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Abstract
Given a plane graph G= (V , E), a Petrie tour of G is a tour P of G that alternately turns left and right at
each step. A Petrie tour partition of G is a collection P = {P1, . . . , Pq} of Petrie tours so that each edge
of G is in exactly one tour Pi ∈ P . A Petrie tour P is called a Petrie cycle if all its vertices are distinct. A
Petrie cycle partition of G is a collection C = {C1, . . . , Cp} of Petrie cycles so that each vertex of G is in
exactly one cycle Ci ∈ C . In this paper, we study the properties of 3-regular plane graphs that have Petrie
cycle partitions and 4-regular plane multi-graphs that have Petrie tour partitions. Given a 4-regular plane
multi-graph G= (V , E), a 3-regularization of G is a 3-regular plane graph G3 obtained from G by splitting
every vertex v ∈V into two degree-3 vertices. G is called Petrie partitionable if it has a 3-regularization
that has a Petrie cycle partition. The general version of this problem is motivated by a data compression
method, tristrip, used in computer graphics. In this paper, we present a simple characterization of Petrie
partitionable graphs and show that the problem of determining if G is Petrie partitionable is NP-complete.

Keywords: Plane graph; Petrie cycles; Petrie tours; left-right paths

1. Introduction
Throughout this paper,G= (V , E) denotes an undirected connected plane graph, which may have
multiple edges, but no self-loops. Given a vertex v ∈V and an edge e= (u, v) ∈ E, the left-edge of e
(at v) is the edge e1 = (u1, v) that follows e (at v) in clockwise (cw) direction, the right-edge of e (at
v) is the edge e2 = (u2, v) that follows e (at v) in counter-clockwise (ccw) direction.

Awalk ofG is a sequence P = v0e1v1e2 . . . ekvk where vi are vertices ofG (may be repeated) and
ej = (vj−1, vj) are distinct edges ofG. The length of P is k. If v0 = vk, P is called a tour. A walk (tour,
respectively) consisting of distinct vertices is called a path (cycle, respectively). A walk is called a
Petrie walk if the edge ei+1 is alternately the left- and the right-edge of ei for 1≤ i< k. A tour P
is called a Petrie tour if it is a Petrie walk, and the alternating left- and right-edge condition also
holds for ek−1, ek, and e1. Petrie path and Petrie cycle are defined similarly. Petrie walks are also
called left-right paths and studied in Shank (1975).

A Petrie cycle partition of G is a set C = {C1, . . . , Cp} of Petrie cycles such that each vertex of
G is in exactly one Ci ∈ C . If C consists of a single cycle C1, C1 is call a Petrie Hamiltonian cycle
of G. The properties of graphs with Petrie Hamiltonian cycle have been studied in Fouquet et al.
(1982), Ivanço and Jendrol’ (1999), Ivančo et al. (1994).
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A Petrie tour partition of G is a set P = {P1, . . . , Pq} of Petrie tours such that each edge of G is
in exactly one Pi ∈ P . If P consists of a single tour P1, P1 is call a Petrie Eulerian tour of G. The
properties of graphs with Petrie Eulerian tours have been studied in Kidwell and Bruce Richter
(1987), Z̆itnik (2002).

In this paper, we study the properties of 3-regular plane graphs that have Petrie cycle parti-
tions and the properties of 4-regular plane graphs that have Petrie tour partitions. For reasons
that will become clear later, the 3-regular plane graph contains no multiple edges, but 4-regular
plane graphs may contain multiple edges. We describe a simple characterization for 3-regular
plane graphs with Petrie cycle partitions. This extends the results on plane graphs with Petrie
Hamiltonian cycles in Fouquet et al. (1982), Ivanço and Jendrol’ (1999), Ivančo et al. (1994). We
describe a simple characterization for 4-regular plane graphs with Petrie tour partitions. This
extends the results on plane graphs with Petrie Eulerian tours in Kidwell and Bruce Richter (1987),
Z̆itnik (2002).

We also study the properties of Petrie partitionable graphs (as defined in the abstract). The
general version of this problem is motivated by a data compression method, tristrip, used in com-
puter graphics. We present a nice characterization of such graphs and show that the problem of
determining if G is Petrie partitionable is NP-complete.

The present paper is organized as follows. Section 2 introduces the definitions and the moti-
vation of these problems in computer graphics. Section 3 discusses the Petrie cycle partition of
3-regular plane graphs. Section 4 considers the Petrie tour partition of 4-regular plane graphs.
The results in Sections 3 and 4 are relatively easy generalizations of known results in Fouquet
et al. (1982), Ivanço and Jendrol’ (1999), Ivančo et al. (1994), Kidwell and Bruce Richter (1987),
Z̆itnik (2002). To the best of our knowledge, they have not been published in literature. Since
they are of independent interests and also needed by the discussion in Section 5, we include these
results here. Section 5 describes a nice characterization of Petrie partitionable 4-regular plane
graphs. In Section 6, we show the problem of determining if a input 4-regular plane graph is
Petrie partitionable is NP-complete. Section 7 describes some open problems and concludes the
paper.

2. Definitions and Motivations
In this section, we give definitions and preliminary results.We use standard terminology in Bondy
and Murty (1979). Let G= (V , E) be an undirected graph with n vertices andm edges. The degree
of a vertex v ∈V , denoted by deg (v), is the number of edges incident to v. G is called 3-regular
(4-regular, respectively), if deg (v)= 3 (deg (v)= 4, respectively) for all v ∈V . For a subset E1 ⊆ E,
the subgraph of G induced by E1 consists of E1 as its edge set and the set of the vertices incident
to the edges in E1 as its vertex set. G is bipartite if V can be partitioned into two subsets V1 and
V2 such that no two vertices in V1 are adjacent and no two vertices in V2 are adjacent. A k-vertex-
coloring of G is a coloring of V by k colors so that any two adjacent vertices have different colors.
A k-edge-coloring of G is a coloring of E by k colors so that any two edges incident to the same
vertex have different colors.

A plane graph G is a graph embedded in the plane without edge crossings (i.e. an embedded
planar graph). The embedding of a plane graphG divides the plane into a number of regions called
faces. The unbounded region is the exterior face. Other regions are interior faces. F denotes the
set of the faces of G. For each face F ∈ F , deg (F) is the number of edges on the boundary of F. It
is well known that a plane graph G is bipartite if and only if deg (F) is even for all F ∈ F (Bondy
and Murty 1979). A k-face-coloring of a plane graph G is a coloring of its faces by k colors so that
any two faces sharing an edge as their common boundary have different colors.

