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1. Introduction. A compact bordered Klein surface X of algebraic genus g > 2 has
maximal symmetry [6] if its automorphism group A(X) is of order 12(g — 1), the largest
possible. The bordered surfaces with maximal symmetry are clearly of special interest and
have been studied in several recent papers ([6] and [9] among others).

Associated with a bordered Klein surface X in a natural way is its complex double Xc

[1], a classical Riemann surface of the same genus g. Suppose that X has maximal
symmetry. Then it is natural to ask how large the automorphism group of the complex
double Xc can be. Since the bordered surface X is a very symmetrical object, then Xc

should also be very symmetrical. Indeed, it is easy to show that Xc always has at least
24(g — 1) automorphisms, and we originally expected that in several cases Xc would have
a larger automorphism group. Of course, the surface Xc has at most 168(g - 1 )
automorphisms (including the orientation-reversing ones); this is just twice the classical
bound of Hurwitz.

Here we prove, however, that the order of the automorphism group of Xc is
24(g - 1), with a single exception. There is a unique Klein surface Y (defined in §4) with
maximal symmetry such that its complex double has 48(g — 1) automorphisms. The
surface Y has genus two and topologically is a sphere with three holes. Our main result is
the following.

THEOREM 1. Let X be a bordered Klein surface with maximal symmetry of genus
g > 2. If X is not dianalytically equivalent to the surface Y of genus 2, then the
automorphism group of the complex double Xc is isomorphic to C2 x A(X).

2. NEC groups. Non-euclidean crystallographic (NEC) groups have been quite
helpful in studying automorphism groups of Klein surfaces. Let Z£ denote the group of
automorphisms of the open upper half-plane D, and let i£+ denote the subgroup of index
2 consisting of the orientation-preserving automorphisms. An NEC group is a discrete
subgroup F of Z£, and we shall assume that the quotient space D/F is compact. An NEC
group contained in ££+ is called a Fuchsian group. If F is an NEC group containing
orientation-reversing elements, then F is called a proper NEC group. In this case F has a
canonical Fuchsian subgroup F+ = F n i?+ of index 2.

Associated with the NEC group F is its signature, which has the form

(p; i ; [ m , , . . . , mr]; {(n,,, . . . , nUl), ..., (nku . . . , nfat)}). (2.1)

The quotient space X = D/F is a compact surface with topological genus p and k holes.
The surface is orientable if the + sign is used and non-orientable if the - sign is used.
The integers mu . . . , mr, called the ordinary periods, are the ramification indices of the
natural quotient mapping from D to X in fibers above interior points of X. The integers
i/i» • • • » «is,» called the link periods, are the ramification indices in fibers above points on
the ith boundary component of X. Associated with each signature is a presentation for
the NEC group F. For these presentations and more information about signatures, see [7]
and [13].
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Let F be an NEC group with signature (2.1). Then the non-euclidean area fj.(T) of a
fundamental region for T can be calculated directly from the signature [13, p. 235]:

S j ( l ) , (2.2)

where a = 2 if D/T is orientable and a = 1 if D/T is non-orientable. If A is a subgroup of
finite index in F, then A is an NEC group and

[T:A] = ji(A)/ju(r). (2.3)

There is a collection of results [3, p. 506] that can sometimes be applied to determine the
signature of A from that of F.

An NEC group K is called a surface group if the quotient map from D to D/K is
unramified. Fuchsian surface groups contain no elements of finite order. If the quotient
space D/K has a non-empty boundary, then K is called a bordered surface group.
Bordered surface groups contain reflections but no other elements of finite order.

Let X be a compact Klein surface of algebraic genus g ^ 2. Then X can be
represented as D/K where K is a surface group. If A' is a classical Riemann surface, then
K is a Fuchsian group, and if A' is a Klein surface with non-empty boundary, then K is a
bordered surface group.

The full automorphism group A(X) is isomorphic to N(K)/K where N(K) is the
normalizer of K in ££ [8, p. 4]. If AT is a Riemann surface so that the Fuchsian group
^ c l + , then the group AJt{X) of orientation-preserving automorphisms of X is
isomorphic to N+(K)/K, where N+(K) is the normalizer of K in Z£+.

