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Abstract

Monte Perdido Glacier, located in the central Pyrenees, is one of the southernmost glaciers in
Europe. Due to climate change, this glacier is suffering an accelerated mass loss, especially in
the last decades. If the current trends persist, this glacier is expected to disappear in the next 50
years. As part of the efforts of the scientific community to increase the knowledge about this gla-
cier, this research presents the first microstructural characterization of the Monte Perdido Glacier,
focused on a high-impurity concentration segment that belongs to an ice core drilled in 2017. The
results reveal the ice has a layering defined by air bubbles and non-soluble impurities. The bubble-
defined layering exhibits features of both a primary (sedimentary) and a secondary (strain-
induced) origin. We found a clear inverse correspondence between the particle concentration
and the grains’ size and roundness index. A preliminary micro-Raman characterization of the par-
ticles shows the occurrence of atacamite, anatase (likely related to ancient mining activities in the
vicinity of the glacier) and quartz. The latter could be an indicator of mineral dust, probably sug-
gesting the arrival of dust-laden air masses from the north of the African continent.

Introduction

Global warming affects the cryosphere, increasing the flow and melt rates of large ice masses,
thus accelerating sea level rise. A better understanding of ice mechanics is essential for improv-
ing projections of ice loss under various climate-change scenarios and refining ice dynamics
models used for dating paleoclimate ice-core records (IPCC, 2021). The foundations of ice
mechanics have been investigated through laboratory-based tests (e.g., Glen, 1955; Jacka and
Maccagnan, 1984; Budd and Jacka, 1989; Treverrow and others, 2012). Experience suggests
that polycrystalline isotropic ice flow follows a power law known in glaciology as Glen’s
Flow law:

1̇ = Asn

where 1̇ is the secondary (minimum) strain rate, A the flow parameter, σ the stress and the
power exponent usually set to n = 3 (Glen, 1952, 1955). The flow parameter (A) is dependent
on ice temperature, impurities and other factors (Kostecka and Whillans, 1988; Reeh, 1988;
Dahl-Jensen, 1989; Cuffey and Paterson, 2010). The nature of the impurities is diverse, ranging
from volcanic ash and sea salt to mineral dust and other aerosols (generated e.g. by forest fires
or human activities). Once these aerosols are deposited over the snow surface, they become
part of the ice in the form of dissolved or undissolved impurities (particles). The scientific lit-
erature refers to high-impurity layers as cloudy bands (CB) due to their turbid and darker
appearance compared to the surrounding ice (e.g. Gow and Williamson, 1976; Faria and
others, 2014). Impurities affect the ice flow through their interactions with the ice microstruc-
ture, including its grain sizes and shapes (grain stereology; Faria and others, 2018), and the
fabric (preferential orientations of the c-axes). Ice cores extracted from polar areas (Siberia,
Alaska, Northern Canada, Antarctica, Greenland) revealed a sharp decrease in the grain
size inside the CB and a higher amount of this type of layers in glacial periods (Paterson,
1991; Thorsteinsson and others, 1995; Faria and others, 2014). For instance, that effect is
noticeable in ice belonging to the transition between the Holocene and the Last Glacial
Maximum (Duval and Lorius, 1980; Petit and others, 1987; Lipenkov and others, 1989;
Thorsteinson and others, 1997).

Some of the early works linking the debris-rich levels to changes in ice rheology were
Swinzow (1962), Gundestrup and Hansen (1984), Etheridge (1989) or Paterson (1991). For
example, one of the analyses consisted of monitoring a borehole closure rate in the Devon
Island ice cap (Canadian Arctic), where results revealed an anomalous closure rate near the
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bottom. Subsequent dating showed the ice with this peculiar
mechanical behaviour belonged to the Last Glacial Cycle
(∼115–11.5 ka; Dansgaard, 1973). Later, Fisher and Koerner
(1986) observed the same phenomena in the Agassiz ice cap.
Paterson (1991) found that, for a given temperature and shear
stress value, the ice strain rate of the Last Glacial Maximum ice
was three times higher than the Holocene ice. Furthermore, it
was observed that the crystallographic c-axes tended to approach
a vertical maximum (Paterson, 1991) due to the rotation of grains
under a simple shear regime, forcing the basal planes (where pref-
erential slip occurs) to lie parallel to the shear plane, creating a
favourable condition for ice deformation and flow. That max-
imum will be more marked compared to other fabrics where
the c-axes exhibit similar arrangements, such as those caused by
uniaxial compression, in which they are around the vertical in a
girdle-like shape (Jacka and Maccagnan, 1984). In addition, diffu-
sional creep and grain boundary sliding have been considered by
some authors, offering the possibility of grain-size-sensitive
deformation mechanisms (Goldsby and Kohlstedt, 1997, 2001;
Cuffey and others, 2000; Faria and others, 2006). These impurity
effects of the ice flow have been identified in deep ice cores like
Dye 3 (Dahl-Jensen and Gundestrup, 1987; Shoji and Langway,
1987), GRIP (Miyamoto and others, 1999), EDC (Durand and
others, 2009), WAIS (Fitzpatrick and others, 2014),
EPICA-DML (Faria and others, 2006, 2009, 2010; Weikusat and
others, 2017) or NEEM (Montagnat and others, 2014).