A plane graph G is called a triangulation (quadrangulation, respectively), if deg (F)= 3
(deg (F)= 4, respectively) for all faces F ∈ F . The dual graph G∗ = (V∗, E∗) of a plane graph
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(A) (B)

Figure 1. (A) A tristrip T = F1F2F3F4F5F6F7 represented by ST = 123456371. (B) A tristrip cycle T = F1F2F3F4F5F6 repre-
sented byST = 123456. (The solid thin lines are the edges of the triangularmesh G̃. The small black squares are the vertices
of the dual graph G. The thick dashed lines are the edges ofT . The thick doted lines are the edges of G, not inT ).

G= (V , E) is defined as follows: For each face F of G, V∗ has a vertex vF . For each edge e in
G, G∗ has an edge e∗ = (vF1 , vF2 ) where F1 and F2 are the two faces of G with e on their common
boundary. e∗ is called the dual edge of e. The mapping e↔ e∗ is a one-to-one correspondence be-
tween E and E∗. G is a triangulation (quadrangulation, respectively) if and only if G∗ is 3-regular
(4-regular, respectively).

2.1 Motivation
The problem studied in this paper is motivated by a data compression technique used in com-
puter graphics. 3D objects are often represented by triangular mashes in computer graphics. For
our purpose, this is just a plane triangulation G̃= (Ṽ , Ẽ). Following the terms used in computer
graphics, the members of the vertex set Ṽ = {1, 2, . . . , n} are called points. An important problem
in computer graphics is how to represent G̃ efficiently. As a straightforward method, each face
of G̃ can be represented by listing its three boundary points. If G̃ has N faces, this representation
uses 3N points. For large 3D objects, this takes too much space. The tristrips representation of G̃
was discussed in Xiang et al. (1999). A tristrip is a sequence T = F1F2 . . . Ft of faces in G̃, which
can be represented by a sequence ST = v1v2 . . . vt+2 of points of G̃ in such a way that, for each
i (1≤ i≤ t), the three points vivi+1vi+2 are the boundary points of the face Fi. An example of
tristrip is shown in Figure 1A. A tristrip T = F1 . . . Ft is called a tristrip cycle, represented by the
point sequence ST = v1v2 . . . vt , if both T and ST are regarded as cyclic sequences and every
three consecutive points vivi+1vi+2 (1≤ i≤ t) are the boundary points of the face Fi. (Here we
define t + 1= 1 and t + 2= 2). An example of tristrip cycle is shown in Figure 1B. Thus, by using
a tristrip, t faces in T are represented by ST of t + 2 points (t points for a tristrip cycle).

If all faces of G̃ belong to one tristrip (or tristrip cycle), we can reduce the space for repre-
senting G̃ by a factor of 3 (Estkowski et al. 2002). However, a typical triangular mesh G̃ cannot
be covered by one tristrip (or tristrip cycle). It is then a natural question: how to find the
fewest disjoint tristrips (or tristrip cycles) that cover all faces of G̃? This minimization problem
is known as Stripification problem in computer graphics. It was shown to be NP-complete in
Estkowski et al. (2002). Various heuristic and exact (exponential time) algorithms have been
studied in Porcu and Scateni (2003), Šíma (2005), Xiang et al. (1999).

The Stripification problem is closely related to the Petrie cycle partition problem as follows. Let
G= (V , E) be the dual graph of G̃. Clearly, G is 3-regular. For each face F of G̃, let vF denote the
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(A) (B) (C)

Figure 2. (A) A vertex v in G corresponding to a face F in G̃. (B) and (C) Two ways to split v.

vertex in G corresponding to F. Consider a sequence of faces T = F1 . . . Ft of G̃. It is easy to see
that T is a tristrip (or tristrip cycle) of G̃ if and only if the corresponding sequence vF1 . . . vFt is a
Petrie path (or Petrie cycle) inG. (See Figure 1A and B.) Hence, the problem of finding aminimum
tristrip cycle partition for the faces of G̃ is the same as the problem of finding a minimum Petrie
cycle partition for G.

In computer graphics, 3D objects are also represented by quadrangular meshes (see Bommes
et al. 2012, 2013; Dong et al. 2006). For our purpose, this is just a plane quadrangulation G̃=
(Ṽ , Ẽ). If we add a chord into each face of G̃, it becomes a plane triangulation G̃3 which is called a
triangular extension of G̃. Since each face F of G̃ has degree 4, there are two ways to add a chord
into F. If G̃ has f̃ faces, it has 2f̃ triangular extensions. One way to represent G̃ is first convert it
to a plane triangular extension G̃3 by adding chords into its faces and then represent G̃3 by using
tristrips or tristrip cycles (Estkowski et al. 2002). The question is: which of those 2f̃ triangular
extensions can be partitioned into a minimum number of tristrips (or tristrip cycles)?

A special version of this problem is closely related to the Petrie tour partition problem.
Consider the dual graph G= (V , E) of G̃. Clearly, G is 4-regular. Consider a vertex v ∈V cor-
responding to a face F in G̃. Let e1, e2, e3, e4 be the four edges incident to v in cw order. The split
operation at v splits v into two degree-3 vertices v′ and v′′ as shown in Figure 2. There are two
ways to split v. They correspond to the two ways of adding a chord into the face F. Let G3 be the
3-regular plane graph obtained by performing split operation at every vertex of G. We call G3 a
3-regularization of G. The edge (v′, v′′) of G3 introduced by splitting a vertex v ∈V is denoted by
e(v) and called a split edge of G3.

Suppose G has a Petrie tour partition P = {P1, . . . , Pq}. Consider any vertex v ∈V with four
incident edges e1, e2, e3, e4 ∈ E. Two tours Pi and Pj in P visit v (possibly Pi = Pj). We split v so
that Pi and Pj are still tours after splitting. (See Figure 2B and C.) Do this at every vertex v ∈V .
Let G3 be the resulting 3 regularization of G. It is easy to see that P = {P1, . . . , Pq} is a Petrie
cycle partition of G3. Thus, if G has a Petrie tour partition, then G has a 3-regularization G3 with a
Petrie cycle partitionP , where every edge e ofG belongs to a Petrie cycle inP . For its application
in computer graphics, this restriction is not necessary. Figure 10A shows a 4-regular plane graph
G which has no Petrie tour partition (as we will see later). However, it has a 3-regularization G3
(shown in Figure 10B) which has a Petrie cycle partition with a single Petrie Hamiltonian cycle C.
(Some edges of G are in C. Some are not). This motivates:

Definition 1. A 4-regular plane graphs G is called Petrie partitionable if it has a 3-regularization
with a Petrie cycle partition.

https://doi.org/10.1017/S0960129522000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000238


244 X. He et al.

(A) (B)

Figure 3. The proof of Lemma 2.

