100 m,
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Figure 1. Schematic diagram of simulation scene tracking.
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Figure 2. Distance bias estimation results of the two algorithms (Algorithm 1 refers to the MSR).

Δ𝑣1 = 100 m,Δ𝑤1 = 50 m, the platform position error of radar 2 is Δ𝑢2 = − 100 m,Δ𝑣2 = −

100 m,Δ𝑤2 = − 50 m, The simulation scene is shown in the figure 1 below, and the target movement
height is 1000 m.

When the biases of the two radars change slowly, the biases estimation results of the method
in this paper and the method described by Zhu and Wang (2018) (Algorithm 1) are shown in
Figures 2–4.
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Figure 3. Azimuth bias estimation results of the two algorithms.

Fi
g.

4
-C

ol
ou

ro
nl

in
e,

B/
W

in
pr

in
t

Figure 4. Elevation bias estimation results of the two algorithms.

From Figures 2–4, the method used in this paper has more accurate biases estimation results, and the
accuracy (percentage) of the real-time estimation results of slowly varying relative biases is shown in
Table 1. The percentage of accuracy is calculated as the percentage of the ratio of the estimated bias to
the corresponding true value. If the true value of the bias is close to 0 or less than the detection noise, it
will not participate in the statistical calculation.
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Table 1. Biases registration accuracy.

Biases registration accuracy (%)

Algorithm Distance Azimuth Elevation

IGMSR 91 · 2 92 · 3 88 · 6
MSR 70 · 5 71 · 3 64 · 1

7. Summary

In perspective of the characteristics of actual radar detection system error characteristic of changing
slowly with time, this paper proposes an improved version of the mean-shift radar relative registration
algorithm, which can effectively adapt to the change of system error under the condition of the unknown
variation law of system error. The simulation results show that more than 90% relative biases can be
eliminated for constant biases. For the slowly changing biases, more than 80% of the relative biases
can be eliminated in real time even when the changing rules of biases are unknown. However, the
mean-shift registration in the literature (Qi et al., 2008) can only eliminate approximately 60% of
the relative systematic errors when the changing rules of systematic errors are required to be known.
Compared with mean-shift registration in the literature (Qi et al., 2008), the algorithm in this paper
has strong adaptability, better real-time performance as well as more conciseness, which all contribute
to higher engineering application value. It can be applied to the relative registration between multiple
radars on a single ship and also to the relative registration between fixed platform radars that are not
far apart.

References
Antoniou, M., Cherniakov, M., Hoare, E., Daniel, E. and Shariff, L. M. (2017). Comparison of adaptive spectral estimation

for vehicle speed measurement with radar sensors. Sensors, 17, 751–764.
Bhat, P. G., Subudhi, B. N., Veerakumar, T., Caterina, G. D. and Soraghan, J. J. (2021). Target tracking using a mean-shift

occlusion aware particle filter. IEEE Sensors Journal, 99, 1–7.
Chen, L., Wang, G. H., He, Y. and Progri, I.(2014). Analysis of mobile 3-D radar error registration when radar sways with

platform. Journal of Navigation, 67, 451–472.
Chen, Z., Qu, Y., Bo, Y., Ling, X. and Zhang, Y. (2018). A dynamic adaptive deviation registration algorithm for heterogeneous

sensors. Computational Intelligence, 16, 361–371.
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern

Analysis & Machine Intelligence, 24(5), 603–619.
Li, W., Leung, H. and Zhou, Y. (2004). Space-time registration of radar and ESM using unscented Kalman filter. IEEE

Transactions on Aerospace and Electronic Systems, 40(3), 824–836.
Liu, Y., Jing, X. -Y., Nie, J., Gao, H., Liu, J. and Jiang, G.-P. (2019). Context-aware three-dimensional mean-shift with

occlusion handling for robust object tracking in RGB-D videos. IEEE Transactions on Multimedia, 54, 11–17.
Okello, N. N. and Challa, S. (2004). Joint sensor registration and track-to-track fusion for distributed trackers. IEEE Transactions

on Aerospace and Electronic Systems, 40, 808–823.
Qi, Y. Q., Jing, Z. L., Hu, S. Q. and Zhao, H. T. (2008). New method for dynamic bias estimation: Gaussian mean shift

registration. Optical Engineering, 47, 2–8.
Tomas, V., Jana, N. and Matas, J. (2014). Robust scale-adaptive mean-shift for tracking. Pattern Recognition Letters, 7, 102–106.
Ventikos, N. P., Sotiralis, P. and Drakakis, M. (2017). A dynamic model for the hull inspection of ships: The analysis and

results. Ocean Engineering, 151, 355–365.
Wang, G. H., Chen, L., Jia, S. Y. (2013). Optimized bias estimation model for mobile radar error registration. Journal of

Navigation, 66, 227–248.
Yang, J., Rahardja, S. and Frnti, P. (2021). Mean-shift outlier detection and filtering. Pattern Recognition, 115, 161–171.
Yong, X., Wu, Y., Tu, M., Du, X. and Zhang, S. (2018). Improving bias estimation precision via a more accuracy radar bias

model. Mathematical Problems in Engineering, 11, 1–9.
Zhu, H. and Wang, C. (2018). Joint track-to-track association and sensor registration at the track level. Digital Signal Processing,

41, 48–59.

https://doi.org/10.1017/S0373463324000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000341


The Journal of Navigation 435

Pan Jianghuai (1982.10-) was born in Gao’an, Jiangxi Province, China. He gradu-
ated from Wuhan University with a bachelor’s degree in 2004. In 2007, he graduated
from Jiangsu Automation Research Institute of China Academy of Ships with a
master’s degree. He is now studying for his PhD in Nanjing University of Aeronau-
tics and Astronautics. He has won 2 first prizes and 1 second prize at provincial and
ministerial level. He has published 1 monograph, 9 patents and 21 papers. In 2014,
he was employed as a senior engineer. His research directions include short-range
anti-missile, manoeuvring target tracking, information fusion, spatial registration,
etc.

Cite this article: Pan J-H (2024). Improved Gaussian mean-shift radar dynamic bias registration. The Journal of Navigation 77: 4, 427–435. https://
doi.org/10.1017/S0373463324000341

https://doi.org/10.1017/S0373463324000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000341
https://doi.org/10.1017/S0373463324000341
https://doi.org/10.1017/S0373463324000341

	1 Introduction
	2 Problem description
	3 Bias estimation model
	4 Gaussian mean-shift bias estimation
	4.1 Gaussian mean-shift algorithm
	4.2 Improved Gaussian mean-shift dynamic bias registration (IGMSR)

	5 Analysis of simulation results
	7 Summary