Ice microstructure in mountain glaciers

Microstructure analyses have been usually carried out in polar
regions (Greenland and Antarctica ice sheets), whose thickness
can surpass 4000 m, providing the opportunity to study the long-
term evolution of deep ice layers under stable temperature and
stress conditions and perform paleoenvironmental reconstruc-
tions up to 800 000 years (EPICA Community Members, 2004;
Jouzel and others, 2007). In contrast, conducting the same type
of microstructure studies on mountain glaciers is much less com-
mon, as it involves more technical difficulties due to their steeper
topography and smaller volume, which imply shorter time series,
a more heterogeneous deformation and a higher sensitivity to sea-
sonal temperature variations and global warming. Strong tem-
perature variations hinder microstructural studies because they
can trigger thermodynamic processes that continuously modify
the ice microstructure and fabric (e.g. dynamic recrystallization),
especially in glaciers located in temperate regions. However,
thanks to their sensitivity, mountain glaciers are excellent regional
records of environmental variations of proxies like air tempera-
ture, precipitation, atmospheric chemistry, etc. (Dyurgerov and
Meier, 2000; Grunewald and Scheithauer, 2010; Marshall, 2014).
Furthermore, these glaciers are good indicators of the effects of
past and current human activities, since they are usually close
to densely inhabited regions (Zhang and others, 2015).

Regarding studies focused only on ice microstructure or fabric
in mountain glaciers, one of the first works was by Perutz and
Seligman (1939), which investigated the glacier structure and
flow mechanisms of the Great Aletsch glacier. Twelve years later,
Rigsby (1951) analysed the ice fabrics of an ice core extracted
from Emmons Glacier (Washington, USA) and used the results
some years later in a comparative study that included glaciers
from different climatic contexts, such as the Malaspina Glacier
(Alaska), Saskatchewan Glacier (Alberta, Canada), Moltke
Glacier and the Nunatarssuaq and Tuto ice ramps near Thule
(Greenland; Rigsby, 1960). A coetaneous study is the fabric ana-
lysis of Blue Glacier (Olympic National Park, Washington state;
Kamb, 1959). In recent decades, we can highlight studies on the
Tsanfleuron Glacier (Switzerland; Tison and others, 2000), Cole

Gnifetti Glacier (Swiss-Italian Alps; Kerch, 2016), Storglaciären
glacier (Sweden; Monz and others, 2021), Rhone Glacier (Swiss
Alps; Hellmann and others, 2021), an ice apron in the Triangle
du Tacul (Mont Blanc Massif; Guillet and others, 2021) and
Jarvis Glacier (Alaska; Clavette, 2020). However, most works
focus only on the fabrics, superficially describing other microstruc-
tural features like the shape, size and interactions between grains.

Our research group is part of a network whose aim is the study
of the Monte Perdido Glacier. In this context, we are contributing
by characterizing, for the first time, the microstructure of its ice,
looking at the interaction between its elements (i.e. grain bound-
aries; GB, sub-grain boundaries; sGB, bubbles and impurities).
For this we used high-quality photos and micrographs, cross-
polarizers observations and transmitted light microscopy. In
this study, we focus on a section of the central part of an ice
core drilled in the lower accumulation zone of the glacier, charac-
terized by its high impurity content.

Study area

Monte Perdido Glacier (42°40′50′′N, 0°02′15′′E), located in the
Ordesa y Monte Perdido National Park (Central Spanish
Pyrenees; Fig. 1a), is the third largest glacier in the Pyrenees
(0.37 km2 in 2016; Rico and others, 2017), although recent studies
have reported a 12.9% area loss from 2011 to 2020 (Vidaller and
others, 2021). The glacier lies on the northern slope of the Monte
Perdido Massif, below its main summit (3355 m a.s.l.; Fig. 1b).
The thickness varies from 30 to 50 m in the best-preserved
areas of the glacier (López-Moreno and others, 2019). The
Glacier’s meltwater drains via the Cinca River, which flows
through a longitudinal (E-W) basin called Tucarroya Cirque
(5.8 km2) that bonders the Tucaroya Ridge and Eastern Astazu
Peak (3071 m a.s.l.) on the north, the Western Astazu Peak
(3013 m a.s.l.) on the west and an immense cliff of 500–800 m
(García-Ruiz and Martí-Bono, 2002), composed by the Monte
Perdido Peak (3355 m a.s.l.), Cilindro Peak (3322 m a.s.l.) and
the Marboré Peak (3247 m a.s.l.) on the south (Fig. 1b).
Currently, the glacier is formed by two bodies: the upper one
and the lower one, with average elevations of 3110 and 2885 m
a.s.l., respectively (Julián and Chueca, 2007). The climatic context
is high-mountain Atlantic-Mediterranean transition, with a mean
annual temperature of 5°C (measured at Góriz station, 2250 m
a.s.l., 2.7 km from the glacier, on the south face), and a mean sum-
mer temperature (June–September) measured at the foot of the
glacier in the period 2014–2017 of ~7°C (López-Moreno and
others, 2019). Assuming a temperature drop of 0.55–0.65°C
every 100 m, the average annual elevation of the 0°C isotherm
is at ~2945 m a.s.l., involving a small or even non-existent accu-
mulation area during warm years (López-Moreno and others,
2019). Snowfall events can occur at any time of the year, but gen-
erally, the accumulation process takes place from November to
May, and the melting extends from June to September
(López-Moreno and others, 2016). Despite the elevation of the
upper section, the low avalanche activity and the high slope of
~40° limit the snow accumulation (López-Moreno and others,
2019). Results of chronological analyses carried out by Moreno
and others (2021) showed that the glacier’s ice record covers the
last 2000 years. The Little Ice Age (LIA) period, characterized
by glacial advances, is not recorded in the Monte Perdido Glacier
ice, since more than 600 years of accumulated ice have been lost
due to the anthropogenic warming that followed the LIA.