A main interest of this paper is to characterize the Petrie partitionable graphs. In computer
graphics applications, the problem is to find a 3-regularization G′ of G so that the faces of G′
can be partitioned into tristrips and/or tristrip cycles. The NP-hardness result in Estkowski et al.
(2002) suggests that this problem might be NP-hard also. The problem considered in this paper
is a restricted version of the general problem: partition into Petrie cycles only. In contrast to the
more general problem, this restriction leads to a simple characterization. The focus of our study
is on the graph-theoretical properties of these problems. The insights obtained here may help to
find more efficient algorithms for solving the general problem.

3. Characterization of 3-Regular Plane Graphs with Petrie Cycle Partition
In this section, G= (V , E) always denotes a 3-regular connected plane simple graph (i.e. G has no
self-loops nor parallel edges). Suppose G has a Petrie cycle partition C = {C1, . . . , Cp}. For any
vertex v ∈V , two edges incident to v belong to a cycle Ci ∈ C and its third incident edge is not in
any Cj ∈ C . We call the third edge a non-cycle edge with respect to C .

A 3-regular plane graph G is called a multi-3-gon if all of its faces have degrees divisible by 3.
The following lemma was proved in Ivanço and Jendrol’ (1999), Ivančo et al. (1994).

Lemma 1. If a 3-regular plane graph has a Petrie Hamiltonian cycle, then it is a multi-3-gon.

The following lemma generalizes Lemma 1. The proof is essentially the same as in Ivanço and
Jendrol’ (1999). We include it here for completeness.

Lemma 2. Any 3-regular plane graph G with a Petrie cycle partition must be a multi-3-gon.

Proof. Let C = {C1, . . . Cp} be a Petrie cycle partition of G. Consider any face F of G and a cycle
Ci ∈ C that travels at least one edge of F. Suppose Ci travels two edges e1 = (u, v) and e2 = (v,w)
from u to v to w where e1 is not an edge of F, but e2 is an edge of F. Let e3 = (w, x) and e4 = (x, y)
be the two edges of F following e2 in the direction from v to w. When Ci travels from e1 to e2,
suppose it turns left at v (see Figure 3A). Since Ci is a Petrie cycle, it turns right at w and travels e3.
Then, Ci must make a left-turn at x. So e4 is a non-cycle edge with respect to C . If Ci turns right
at v, it must turn left at w and travel e3 (Figure 3B). Then, Ci must turn right at x. So e4 must be a
non-cycle edge with respect to C .

Thus, the edges on the boundary of F can be partitioned into subpaths of length 3: The first
two edges of a subpath belong to a Petrie cycle Ci ∈ C , while the third edge of the subpath is a
non-cycle edge. Hence, the length of F must be a multiple of 3.
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If G= (V , E) has a proper 3-edge-coloring λ : E→ {1, 2, 3}, the Heawood valuation (or simply
valuation) associated with λ is a mapping λ∗ :V → {−1, 1} defined as follows. For any vertex
v ∈V , if the three edges incident to v are colored 1,2,3 in cw order, then λ∗(v)= 1. Otherwise,
define λ∗(v)= −1. The following lemma is well known (Ringel 1959, p. 18, Theorem 5):

Lemma 3. A 3-regular plane graph G= (V , E) has a 3-edge-coloring if and only if there exists a
mapping κ :V → {−1, 1} such that the sum of the values κ(v) for all vertices on the boundary of
any face F of G is divisible by 3. If κ is such a mapping, then there exists a 3-edge-coloring λ of G
such that its associated valuation λ∗ = κ .

Theorem 1. Every 3-regular multi-3-gon G= (V , E) has exactly three Petrie cycle partitions.

Proof. Define a mapping κ :V → {−1, 1} by setting κ(v)= 1 for all v ∈V . Since G is a multi-3-
gon, the condition for κ in Lemma 3 is satisfied. Thus, G has a 3-edge-coloring λ such that its
associated valuation λ∗(v)= κ(v)= 1 for all v ∈V .

Let Ei (i= 1, 2, 3) be the subset of the edges of color i in the coloring λ. Then, each Ei is a perfect
matching ofG. LetG12 be the subgraph ofG induced by the edge set E1 ∪ E2. Clearly each vertex in
G12 has degree 2. Hence, G12 is a collection C12 = {C1, . . . , Cp} of disjoint cycles. For each Ci ∈ C ,
the edges of Ci alternate between E1 and E2. Imagine we travel along Ci passing three consecutive
edges e1 = (u, v), e2 = (v,w), e3 = (w, x), where e1, e3 ∈ E1 and e2 ∈ E2. λ∗(v)= 1 implies Ci turns
left at v. λ∗(w)= 1 implies Ci turns right atw. Repeating this argument, we see Ci alternately turns
left and right. Thus,Ci is a Petrie cycle and C12 is a Petrie cycle partition of G.

Similarly, we can define the subgraph G13 induced by E1 ∪ E3 and the subgraph G23 induced
by E2 ∪ E3. By the same argument, each of them defines a distinct Petrie cycle partition of G.

Next we show G has at most three distinct Petrie cycle partitions. Pick any vertex v of G with
three incident edges e1, e2, e3. Consider any Petrie cycle partition C = {C1, . . . , Cp} of G. Assume
e1 and e2 belong to Ci ∈ C and e3 is a non-cycle edge with respect to C . Since Ci is a Petrie cycle,
and two edges e1 and e2 are in Ci, we can uniquely trace all edges of Ci by alternately turning
left and right. Any vertex w of Ci has a non-cycle edge (w, x) incident to it. The two other edges
incident to x belong to a Petrie cycle Cj ∈ C (possibly Ci = Cj). Thus, we can uniquely trace all
edges of Cj. Since G is connected, we can trace all Petrie cycles in C by repeating this process.
(Note that there is no guarantee this process can successfully lead to a Petrie cycle partition of
G). In summary, the fact that an edge e3 incident to v is a non-cycle edge uniquely determines
entire C . If we pick e1 or e2 as a non-cycle edge, we can determine at most two other Petrie cycle
partitions. So G has at most three distinct Petrie cycle partitions.

On the other hand, we have shown G has at least three distinct Petrie cycle partitions. Thus,
G has exactly three Petrie cycle partitions. (This also shows the process described above always
produces a valid Petrie cycle partition of G).

Figure 4 shows a 3-regular multi-3-gon plane graph G and two Petrie cycle partitions C12 and
C23. C12 contains two Petrie cycles. C23 contains a single Petrie Hamiltonian cycle. We end this
section by proving the following::

Theorem 2. A 3-regular plane graphG has a Petrie cycle partition if and only if it is a multi-3-gon.
Such G has exactly three Petrie cycle partitions, which can be found in linear time.

Proof. The proof immediately follows from Lemma 2 and Theorem 1. The implementation of
the algorithm follows the proof of Theorem 1. First, we find a 3-edge-coloring of G by 3 colors
{1, 2, 3} so that, for every vertex v of G, the three edges incident to v are colored by 1, 2, 3 in cw
order. To do this, pick any vertex v and color its three incident edges this way. Then, we can
propagate the colors to other edges in G. Because G is a multi-3-gon, this process never causes
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(A) (B)

Figure 4. (A) Petrie cycle partition C12; (B) Petrie cycle partition C23. (The thick lines are the edges in Petrie cycles. The thin
lines are non-cycle edges.)

color conflicts. Once the 3-edge-coloring is obtained, the Petrie cycle partitions C12, C13, C23 can
be easily obtained. Entire algorithm clearly takes linear time.

4. Characterization of 4-Regular Plane Graphs with Petrie Tour Partition
In this section, we study Petrie tour partitions of a 4-regular plane graph G. The special case of
this problem where the Petrie tour partition contains only one tour (i.e. a Petrie Eulerian tour)
was studied in Z̆itnik (2002). We generalize the results in Z̆itnik (2002). Throughout this section,
G= (V , E) denotes a 4-regular connected plane graph with no self-loops, but may have parallel
edges.

4.1 Characterization
Let P = e1 . . . ek be a Petrie walk of G. Let P∗ = e∗1 . . . e∗k be the sequence of the dual edges e∗i in
the dual graph G∗. The following simple observation is crucial to our results.

Observation 1. (Z̆itnik 2002) If P is a Petrie tour of G, then the sequence P∗ of the dual edges is a
Petrie tour of the dual graph G∗.

This observation is illustrated in Figure 5A. The sequence 12345 is a Petrie walk in G. The
sequence F1F2F3F4F5 is the corresponding Petrie walk in the dual graph G∗. In this figure, the
thick solid lines are the edges of the Petrie walk P of G. The thin solid lines are the edges of G but
not in P. The dashed thick lines are the dual edges in the dual Petrie walk P∗ of G∗. The doted thin
lines are the edges of G∗ but not in P∗.

Based on Observation 1, Z̆itnik (2002) showed that a 4-regular plane graph with a Petrie
Eulerian tour must be bipartite. The following lemma generalizes this result.

Lemma 4. If G= (V , E) has a Petrie tour partition, then Gmust be bipartite.

Proof. Let P = {P1, P2, . . . , Pq} be a Petrie tour partition of G. By Observation 1, each P∗
i is a

Petrie tour in the dual graph G∗ = (V∗, E∗). Because the edge set E of G one-to-one corresponds
to the dual edge set E∗ of G∗, the Petrie tours in P∗ = {P∗

1 , . . . , P∗
q} partition the edge set E∗.

Consider any node vF in G∗. When a Petrie tour P∗
i ∈ P visits vF , two edges in P∗

i are consumed:
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(A) (B)

Figure 5. (A) An example of Observation 1. (B) A graph G and its S-toursS (G)= {S1, S2, S3}.

one enters vF , one leaves vF . Hence, every node in V∗ has even degree in G∗. Namely every face F
in G has even degree, as to be shown.

Let n,m, f denote the number of vertices, edges, and faces of G, respectively. Since G is 4-
regular, we have 2m= ∑

v∈V deg(v)= 4n. Let f2i (i≥ 1) be the number of faces of G with degree
2i. Then f = ∑

i≥1 f2i. By counting the sum of the degrees of the faces of G, we also have 2m=∑
F is a face of G deg(F)= ∑

i≥1 2if2i. By Euler formula: m= n+ f − 2. Putting these equations
together, we have: (i)m= 2n; (ii) f = n+ 2; and (iii) f2 = 4+ ∑

i≥3 (i− 2)f2i.
Note that f2 ≥ 4 is the number of degree-2 faces of G, and a degree-2 face is a pair of parallel

edges. This explains why we have not restricted to simple graphs in this section.
Consider a tour P ofG. SinceG is 4-regular, at every vertex of P, there are three ways to continue

the tour: turn left, go straight, or turn right. A tour S of G consisting of only going-straight steps is
called a straight tour (or an S-tour). It is easy to see the edge set E of G can be uniquely partitioned
into S-tours. Denote this partition byS (G)= {S1, . . . , Sk}. An S-tourmay visit a vertex ofG twice.
An S-tour is called simple if it is a cycle in G. Figure 5B shows a 4-regular plane graph G. S (G)
contains three S-tours: S1 and S2 are simple. S3 is not. Two S-tours are said independent if they do
not intersect. The following theorem was proved in Jaeger and Shank (1981):

Theorem 3. Let G= (V , E) be a 4-regular plane graph, and let S (G)= {S1, . . . , Sk} be the set of
S-tours of G. Then, G is bipartite if and only if (i) all S-tours Si ∈ S (G) are simple; and (ii) S
can be partitioned into two subsets S1 and S2 such that each Si (i= 1, 2) consists of mutually
independent S-tours.

By Lemma 4 and Theorem 3, all graphs with a Petrie tour partition have a special structure: the
set S (G) is partitioned into two subsets S1 and S2; S1 is a collection of simple cycles; S2 is also
a collection of simple cycles; and the two sets of cycles are overlaid with each other. Such graphs
can be complex: Even ifS1 has only one cycle S1 andS2 has only one cycle S2, S1 and S2 can cross
each other many times in complex ways.

In the following, we show that every 4-regular bipartite plane graph G= (V , E) has exactly two
distinct Petrie tour partitions.

Since G is bipartite, we can color the vertices of G by two colors red and green. Note that (1)
the boundary of every face of G has the same number of red and green vertices, and (2) every
vertex v is incident to exactly four faces. These two facts imply the number of red vertices equals
the number of green vertices.
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Figure 6. (A) A vertex v and its incident edges and faces; (B) After the white merge operation at v; (C) After the black merge
operation at v.