Materials and methods

In the fall of 2017, three vertical ice cores were recovered from the
glacier’s lower section (Moreno and others, 2021 and Fig. 1b). The
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microstructural analyses were carried out at the low-temperature
laboratory IzotzaLab, located at the Basque Centre for Climate
Change (BC3). The ice cores were stored in a chest freezer at
−70°C to limit the microstructural changes triggered by the
increases in temperature. During the analyses, the conditions at
the laboratory were −25°C and 45% RH. One of the ice cores
belongs to the end of the accumulation zone, very close to the
equilibrium line (MP1; 42°40′47.7′′N, 0°02′15.9′′E; Fig. 1d), with

a total depth of 410 cm and consisting of several segments
(labelled downward from MP1–1 to MP1–11). The dominant
structure throughout the MP1 core is that of bubbly ice, with
some unclear vestiges of firn in certain layers. The target segment
(MP1–6) was made of two sections (the upper one, S1, and the
lower one, S2) with a total length of 22.6 and 8 cm in diameter,
comprising a depth range between 251 and 273 cm within MP1
(Fig. 2a).

Figure 1. The red dot indicates the location of the Monte Perdido
Glacier. (a) Geographical situation of Monte Perdido Glacier in the
Pyrenees. (b) Main peaks in the Marboré Cirque. The yellow box
indicates the MP1 ice core extraction site. (c) Zoom into the yellow
box of Figure 1b. Brownish areas on the top-right and centre-left
parts of the figure are the result of mineral dust deposition events.
The rocky outcrop on the right is composed of Paleocene lime-
stones. (d) Detail of the MP1 borehole after extraction.

Figure 2. MP1–6 segment. (a) MP1–6 lower (S1) and upper (S2) sections. (b) Zones (Z ) with different bubble number densities delimited by dashed lines. In the lower
section, the impurity layer (I.L.) is visible. (c) Position of M1 and M2 samples.
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Visual stratigraphy
For describing ice features like bubble distribution, ice appear-
ance, or layers with different colouration (e.g. cloudy bands), we
photographed the ice core using a zenithally arranged digital cam-
era, a black backdrop and scattered lateral illumination. The pic-
ture’s output format was ‘raw’, allowing subsequent image
processing. Due to the high light scattering produced by the
air bubbles, it is hard to identify the ice core’s internal features
in the visual stratigraphy (Fig. 2a). To solve this problem and
reveal the ice-core inner features, we adjusted the RGB channels
simultaneously, decreasing the mid-tones brightness level and
increasing the contrast with the Affinity Designer™ image soft-
ware (Fig. 2b). Using a bandsaw (Metabo™ BAS 318), we pre-
pared the samples for cross-polarized and microstructural
observations, one from the central part of S1 (M1) and another
from S2 (M2; Fig. 2c).

Observations between crossed polarizers
To determine the polycrystalline natural ice fabric, we can use an
optical approach based on ice crystals’ birefringence and extinc-
tion angle (Rigsby, 1951; Langway, 1958; Kamb, 1959). The
birefringence colour of each grain depends on the c-axes orienta-
tion, allowing us to distinguish the grain’s outlines. For this ana-
lysis, we fixed samples to the sample holder with water droplets
(water acts as a ‘natural glue’ at −25°C) and used a microtome
(Leitz™ 1400) to polish the upper surface to eliminate the irregu-
larities produced by the band saw. Then, we turned around the
sample and repeated the same process on the other surface, pol-
ishing it until a thickness between 100 and 400 μm was reached, to
reveal most of the grains through crossed polarizers. For the
observation, each sample was placed between two linear polariz-
ing films, the lower one fixed and the upper one rotated until
the polarization directions were 90° to each other (cross-
polarization).

Optical microscopy
A microstructural analysis is necessary to understand the grain
size evolution and its variations due to interactions with other

elements such as sGB, bubbles or impurities. Employing a
Leica™ DM6M microscope set inside the IzotzaLab, we scanned
the microstructure through transmitted light along bands (2.3
mm × 80mm) parallel to core axis. The preparation process is
similar to that used for the polarization samples, but with a
thicker final thickness of 0.5 cm. Before observations, the samples’
polished surfaces were subjected to a sublimation process to reveal
the microstructure. Sublimation is more intense in the areas
where the GB, sGB or point defects intercept the surface, due
to their higher free energy. Besides, sublimation eliminates the
surface grooves caused by the microtome blades, allowing a
clearer observation. The sGB boundaries have shallower, greyish
sublimation grooves (Saylor and Rohrer, 1999), unlike GB with
higher contrast and a dark grey or nearly black colour. The micro-
structural elements observable by this method are known as sur-
face elements, and when we move the focus towards the sample
inside, they become blurred. By contrast, the interior elements
are located inside and are not sublimation products (e.g. slip
bands, air bubbles or impurities; Kipfstuhl and others, 2006;
Faria and others, 2018). The time and quality of sublimation
depend on the laboratory environmental conditions (temperature,
temperature gradient, humidity and air velocity just above the
sample surface). To accelerate this thermodynamic process, the
sample can be placed under a light bulb or a dry air stream.
The microscopy method described above has been widely used
in glaciology (e.g. Mullins, 1957; Nishida and Narita, 1996;
Kipfstuhl and others, 2006). One characteristic of our samples
is they have levels with high air bubble content. When we try
to observe these samples with the transmitted light microscope,
the bubbles appear as black regions, making it hard to distinguish
the surface elements, even using a specialized software. Therefore,
for better visualization of these elements, we had to resort to a
hand-drawn outlining of the GB, sGB and bubbles (e.g., Figs 3–5).

Chemical analysis
To perform a preliminary chemical characterization of the crystal-
line species of the impurities inside S2, we extracted a 3 cm3 sam-
ple from the central part of M2 and placed it inside a Petri dish.