Since G is 4-regular, we can color the faces of G using two colors white and black. (The number
of the white faces and the number of the black faces of Gmay be different).

Definition 2. Let v be a vertex of G with four incident edges ei (1≤ i≤ 4) in cw order and four
incident faces Fi (1≤ i≤ 4) where F1, F3 are white and F2, F4 are black. Assume ei, ei+1 (1≤ i≤ 4)
are the edges of Fi (see Figure 6A.)

(1) The white merge operation at v is (Figure 6B):
– Replace v by two new vertices v′ and v′′;
– Make the edges e1 and e4 incident to v′; and make e2 and e3 incident to v′′.

(2) The black merge operation at v is (Figure 6C):
– Replace v by two new vertices v′ and v′′;
– Make the edges e1 and e2 incident to v′′; and make e3 and e4 incident to v′.

Note that after either merge operation at v, the two new vertices v′ and v′′ have degree 2. After
the white merge operation at v, the two white faces F1 and F3 become one face. After the black
merge operation at v, the two black faces F2 and F4 become one face.

Definition 3. (1) The red-white-merge graph, denoted by Grwm, is the graph obtained from
G by applying the white merge operation at every red vertex of G and the black merge
operation at every green vertex of G. (See Figure 7B.)

(2) The red-black-merge graph, denoted by Grbm, is the graph obtained from G by applying
the black merge operation at every red vertex of G and the white merge operation at every
green vertex in G. (See Figure 7C.)

By construction, every vertex v in Grwm has degree 2 and the edge set of Grwm one-to-one cor-
responds to the edge set of G. The same properties also hold for Grbm. We can similarly define the
green-black-merge graph Ggbm and the green-white-merge graph Ggwm. Obviously, Grbm =Ggwm
and Grwm =Ggbm.

Theorem 4. Every 4-regular plane bipartite graph G has exactly two Petrie tour partitions.

Proof. Consider the graph Grbm. Since every vertex in Grbm has degree 2, Grbm is a disjoint union
of simple cycles. Let C = {C1, . . . , Cq} be these cycles. Note that the edge set of Grbm one-to-one
corresponds to the edge set of G. For each cycle Ci ∈ C , let Pi be the sequence of the edges of
G corresponding to the edges of Ci. Then, Pi is a tour of G alternately traveling red and green
vertices. Imagine we travel Pi so that the black faces are on right side. By the construction of Grbm,
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(A) (B) (C)

Figure 7. (A) G; (B) The red-white-merge graph Grwm; (C) The red-black-merge graph Grbm.

Pi always turns left at red vertices and right at green vertices (see Figure 7C). Hence, Pi is a Petrie
tour ofG. LetPrbm = {P1, . . . , Pq}. Since the edge set ofGrbm one-to-one corresponds to the edge
set of G, every edge of G belongs to exactly one Pi ∈ Prbm. Thus, Prbm is a Petrie tour partition
of G. Similarly, we can show the red-white-merge graph Grwm corresponds to another Petrie tour
partition Prwm of G.

Next we show Prbm and Prwm are the only Petrie tour partitions of G. Let Q = {Q1, . . . ,Qt}
be any Petrie tour partition of G. Since G is bipartite, each Qi ∈ Q alternately travels red and
green vertices. Consider any tour Qi ∈ Q and three consecutive edges e1 = (u, v), e2 = (v,w) and
e3 = (w, x) ofQi, where u,w are green; v, x are red. Let F1 be the face with e1 and e2 on its common
boundary. Let F2 be the face with e2 and e3 on its common boundary.

Case 1: Qi turns left at the red vertex v between e1 and e2 and F1 is a white face. Since Qi
is a Petrie tour, it turns right at the green vertex w between e2 and e3. Since F1 and F2 share e2
as common boundary and F1 is white, F2 must be black. This corresponds to performing the
black merge operation at the red vertex v, and the white merge operation at the green vertex
w. Repeating this argument, we see that all Qi ∈ Q are obtained by performing the black merge
operation at all red vertices and performing the white merge operation at all green vertices of G.
Thus, Q is the same as the Petrie tour partition Prbm.

Case 2: Qi turns left at the red vertex v between e1 and e2 and F1 is a black face. By using same
argument as in Case 1, we can show Q is the same as Prwm.

Case 3:Qi turns right at the red vertex v between e1 and e2 and F1 is a black face. By using same
argument as in Case 1, we can show Q is the same as Prwm.

Case 4:Qi turns right at the red vertex v between e1 and e2 and F1 is a white face. By using same
argument as in Case 1, we can show Q is the same as Prbm.

This completes the proof.

Figure 7A shows a 4-regular plane bipartite graph G. Figure 7B shows the graph Grwm corre-
sponding to a Petrie tour partition of G with a single Petrie Eulerian tour. Figure 7C shows the
graph Grbm corresponding to a Petrie tour partition of G with three Petrie tours.

We end this subsection by proving the following:

Theorem 5. A 4-regular plane graphG has a Petrie tour partition if and only if it is bipartite. Such
G has exactly two Petrie tour partitions, which can be found in linear time.

Proof. The proof immediately follows from Lemma 4 and Theorem 4. The linear time implemen-
tation of the algorithm can be done as follows.
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First we construct the dual graphG∗ ofG. Color the vertices ofG red and green. Color the faces
of G∗ white and black. Consider a vertex v of G. Let e1, e2, e3, e4 be the four edges incident to v
in cw order. Split v into two vertices v′ and v′′. If v is red, make its two edges bounding a black
face incident to v′ and its other two edges bounding a black face incident to v′′. If v is green, make
its two edges bounding a white face incident to v′ and its other two edges bounding a white face
incident to v′′. The resulting graph is the red-white-merge graph Grwm. By Theorem 4, this is a
Petrie tour partition of G. The other Petrie tour partition Grbm of G can be obtained similarly. The
whole process clearly takes linear time.

4.2 Graph theoretic interpretation of the size of Petrie tour partition
In this subsection, we explain the meaning of the size of Petrie tour partitions of G.

Definition 4. The white graph G∗
white = (V∗

white, E
∗
white) of G is defined as follows. (To avoid

confusion, we call the members of V∗
white nodes and the members of E∗

white lines.)

• The node set V∗
white is the set of the white faces of G.

• Let vF1 and vF2 be two nodes in V∗
white corresponding to the two white faces F1 and F2 of G.

vF1 and vF2 are connected by a line e= (vF1 , vF2 ) ∈ E∗
white if and only if F1 and F2 share a vertex

v of G on their boundary. We denote this edge by e(v). Moreover, if v is red, e(v) is called a
red line. If v is green, e(v) is called a green line.

• The white-red subgraph of G∗
white, denoted by G∗

white,red, is the subgraph of G∗
white induced by

its red lines. The white-green subgraph of G∗
white, denoted by G∗

white,green, is the subgraph of
G∗
white induced by its green lines.

We can embed G∗
white as follows: Place the node vF corresponding to a white face F in the

center of F. Draw the line e(v)= (vF1 , vF2 ) as a curve connecting two nodes vF1 and vF2 , passing
through the vertex v that defines e(v). Clearly G∗

white is a plane graph. Figures 9A and B show the
graph G∗

white,red and G∗
white,green, respectively, overlaid with G. Since the numbers of red and green

vertices in G are the same, the number of red lines in G∗
white,red and the number of green lines in

G∗
white,green are the same.

Definition 5. The black graph G∗
black = (V∗

black, E
∗
black) of G is defined as follows:

• The node set V∗
black is the set of the black faces of G.

• Let vF1 and vF2 be two nodes inV∗
black corresponding to the two black faces F1 and F2 ofG. vF1

and vF2 are connected by a line e= (vF1 , vF2 ) ∈ E∗
black if and only F1 and F2 share a common

vertex v of G on their boundary. We denote this edge by e(v). Moreover, if v is red, e(v) is
called a red line. If v is green, e(v) is called a green line.

• The black-red subgraph ofG∗
black, denoted byG

∗
black,red, is the subgraph ofG

∗
black induced by its

red lines. The black-green subgraph of G∗
black, denoted by G∗

black,green, is the subgraph of G∗
black

induced by its green lines.

It is known the graphsG∗
white andG

∗
black are dual graphs to each other (Berman and Shank 1979;

Kidwell and Bruce Richter 1987).
Consider the white-red subgraph G∗

white,red and a node vF ∈V∗
white,red corresponding to a white

face F of G. Let e1, . . . , et be the lines in G∗
white,red incident to vF in cw order. Each line ei passes

a red vertex vi on the boundary of F. A pair of consecutive lines defines an angle θi = (ei, ei+1)
of G∗

white,red (1≤ i≤ t where et+1 = e1). The subpath of F for θi, denoted by p(θi), is the clockwise
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(A) (B)

Figure 8. (A) Subpaths of F for angles; (B) A
tour associated with an elementary circuit.

subpath on the boundary of F between the vertex vi and vi+1. Note that ∪t
i=1p(θi) is the boundary

of F (see Figure 8A.)
Embed G∗

white,red in the plane (without the embedding of G). Let D be a connected component
of G∗

white,red. Each face (including the exterior face) of D is called an elementary circuit of D. The
elementary circuit number ofD, denoted by ecn(D), is the number of elementary circuits ofD. IfD
has a nodes and b lines, then ecn(D)= b− a+ 2. Let D1, . . . ,Ds be the connected components of
G∗
white,red. All elementary circuits of eachDi are the elementary circuits ofG∗

white,red. The elementary
circuit number ofG∗

white,red is defined to be ecn(G
∗
white,red)=

∑s
i=1 ecn(Di). For example, ifG∗

white,red
is a tree, then ecn(G∗

white,red)= 1. As another example, if G∗
white,red has two connected components

D1 and D2 where D1 is a tree and D2 is the union of a spanning tree and two non-tree edges, then
ecn(D1)= 1, ecn(D2)= 3 and ecn(G∗

white,red)= 4. In general, we have:

Fact 1. If G∗
white,red has a nodes, b lines and k connected components, then ecn(G∗

white,red)= b−
a+ 2k.

Let c be an elementary circuit of G∗
white,red. Imagine we travel along c in cw order so that the

interior of c is on the right side. (If c is the exterior face, we travel c in ccw order so that the exterior
of c is on the right side). Let �(c)= θ1, . . . , θt be the sequence of angles of c we encounter on the
right side of c. For each i (1≤ i≤ t), let p(θi) be the subpath for θi. Let p(c) be the concatenation
of p(θi) (1≤ i≤ t). Note that p(c) is a tour of G and is called the Petrie tour associated with c.

Figure 8B illustrates these terms. The white-red subgraph G∗
white,red is a single tree D1. So

ecn(G∗
white,red)= 1, and it has only one elementary circuit c which is just walking around D1 in

ccw order. Three angles θ1, θ2, θ3 of c are shown. p(θ1)= {(u, v), (v,w)}. p(θ2)= {(w, x), (x, y)}. θ3
is defined by a leaf node vF1 ofD1. So p(θ1)= {(y, z), (z, y)} (the two parallel edges on the boundary
of F1).

Theorem 6. Let G be a 4-regular bipartite plane graph. Let G∗
white,red and G∗

white,green be the
subgraphs defined above.

(1) Let �1 = {c1, . . . , ct} be the set of elementary circuits of G∗
white,red. For each ci (1≤ i≤ t), let

p(ci) be the Petrie tour associated with ci. The union ∪t
i=1p(ci), which is called the graph

associated with G∗
white,red, is the same as the red-white-merge graph Grwm.

(2) Let �2 = {c′1, . . . , c′s} be the set of elementary circuits of G∗
white,green. For each c′i (1≤ i≤ s),

let p(c′i) be the Petrie tour associated with c′i. The union ∪s
i=1p(c

′
i), which is called the graph

associated with G∗
white,green, is the same as the green-white-merge graph Ggwm.
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(A) (B) (C) (D)

Figure 9. (A) G∗
white,red overlaid with G; (B) G

∗
white,green overlaid with G; (C) the graph Grwm; (D) the graph Ggwm. The solid small

squares are the nodes ofG∗
white. The thick red dashed lines are the lines ofG

∗
white,red . The thick green dashed lines are the lines

of G∗
white,green.

Proof. We only prove the Statement 1. The proof of Statement 2 is similar.
The red-white-merge graph Grwm is a collection C = {C1, . . . , cq} of cycles. It is uniquely

characterized by the following properties:

(1) Each edge of G belongs to exactly one Ci ∈ C .
(2) For each red vertex v in Ci, the two edges in Ci incident to v belong to a back face of G.
(3) For each green vertex w in Ci, the two edges in Ci incident to w belong to a white face of G.

We show the graph ∪t
i=1p(ci) also satisfies these properties.

(1) Every edge e ofG is on the boundary of exactly one white face F ofG. So it belongs to exactly
one subpath p(θ) for an angle θ at node vF . Every angle θ ofG∗

white,red belongs to exactly one
elementary circuit ci ofG∗

white,red. So each edge e ofG belongs to exactly one Petrie tour p(ci)
associated with ci.