Figure 3. M1 ice microstructure. To improve the visualization of grain size and shape, the grain boundary (GB) outline is depicted below each scanned band, includ-
ing also the parts of bubbles exposed to the surface (in black). (a) and (b) Micrographs representing the sample’s general appearance. (c) Nucleation of tiny grains
along a GB. (d) Cluster of tiny grains, possibly an example of particle-stimulated nucleation (PSN) process. (e) Detail of M1 under crossed polarizers.
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Subsequently, the sample was melted and evaporated inside a
stove at 30°C, partially covered with aluminium foil to avoid
external contamination and to allow the water vapour to escape.
The chemical analyses consisted of Raman spectroscopic charac-
terization of the precipitated salts and the original impurities
remained at the bottom of the Petri dish. The instrument used
was the Renishaw inVia confocal micro-Raman spectrometer
(Renishaw, UK), which is calibrated daily using a standard silicon
slice. Although analyses were carried out with all lasers (785, 633
and 523 nm), the 532 nm diode laser (Renishaw UK RL532C50
with a nominal 300 mW output power) brought the best results.
The Micro-Raman spectrometer is also equipped with a CCD
detector cooled by the Peltier effect, with a LEICA DMLM micro-
scope (Bradford, UK), which employs an XYZ Stage Control tool-
bar and a micro camera to explore the target particles. For
visualization and focusing, we used the 5× N PLAN (0,12 NA)
and 20× N PLAN EPI (0,40 NA) objectives.

Results

In MP1–6, variations in bubble number density (ρbn) and impur-
ity content define the stratigraphy, but the stratigraphic boundar-
ies defined by bubbles and impurities do not always coincide. The
zones with high ρbn values can be identified by a whitish appear-
ance, in contrast to the low-density zones, where the ice is more
translucent and has a dark aspect due to the dark background. We
could identify eight zones of high and low ρbn values, labelled
from Z1 to Z8 (Fig. 2b). The zones Z1, Z3, Z5 and Z7 have higher
value than Z2, Z4, Z6 and Z8, being Z2 the zone with the lowest
density. The impurities only define a single reddish-brown layer
located in the middle part of S2, with a thickness of ~3 cm and
a tilt of ~10°. Its limits are not well-defined, and the lower limit

coincides with the transition between Z7 and Z8. It is noteworthy
to mention that we are reporting 2D descriptions of structural
characteristics with volumetric (3D) variations, so this is only
an approximate view. The distribution of bubbles and impurities
will vary depending on the observed section.

To analyse the morphological characteristics of the bubbles, we
photographed two samples previously prepared for the micro-
scopic observation, named M1 (extracted from S1) and M2

(from S2), as indicated in Figure 2c. Both samples belong to the
central part of each section and are parallel to the ice core axis.
Generally, M1 has bubbles in greater number and size than M2.
We could identify eight domains of different bubble morpho-
logical characteristics in both samples, labelled from D1 to D8,
each one characterized by differences in bubble shape, size and
ρbn values (Fig. 6; Table 1). Domains 2 (D2) and 8 (D8) had the
smallest and most rounded bubbles, coinciding with the fact
that they are areas with the lowest ρbn values. The pattern of bub-
bly size and shape observed in D2 spreads homogeneously across
M1 and M2. A remarkable feature of D8 is its morphology because
it forms an indentation (notch shape) towards the interior of D7,
with a higher bubble number density. Over the upper limit of D8,
there are clusters with high ρbn values (Fig. 6b). In the rest of the
domains, bubbles with irregular morphologies prevail, and from
D4 to D7, it seems like bubbles have coalesced, generating larger
compound bubbles. There are some correspondences with the vis-
ual stratigraphy: D2 correlates directly with Z2, while Z4 can be
related to D5. In the other zones, there is no apparent correlation
with domains.

Observations through crossed polarizers revealed the grains
that make up both samples, allowing the analysis of their morph-
ology and size. The sample thickness determines the dominant
birefringence hue, and the colouration of each grain reveals

Figure 4. M2 ice microstructure. The dashed black/yellow lines represent the upper limit of the impurity layer. (a) and (b) Microstructure of the upper part of the
sample, where the impurity concentration is low. (c) and (d) Microstructure within the impurity layer. (e) Detail of M2 under crossed polarizers.
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variations in the directions of the c-axes. Although birefringence
hues in M1 and M2 are different (Figs 3e, 4e), the colour distri-
butions of the grains in both samples suggest a nearly isotropic

ice fabric. Concerning grain size, we identified two main grain
groups:

• Group 1 (G1) encompasses big grains, whose boundaries and
birefringence colours are well-defined (Fig. 3e).

• Group 2 (G2) includes smaller grains without well-defined
boundaries or birefringence colours due to grain edge interfer-
ence, presenting an iridescent appearance (central and lower
part of Fig. 4e)

Aspect differences between these two groups are directly related to
grain size and samples’ thicknesses. In G1, the grains are larger
than the sample thickness, so we observed a section of almost
every single grain. In G2, the grain size is smaller, so there is
more than one grain within the total sample thickness. Owing
to these dissimilarities, we used cross-polarization photographs
for G1 and microscopy photographs for G2. On the one hand,
G1 grains are dominant in M1, although the distribution of
both groups is homogeneous throughout the sample. On the
other hand, G1 only prevails in the upper third of M2 because
G2 is dominant in the central and lower part of the sample.
The average grain size of G1 is similar in both samples (0.104
mm2 inM1 and 0.138 mm2 inM2), while the shape is roughly pol-
ygonal with a roundness index (inverse of the aspect ratio) of 0.79
in M1 and 0.87 in M2. Group 2 (G2) has an average size of 0.006
mm2 (two orders of magnitude smaller than G1) and a roundness
index of 0.67, the smallest value of the entire sample set. Grains
belonging to G1 inside the zone of the predominance of G2

have similar size compared to the rest of the sample (0.132
mm2), but the roundness is smaller, with a value of (0.75;
Table 2).