(2) For each red vertex v in p(ci), by construction, the two edges in p(ci) incident to v belong to
a black face of G.

(3) Similarly, for each green vertex w in p(ci), the two edges in p(ci) incident to w belong to a
white face of G.

This proves Statement 1.

Figure 9C shows the graph Grwm which is also the graph associated with the white-red sub-
graph G∗

white,red. It is a Petrie tour partition of G consisting of a single Petrie Eulerian tour.
Figure 9D shows the graphGgwm which is also the graph associated with the white-green subgraph
G∗
white,green. It is a Petrie tour partition of G consisting of three Petrie tours.
The following theorem immediately follows from Theorem 6.

Theorem 7. Given a 4-regular plane bipartite graph G, the size of the minimum Petrie tour
partition of G is min{ecn(G∗

white,red), ecn(G
∗
white,green)}.

Note: The following Theorem was proved in Z̆itnik (2002).

Theorem 8. Let G= (V , E) be a 4-regular plane bipartite graph. Then, G has a Petrie Eulerian
tour if and only if the following conditions hold.
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(A) (B)

Figure 10. (A) A 4-regular plane graph G; (B) A
3-regularization G3 of G.

• The number of black faces and the number of white faces in G are the same.
• Either the subgraph G∗

white,red or the subgraph G∗
white,green is a spanning tree of G

∗
white.

Note that Theorem 7 generalizes Theorem 8: if the two conditions in Theorem 8 hold, then
either ecn(G∗

white,red)= 1 or ecn(G∗
white,green)= 1.

The proof of the following theorem is similar to the proof of Theorem 6.

Theorem 9. Let G be a 4-regular bipartite plane graph. Let G∗
black,red and G∗

black,green be the
subgraphs as defined above.

(1) Let �3 = {c1, . . . , ct} be the set of elementary circuits of G∗
black,red. For each ci (1≤ i≤ t),

let p(ci) be the Petrie tour associated with ci. Then, the union ∪t
i=1p(ci) is the same as the

red-black-merge graph Grbm.
(2) Let �4 = {c′1, . . . , c′s} be the set of elementary circuits of G∗

black,green. For each c′i (1≤ i≤ s),
let p(c′i) be the Petrie tour associated with c′i. Then, the union ∪s

i=1p(c
′
i) is the same as the

green-black-merge graph Ggbm.

5. Characterization of Petrie Partitionable 4-Regular Plane Graphs
In this section, G always denotes a 4-regular plane graph, not necessarily bipartite. S (G)=
{S1, . . . , Sk} denotes the set of S-tours of G.

Definition 6. Let G be a 4-regular plane graph, and G3 be a 3-regularization of G. A Petrie cycle
partition C3 is called full if every edge of G belongs to a cycle Ci ∈ C3. (This implies all split edges of
G3 are non-cycle edges with respect to C3).

A full Petrie cycle partition of G3 corresponds to a Petrie tour partition of G. So the problem
considered in Section 4, characterizing G with Petrie tour partitions, is to determine when G has
a 3-regularization G3 that has full Petrie cycle partitions. In computer graphics applications, the
restriction to full Petrie cycle partitions ofG3 is not necessary. In this section, we study the general
problem: characterize the Petrie partitionable graphs. In other words, determine when G has a
3-regularization G3 that has Petrie cycle partition (full or not).

Figure 10A shows a 4-regular plane graph G with three S-tours S1, S2, S3 where each pair of
them intersect. By Lemma 4 and Theorem 3, G has no Petrie tour partitions. Figure 10B shows a
3-regularization G3 of G with a Petrie cycle partition C3, consisting of a single Petrie Hamiltonian
cycle C (denoted by thick lines in the figure).

We have the following simple characterization of Petrie partitionable graphs.

https://doi.org/10.1017/S0960129522000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000238


254 X. He et al.

Theorem 10. A 4-regular plane graph G with S-tour set S (G) is Petrie partitionable if and only
if the following hold: (i) All S-tours in S (G) are simple, and (ii) S (G) can be partitioned into at
most three subsets S0,S1,S2 of mutually independent S-tours.

Proof. By Theorem 2, G is Petrie partitionable if and only if G has a 3-regularization G3 that is a
multi-3-gon. By Theorems 5 and 3 and the remark after Definition 6, G has a 3-regularization G3
with a full Petrie cycle partition if and only if all S-tours in S (G) are simple and S (G) can be
partitioned into two subsets of mutually independent S-tours.

Suppose G has a 3-regularization G3 that is a multi-3-gon. By Lemma 3, there exists a 3-edge-
coloring λ of G3 (with three colors 0, 1, 2) such that the valuation κ associated with λ satisfies
κ(u)= 1 for all vertices u in G3. In other words, the three edges in G3 incident to u are colored by
0, 1, 2 in cw order. Consider any vertex v inG. Let e1, e2, e3, e4 be the edges inG incident to v in cw
order. Let e(v)= (v′, v′′) be the split edge in G3 corresponding to v. Because the edge color pattern
around v′ and v′′, it is clear that λ(e1)= λ(e3), λ(e2)= λ(e4) and λ(e1) �= λ(e2). Treat λ as an edge
coloring of G, and let Si (i ∈ {0, 1, 2}) be the set of edges in G with color i. Clearly, each Si is a
collection of mutually independent simple S-tours of G. Thus, S0,S1,S2 satisfy the condition of
the theorem.

Now suppose the set of S-tours S (G)= {S0,S1,S2} of G satisfies the condition of the theo-
rem. For each edge e of G, if e belongs to an S-tour in Si (i ∈ {0, 1, 2}) color e by color i. Consider
any vertex v in G and let e1, e2, e3, e4 be the edges in G incident to v in cw order. Let F1, F2, F3, F4
be the faces of G incident to v where ei, ei+1 are on the boundary of Fi. For each i= 1, 2, 3, 4, call
the triple α = (ei, v, ei+1) an angle of Fi and denote it by α ∈ Fi. Let A be the set of all angles of
G. Define a mapping π : A → {−1,+1} as follows. Consider any angle α = (ei, v, ei+1) ∈ A , let ci
and ci+1 be the color of ei and ei+1, respectively. Define: π(α)= +1 if ci+1 − ci ≡ +1 (mod 3); and
π(α)= −1 if ci+1 − ci ≡ −1 (mod 3).