Regarding chemical analyses (Fig. 7), the first crystalline com-
pound identified in the M2 micro-Raman analysis was Quartz
[SiO2] due to its characteristic bands using different laser inten-
sities: very weak (295 cm−1), weak (262 and 396 cm−1), medium
(131, 209 and 358 cm−1) and very strong (467 cm−1; Huidobro
and others, 2021). Anatase [TiO2] was also occasionally detected
thanks to its most characteristic Raman band at 144 (vs) cm−1

(Huidobro and others, 2021). Finally, atacamite [Cu2Cl (OH)3]
was also recognized several times. Although this mineral has sev-
eral Raman patterns, the principal Raman bands always appear at
the same positions: 155 (vs), 266 (m), 289 (strong, s), 335 (w), 374 (w),
455 (m), 477 (m), 513 (s) and 808 (vw) cm−1 (Marcaida and others,
2019; Li and others, 2020).

Discussion

The origin of ice layering

Variations in grain size and shape, bubble number density (ρbn)
and impurity concentration may define an ice stratification
(Allen and others, 1960; Hambrey, 1975, 1977; Hambrey and
Milnes, 1977; Hudleston, 1977). The stratification defined by
ρbn can be primary (i.e. sedimentary) or secondary (also called
foliation). The origin of primary stratification lies in the snow
accumulation parallel to the glacier surface and its subsequent
transformation into firn and ice (Lewis, 1960; Hambrey, 1976,
1994; Hambrey and Lawson, 2000). In general, this stratification
generates isochronous layers and it is common in glacier accumu-
lation zones, meaning above glaciers’ equilibrium-line altitude
(ELA). The different characteristics of the layers can reflect the
environmental (atmospheric) conditions that prevailed at the
time of the snow deposition (e.g. seasonal variations), as well as
the post-depositional processes that could have affected the
snowpack or glacier ice (e.g. Schytt, 1955; Shumskii, 1964;
Wadham and Nuttall, 2002). In this vein, in glaciers that used

Figure 5. Microstructure outlines of the M1 (Right) and M2 (left) micrographs. Grain
boundaries (GB, black lines), sub-grain boundaries (sGB, red lines) and bubbles
(black areas). Grey rectangles represent regions where the sample microstructure is
damaged by fractures. The stepped black line represents the upper limit of the
impurity layer in M2. Below it, there is a decrease in grain size and roundness index.
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to suffer partial melting and refreezing (e.g. temperate glaciers like
Monte Perdido Glacier), layers with high ρbn values may represent
the winter season. Conversely, layers with a transparent appear-
ance (low ρbn values) could indicate of the summer season, and
are usually located at the base of the snowpack or at different
firn depths, where they acquire a lenticular morphology
(Hambrey, 1994; Hambrey and Lawson, 2000). Besides, porosity
and other void-space characteristics may be useful indicators of
the transition zone between firn and bubbly ice. The transition
of this depth differs between temperate glaciers, where there is a
significant influence of melting and refreezing processes creating
a complex stratigraphy (Kawashima and Yamada, 1997), and gla-
ciers in polar areas, where the transition occurs in a more ordered
and gradual fashion, mostly in a dry state (Alley and others,
1982).

Secondary stratification is directly related to the ductile
deformation of ice and is responsible for variations in the distri-
butions of size, shape and position of grains and bubbles. The
higher the deformation, the more intense and marked the foli-
ation (Barnes and Tabor, 1966; Hambrey and Milnes, 1977;
Hooke and Hudleston, 1978; Brepson, 1979; Hambrey and others,
1980). Foliation forms perpendicular to the maximum compres-
sive stress (Glen, 1956; Meier, 1960; Hooke and Hudleston,
1978; Pfeffer, 1992), which in case of well-developed simple
shear leads to foliation arranged parallel to the shear plane
(Chamberlin and Salisbury, 1909; Perutz and Seligman, 1939;
Ragan, 1969). Thus, this particular type of air-bubble layering
may reflect decadal-scale deformation processes in temperate gla-
ciers or even millennial-scale in polar ice sheets (e.g. Paterson,
1994).

Based on this information and the results of our analyses, in
the following sections, we will try to find out the possible origin
of the layering that characterizes the MP1–6 section, defined by
ρbn and impurities.

Table 2. Grain size and roundness in the ice samples M1 and M2

Sample Group
Average grain size

(mm2) Roundness
Grain

counting

M1 G1 0.104 0.79 1,532
M2 G1 0.138 0.87 838

G1 inside the
impurity layer

0.132 0.75 284

G2 0.006 0.67 608

Figure 6. Domains (D) with different values of bubble number density (ρbn), sizes and shape, delimited by the yellow dashed lines. (a) M1 sample. (b) M2 sample.
Arrows indicate zones with high ρbn values.

Table 1. Air bubble morphological characteristics in the ice samples M1 and M2

Sample Domain
Average bubble size

(mm2) Morphology
Bubble
counting

M1 D1 0.9 Irregular 35
D2 0.045 Round 200
D3 1.6 Irregular 80
D4 2.3 Interconnected 200
D5 2.3 Interconnected 200
D6 2.3 Interconnected 200

M2 D7 0.8 Interconnected 200
D8 0.4 Round 200

Figure 7. Micro-Raman analyses of the M2 impurity layer. Quartz (SiO2 polymorph;
blue line), atacamite ([Cu2Cl (OH)3]; red line) and anatase (TiO2; grey line).
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Primary origin
For the first argument, it is necessary to consider the annual mean
altitude of the 0°C isotherm (2945 m a.s.l.; López-Moreno and
others, 2019) and the glacier’s ELA (3050 m a.s.l.; López-
Moreno and others, 2016). The MP1 ice core was extracted at
~2900 m a.s.l., meaning in the upper limit of the ablation zone
(Figs 1b, c). However, it is not a well-defined boundary and exhi-
bits natural spatial variability. Therefore, the characteristic pro-
cesses of the accumulation zone may influence the drilling site.
If we consider this possibility valid, the levels with lower and
higher ρnb values likely represent the summer and winter seasons,
respectively.

Second, in our samples, there is no preferential elongation of
the crystals (Figs 3, 4) nor the bubbles (Fig. 6), which could
exclude the presence of deformation processes. Instead, the sam-
ples show ice crystals with a predominantly polygonal shape,
while the bubbles display circular or irregular morphologies.
For example, researchers observed crystal elongations in glaciers
like Storglaciären (Sweden; Hudleston, 2015), and in the case
of air bubbles, samples of glaciers located in cold regions exhibit
typical deformation morphologies (Gow, 1968; Hudleston, 1977;
Alley and Fitzpatrick, 1999).

The third piece of evidence derives from the micro-Raman
results (Fig. 7). The chemical composition of the three main
minerals (i.e. atacamite, anatase and quartz) is consistent with
previous chemical studies. Moreno and others (2021) reported
that the Al-normalized enrichment factors of Ti, Mn, Cr, Co,
Ni, Cu and Pb are higher compared to the concentrations mea-
sured at the Ordesa monitoring station (8 km from the glacier
and 1190 m a.s.l.), with Cu and Pb presenting a higher enrich-
ment factor (>6). Moreover, the characteristically high values of
Cu/Mn, As/Se and Pb/Zn ratios indicate a significant impact of
Cu mining and smelting activities (Corella and others, 2018). In
Bielsa Valley, these activities were active during pre-industrial per-
iods (Callén, 1996), like the former Parzán mines, one of the main
lead and silver deposits of the Central Pyrenees, located 7 km
westward from the glacier. However, as this is a preliminary
study, more robust analysis and results are needed to clarify ques-
tions such as the origin of the atacamite, i.e. it can be primary or a
product of oxidation processes of other copper minerals.

Moreno and others (2021) found that detrital-rich laterally
extended layers define a primary stratigraphy, identifiable in
some areas of the glacier’s lower section surface. The particle
size ranges from silt (0.002–0.05 mm) to sand (0.05–2 mm), and
these particles may have been transported to the glacier surface
by wind (e.g. black carbon or dust) or are the result of erosion
processes of local outcrops (e.g. frost weathering). Levels with
high impurity concentration can reveal episodes of reduced ice
accumulation or periods dominated by ablation, as the particles
concentrate in specific layers due to the ice melt, promoting the
formation of darker-coloured layers.

The most detected mineral in the analyses was quartz (a SiO2

polymorph). Its origin may be weathering processes over local
lithologies like the sandstones of the Marboré formation
(Robador and others, 2020) or the deposition of mineral dust
on the glacier surface. However, there are no sandstone outcrops
nearby, increasing the likelihood of mineral dust. Dust particles
are usually below tens of micrometres and incorporated into
the atmosphere as an aerosol from arid or semi-arid regions,
travelling long distances until deposited back to the surface.
The composition consists mainly of a mixture of quartz, carbo-
nates, iron oxides, clay minerals, sulphates and feldspars
(Engelbrecht and others, 2016), whose relative abundances vary
depending on the source area (Caquineau and others, 2002;
Scheuvens and others, 2013; Formenti and others, 2014),
accounting for 40% of annual aerosol emissions (IPCC, 2013).

The North African region (Sahara and Sahel) is the main dust
contributor worldwide (Prospero and others, 2002). Pyrenees
act as a natural barrier for air masses coming from North
Africa, making dust deposition higher in this region than in
areas located hundreds of kilometres south (Pey and others,
2020). African dust-loaded air masses reach this mountain
range 10% of the annual days (Pey and others, 2013), and the
aerosol deposition is greater in cold seasons (from November
to April), periods in which there is a predominance of extreme
dust events coming from the north African desert (Fig. 1c).
Pey and others (2020) estimated that concentrations of mineral
dust in the Pyrenees vary between 4.5 and 10.6 g m−2. On the
one hand, during these events, particle composition has a min-
eral signature characterized by clay minerals and quartz, followed
by feldspars, carbonates and hematite. On the other hand, in the
absence of this phenomenon, the particles have a marked organic
nature (Pey and others, 2020).

Considering the need for more chemical analyses, the impur-
ities’ horizontal arrangement in a layer-like disposition, the red-
dish colouration (possibly due to the presence of clay minerals)
and the high quartz content, we could hypothesize that this
layer is made up of mineral dust particles. Besides, if we combine
the fact that mineral dust deposition events are more common in
winter and that this impurity layer in S2 is inside a zone with high
ρbn values (indicative of winter, if we consider a primary origin),
we could say (with caution) that this layer is indicative of a winter
season with a high frequency of mineral dust deposition events
(Fig. 2b). Additionally, we cannot exclude the possibility that
this layer resulted from a succession of particle reconcentration
events during a period characterized by high ablation rates or
low snow accumulation.

Finally, cross-polarizer photographs support the last argument
for the primary origin. At this point, it is important to emphasize
that these interpretations are based on the assumption that varia-
tions in the birefringence colours are qualitative approximations
of changes in the crystallographic c-axes arrangement. Both sam-
ples have an average thickness between 200 and 400 μm, and their
birefringence hues are different and homogeneously distributed
along each sample, without clusters of any particular colour, hint-
ing that there are no significant changes in the fabrics related to
the layering defined by the bubbles or by the impurities (Figs
3e, 4e). If we were dealing with a secondary origin, we would
expect changes in the c-axis arrangement in regions where, as a
result of shear stresses, basal slip planes tend to be parallel to
the shear plane. Moreover, it has been often observed that inside
impurity layers, there is a greater tendency for c-axes to approach
a single maximum (Paterson, 1991), creating more favourable
conditions for ice deformation and flow.