For any face F of G, clearly
∑

α∈F π(α)≡ 0 (mod 3). Consider any vertex v in G, with
four angles α1, α2, α3, α4 incident to v in cw order. Clearly, π(α1)= π(α3); π(α2)= π(α4); and
π(α1) �= π(α2). We now define a 3-regularization G3 of G as follows:

• If π(α1)= π(α3)= −1, we split v in a way so that the faces F1 and F3 share the split edge e(v)
on their common boundary.

• If π(α2)= π(α4)= −1, we split v in a way so that the faces F2 and F4 share the split edge e(v)
on their common boundary.

For any face F′ of G3, let F be the face in G corresponding to F′. For each vertex v incident to F
inG, let α be the angle of F incident to v. By the construction ofG3, if π(α)= −1, v is split into two
vertices in G3 incident to F′; if π(α)= +1, v corresponds to one vertex in G3 incident to F′. Thus,
the degree of F′ in G3 is:

∑
α∈F and π(α) =+1 1+ ∑

α∈F and π(α)=−1 2≡ ∑
α∈F and π(α) =+1 1+

∑
α∈F and π(α)=−1 (− 1)≡ ∑

α∈F π(α)≡ 0 (mod 3).
Since F′ is any face in G3, G3 is a multi-3-gon, as to be shown.

6. Determining if a 4-Regular Plane Graph is Petrie Partitionable is NP-Complete
Definition 7. The Petrie Partitionability of 4-regular plane graphs (PP4R for short) problem is:
given a 4-regular plane graph G, determine if G is Petrie partitionable or not.

Definition 8. The Planar Graph 3-Colorability (PG3C for short) problem is: given a plane graph
H, determine if H has a vertex coloring using 3 colors.

In this section, we show the following:

https://doi.org/10.1017/S0960129522000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000238


Mathematical Structures in Computer Science 255

(A) (B)

Figure 11. (A) A flower shaped cycle with 5 petals; (B) A degree-5 vertex u is adjacent to a degree-4 vertex v in H. The cycles
cu and cv intersects at 2 points in G.

Theorem 11. The PP4R problem is NP-Complete.

Proof. It is known PG3C problem is NP-complete (Garey et al. 1976). We reduce the PG3C
problem to the PP4R problem. This will establish the NP-completeness of the PP4R problem.

Let H = (VH , EH) be a plane graph. We construct a 4-regular plane graph G= (VG, EG) as
follows. For each degree-k vertex u in VH , we draw a flower shaped cycle cu with k petals around
it. (See Figure 11A). Each petals is associated with an edge incident to u in H. If (u, v) is an edge
in EH , then the petal of the cycle cu associated with the edge (u, v) intersects with the petal of the
cycle cv associated with (u, v) at two points. (See Figure 11B). Do this for every vertex in VH in
such a way that these are the only intersection points of the cycles cu’s. So there are 2k points on
the cycle cu, and cu is divided by these points into 2k cycle segments.

The vertices of G are these intersection points, and the edges of G are these cycle segments.
From the construction, the following facts hold:

• G is a 4-regular plane graph, which can be constructed from H in polynomial time.
• Let S (G)= {S1, . . . , Sk} be the set of S-tours of G. Each S-tour in S (G) is just a cycle cu for
some vertex u inH. In other words, S (G)= {cu | u ∈VH}. Hence all S-tours ofH are simple.

By Theorem 10, G is Petrie partitionable if and only if S (G) can be partitioned into three
independent subsets S1,S2,S3, which is true if and only if the graph H is 3 vertex colorable. (If
the cycle cu ∈ Si (i= 1, 2, 3), then we color the vertex u by the color i in H. This defines a valid 3
vertex coloring of H.) Hence, G is Petrie partitionable if and only if H is 3 vertex colorable. This
completes the polynomial time reduction from the PG3C problem to the PP4R problem and the
proof of the theorem.

7. Conclusion and Open Problems
We studied the problems of partitioning 3-regular plane graphs by Petrie cycles and partitioning
4-regular plane graphs by Petrie tours. We found simple characterizations for graphs having such
partitions. This leads to simple linear time algorithms for finding minimum partitioning.

For 4-regular plane graphs, we discovered a nice characterization of Petrie partitionable graphs.
We also showed that the problem of determining if a input 4-regular plane graph is Petrie
partitionable is NP-complete.

The general version of these problems ismotivated by applications in computer graphics, which
require finding minimum partitioning of 3-regular plane graphs by Petrie paths and/or Petrie cy-
cles, and finding minimum partitioning of 4-regular plane graphs by Petrie walks and/or Petrie
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tours. The general version of the problem is NP-complete. It is interesting to see if the insights dis-
covered in this paper can lead to better heuristic algorithms and/ormore efficient exact algorithms
for solving the general version of these problems.

For the Petrie cycle partition problem, we considered only the 3-regular plane graphs. This is
motivated by its connection to computer graphics applications. But it is also an interesting graph-
theoretic problem for r-regular plane graphs with r=4 or 5. Is there a simple characterization for
such graphs with Petrie cycle partitions?

Conflicts of interest. The authors declare none.

References
Berman, K. A. and Shank, H. (1979). Full 4-colorings of 4-regular maps. Journal of Graph Theory 3 291–294.
Bommes, D., Campen, M., Ebke, H.-C., Alliez, P. and Kobbelt, L. (2013). Integer-grid maps for reliable quad meshing. ACM

Transactions on Graphics 32 (4) 98:1–98:12, Article 98.
Bommes, D., L’vy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M. and Zorin, D. (2012). State of the art in quad meshing. In:

Eurographics STARS, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.363.6797.
Bondy, J. A. and Murty, U. S. R. (1979). Graph Theory with Applications, New York, North-Holland.
Dong, S., Bremer, P.-T., Garland, M., Pascucci, V. and Hart, J. C. (20061). Spectral surface quadrangulation. In: ACM

SIGGRAPH’06, 1057–1066.
Estkowski, R., Mitchell, J. S. B. and Xiang, X. (2002). Optimal decomposition of polygonal models into triangle strips. In

Proceedings of the 18th ACM SoCG, 254–263.
Fouquet, J. L. and Jolivet, J. L. (1982). Strong edge-coloring of cubic planar graphs. In: Adrian Bondy, J. and Murty, U. S. R.

(eds.) Progress in graph theory. Proceedings of the conference on combinatorics held at the University of Waterloo, 247–264.
Garey, M. R., Johnson, D. S. and Stockmeyer, L. (1976). Some simplified NP-complete graph problems. Theoretical Computer

Science 1 (3) 237–267.
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