Bearing in mind these facts, we may be facing two possible
scenarios: first, nowadays, there are no active deformation pro-
cesses in the Monte Perdido Glacier, although such processes
could have been active in the past. Second, deformation processes
could be currently active, but are not strong enough to produce
significant changes in the ice fabrics, at least on the level of the
qualitative analysis we are working with. In both cases, since it
is a temperate glacier, it is exposed to relatively high temperatures
that cause recrystallization processes that may obliterate the ori-
ginal fabric deformation signs. For example, recrystallization can
entail changes from a single maximum parallel to the foliation
plane pole to an arrangement of three or four maxima, with
none of them parallel to the foliation plane normal (Rigsby,
1960). Bader (1951) and Rigsby (1951) established the existence
of these peculiar fabrics, and subsequent work by Schwarzacher
and Untersteiner (1953), Rigsby (1953) and Meier and others
(1954) provided new data supporting this investigation, as well
as more uncertainty levels.
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Figure 8. Detailed positions of the microstructure outlines in M1 (a) and M2 (b) depicted in Figure 5.

Figure 9. Micrographs of M1 and M2. (a) The image shows an ice grain delimited by its boundaries (GB; 1), which appear as black or dark grey lines. Inside, several
sub-grain boundaries (sGB; e.g. 2 and 3) with a lighter appearance, reveal heterogeneous stresses within the grain. With time, sGB will evolve into GB, therefore
multiple grains (A, B, C, D) will differentiate from the original grain (rotation recrystallization; RXX). Additionally, nucleation of a small grain at a GB triple junction
(SIBM-N; 4) and dislocation walls (5) which will eventually merge and form an sGB, can be observed. (b) Throughout the grain surface, encompassing most of the
micrograph, slip bands (SB; faint and parallel lines) also indicate shear stresses acting on the grain. Besides, examples of different types of sGB: n (6), p (7) and z (8)
can be identified. (c) Points 9 and 5, the latter from Figure 9a, exemplify the pinning effect of micro-bubbles (9) or particles (5). Two irregular and opaque particles
composing the impurity layer (10 and 11) are also visible. (d) Grain boundaries with sinusoidal shape (12 and 13) and bubbles (14) at the M2 impurity level.
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Secondary origin
Combining the microscopy results, together with the high-
resolution photos of the samples, we can observe how in M1

the domains with low values of ρbn as D2, or to a lesser extent
D5, there is a remarkable concentration of sGB (Figs 5, 8a),
which could be indicative of heterogeneous deformation (thus,
internal stress concentrations) at the microscopic scale
(Weertman and Weertman, 1992; Figs 9a, b). Recent findings
have quantified the ice velocity, concluding that the glacier has
an average surface velocity of ~10 m a−1 (López-Moreno and
others, 2019). Therefore, the sGB could indicate the stress and
deformation produced by the ice flow. However, other parts
with a low ρbn values, such as D3 or D8, do not present a prefer-
ential sGB concentration. There is even an opposite

correspondence in the clusters with high ρbn identified between
D7 and D8, where the sGB concentration is high (Figs 5, 8b). In
the remaining zones, sGB are homogeneously distributed regard-
less of the number of air bubbles. Besides, there is a lack of direct
correspondence between grain size and sGB, since the latter are
present in both small grains of G2 and larger grains of G1.

The second argument relates the effects of the identified flow
in the glacier and the occurrence of particles in the ice. When
intense stresses act upon an ice grain, the strain energy tends to
accumulate along the grain boundaries (GB), stimulating the for-
mation of new grains along those regions (Humphreys and
Hatherly, 2004). Additionally, this strain energy can concentrate
around particles in the ice matrix, as they can hinder GB sliding,
enhancing dynamic recrystallization and, ultimately, the

Figure 10. Regions where dynamic recrystallization dominates. Evidence of this process is the bulged grain boundaries, indicating the presence of SIBM-O (1, 3 and
4) or the nucleation of new grains SIBM-N (5 and 6). Additionally, point 2 is a clear example of the pinning process, in this case, caused by a micro-bubble.
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nucleation of new grains (Song and others, 2005). This last mech-
anism is known as particle-stimulated nucleation (PSN), sooner
identified in studies conducted on metals and alloys (Habiby
and Humphreys, 1994; Huang and Humphreys, 2000; Somerday
and Humphreys, 2003).

In our samples, we can find examples that illustrate both situa-
tions. On the one hand, we could identify small grains arranged
along GB (Fig. 3c) in certain areas. On the other hand, in add-
ition to the well-defined impurity layer in M2, there are other
regions throughout both samples where particles are present
but at low concentrations, rendering them invisible to the
naked eye and only detectable under the microscope. The
zones where these particles form clusters correspond to round-
like accumulations of tiny grains, whose occurrence could be a
consequence of the PSN process (Fig. 3d). Both observations sup-
port the assumption that GMP ice may be subjected to suffi-
ciently high stresses to trigger such deformation-induced
phenomena.

By considering only the evidence that supports a secondary
origin of stratification, implying the presence of glacier flow and
combining it with the effects of impurities on this process, we
encounter a scenario that facilitates an increase in ice-flow rates
and deformation. If further comprehensive studies confirm the
lateral extension of impurity layers along the glacier (i.e. affecting
significant portions of the glacier), it could lead to a higher mass
transfer rate from the upper regions of the glacier to the lower
ones, specifically from accumulation zones to ablation zone.
The visible and laterally extended impurity layers on the glacier’s
surface, reported by Moreno and others (2021), provide us with a
clue about what we may discover at greater depths through the
study of more ice cores.

Grain growth impurities interplay

In M1, the particle concentration is low, and they are only percep-
tible under the microscope, unlike M2, which has a noticeable
level of impurities both in visual stratigraphy (Fig. 2b) and
microscopy (Fig. 9c). In visual stratigraphy, this level has a char-
acteristic brownish-red colour, while under the microscope,
impurities appear as small opaque particles with irregular shapes
and an average size of ≤0.05 mm. In addition to the impact these
particles have on grain formation (previous section) they can
interact with GB during migration (Beck and Sperry, 1950). The
interaction mechanisms that can slowdown or even stop GB
migration are known as dragging and pinning, respectively. In
the lower section sample (M2), we can observe what might be
examples of these two mechanisms. In the middle and lower
thirds of M2, corresponding to the impurity layer, there is a dras-
tic reduction in grain size and roundness index. Grain size
decreases by two orders of magnitude, from average values of
0.12 mm2 in M1 and in the impurity-free zone of M2, to 0.006
mm2 within the impurity layer. The roundness index also experi-
ences a decrease, from 0.83 outside the impurity layer to 0.67
within the layer (Figs 4c, d and 5).

In the M2 impurity layer, there was no preferential concentra-
tion of particles along GB. Consequently, we did not observe any
pinning effect. However, some GB show pinning processes pro-
duced by micro-bubbles (Figs 9c, 10). Despite the absence of
particle-induced pinning, the correspondence between the impur-
ity layer and grain size and roundness reduction is clear. Soluble
impurities, which could affect GB motion through the drag effect,
could explain this correspondence. Likely, evidence of this process
is that even in the absence of particles (non-soluble impurities) at
GB, a considerable portion exhibits a sinusoidal shape (Fig. 9d),
indicating a potential reduction in migration velocity in some
points.

At this point, it is essential to consider the resolution of the
microstructural study, as we are only analysing three bands to
observe the overall evolution of grain characteristics. To corrobor-
ate our observations and gain a better insight into the contribu-
tion of dragging and pinning effects, a more comprehensive
analysis expanding the coverage (area) of microscopy would be
necessary. This circumstance is similar in the upper 2300 m of
EDML deep ice core (Antarctica), where it was also challenging
to find a clear interaction between microstructure and particles
(Faria and others, 2010).

Conclusions

This study is the first attempt to characterize the microstructure of
the ice from the Monte Perdido Glacier, located in the Central
Pyrenees, one of the southernmost glaciers in Europe. Analysing
a specific segment (MP1–6), we studied the interactions between
impurities and microstructure. One of the most noteworthy fea-
tures of this segment is the stratification, defined by air bubbles
and particles (non-soluble impurities). According to our results,
this bubble-defined stratification presents evidence of both a
primary (sedimentary) and a secondary origin (deformation-
induced). Several factors support the primary origin: MP1 ice
core belongs to the lower limit of the accumulation zone, there
is no preferential elongation of bubbles or ice grains, the non-
variation of birefringence colours along the samples indicates
that there is no action of shear stresses, and finally, there is a cor-
respondence between the layer with the maximum concentration
of impurities (possibly resulting from Saharan dust deposition,
more frequent in winter) and a zone with a high concentration
of air bubbles (likely representative of the winter season). On
the other hand, proofs supporting a secondary origin derived
from some layers show a preferential concentration of sGB
(microstructural elements indicative of heterogeneous deform-
ation). Besides, the presence of clusters of tiny grains could be
the consequence of the combination of deformation processes
and the presence of particles. Both pieces of evidence indicate
that the glacier ice is (or has been subjected) to higher stresses,
possibly related to glacier flow. If we focus on the evidence sup-
porting a secondary origin (linked to glacier flow processes) and
combining it with the effects of the impurities on the natural
ice mechanics (increase in flow/deformation), Monte Perdido
Glacier could face a scenario of enhanced mass transfer from
the accumulation zone to the ablation zone in the long term.
This process would involve accelerated mass loss, particularly if
the impurity layers extend horizontally.

Regarding the effect of impurities on microstructure, a clear
inverse relationship is observed between their concentration and
grain size/roundness. The combination of drag and pinning
mechanisms, generated by the interaction between insoluble
impurities (particles), soluble impurities and micro-bubbles
with the GB migration process, could explain this correspond-
ence. The dragging seems to be the prevailing process (as
observed in the microscopy bands), whereas only a few GB exhibit
pinning by micro-bubbles.

For a preliminary characterization of the particles, we
employed a micro-Raman spectrometer. Using this technique,
we identified atacamite and anatase, whose presence is consistent
with past mining activities in the vicinity and previous chemical
studies on the Monte Perdido Glacier. However, quartz was the
predominant mineral, and its presence could be related to the
arrival of dust-laden air masses from North Africa. If further ana-
lysis confirms with greater certainty that this impurity layer is
made of mineral dust, it is essential to be aware that since the
second half of the 20th century, there has been an increase in
Saharan dust transport to Western Europe (Sousa and others,
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2019; Cruz and others, 2021), as a consequence of an average 10%
increase in the extension of this desert between 1920 and 2013
(Thomas and Nigam, 2018). A greater input of mineral dust
into the Pyrenees cryosphere would imply an increased likelihood
of preserving some of these particles in the accumulation areas
through their incorporation into the glacier ice structure (as likely
happened in our study), increasing their influence on ice
mechanics. Besides, mineral dust in the Pyrenees cryosphere
reduces the albedo of the seasonal snow cover, accelerating its
melting. Recent findings have shown that the albedo decreases
during years with deposition events, ranging from 0.4 to 0.6
(e.g. 2016–2017), whereas in years without events, the albedo
ranges from 0.7 to 0.9 (e.g. 2018–2019; Pey and others, 2020).

In addition to the role of impurities, other factors are reinfor-
cing glacier degradation, such as the annual increase in regional
temperatures (e.g. López Moreno and others, 2010; El Kenawy
and others, 2012; Pérez-Zanón and others, 2017), the widespread
predominance of ablation processes over accumulation events
(López Moreno and others, 2019), and the decrease in thickness
and surface area of the seasonal snow cover during the second
half of the 20th century, especially at lower elevations
(López-Moreno and others, 2005, 2009).
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