Especially important in the study of automorphisms of Riemann surfaces are the
triangle groups. A triangle group is a Fuchsian group with signature

(0;+;[/ ,m,n];{ })
where

1// + 1/m + 1/n < 1.

We shall denote a group with this signature by F(/, m,n). The extended triangle group
T[/, m, n] is a proper NEC group with signature

(0;+;[] ;{( / , m,/i)}).

Its canonical Fuchsian group is a triangle group F(/, m, n). Large groups of orientation-
preserving automorphisms are quotients of triangle groups. Singerman made this idea
precise in the following [15, p. 22].

LEMMA A. Let G be a group of orientation-preserving automorphisms of a Riemann
surface of genus g^-2. If o(G) > 12(g - 1), then G is a quotient of a triangle group. If
o(G) > 24(g — 1), then, further, one of the periods of the triangle group is 2.

Large groups of automorphisms of bordered Klein surfaces are quotients of proper
NEC groups. A group that acts as the automorphism group of a bordered surface with
maximal symmetry is called an M*-group [8]. The first important result about Af*-groups
was that they must have a certain partial presentation [8, p. 5]. An Af*-group G is
generated by three distinct non-trivial elements T, U, and V which satisfy the relations

2 2 2 2 3 (2.4)
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This was established using NEC groups. The finite group G is the automorphism group of
a bordered surface X with maximal symmetry if and only if there are an NEC group A
with signature

(0;+;[] ;{(2,2,2,3)}) (2.5)

and a homomorphism a: A—*G onto G such that X = D/K where K = kernel a is a
bordered surface group [8, pp. 4-6]. There is a similar result about groups of the second
largest possible order.

The order of UV is called an index of the M* -group G [6], and there is a nice
connection between the index and the action of G on X [6, p. 282]. If X has k boundary
components and q = o{UV), then o{G) = Iqk.

3. Complex doubles. Let X be a bordered Klein surface. Associated with X in a
very natural way is its complex double Xc [1, pp. 37-41], a Riemann surface of the same
genus. The surface Xc has an antianalytic involution a:Xc-*Xc such that XJa = X. The
automorphism groups of X and Xc are intimately connected [1, p. 79]:

A(X)^{feA+(Xc)\of=fo}. (3.1)

Now let A' be a bordered Klein surface with maximal symmetry of genus g, and let
H=A(X), an M*-group. There is an NEC group A with signature (2.5) and a
homomorphism a:A-+H onto H such that X = D/K where K = kernel a- is a bordered
surface group. The surface D/K+ is the complex double of X [8, p. 3], and we have the
following lattice of subgroups of if.

(3.2)

K

Here &+/K+ = A/K = H, K/K+ a ( a), and A/K+ = ( a) x H.
Now let G = A+(XC). Then H is isomorphic to a subgroup of G by (3.1), and

(a) X H is isomorphic to the centralizer of a in A{XC). Since X has maximal symmetry,
o(H) = 12(g - 1) and thus o(G) is a multiple of 12(g - 1). There are very few possibilities
for o(G). We have the following easy result.

PROPOSITION 1. Let W be a Riemann surface of genus g > 2 , and let G = A+(W). If W
is the complex double of a bordered surface with maximal symmetry, then o(G) is a
multiple of 12(g — 1). If further o(G)>24(g — 1), then o(G) is one of the following; in
each case G is a quotient of the triangle group listed.

1) o(G) = 84(g - 1) r(2, 3, 7)

2) o(C) = 48 (g - l ) r(2,3,8)

3) o(G) = 36(g - 1) r(2, 3, 9)
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// o(G) = 24(g - 1), then G is a quotient of r(2, 4, 6), T(2, 3, 12) or T(3, 3, 4). / /
o(G) = 12(g - 1), then G is a quotient of a Fuchsian group with signature

(0;+;[2,2,2,3];{ }). (3.3)

In any case the order of the full automorphism group A(W) is twice the order of G.

Proof. Let X be the bordered surface with maximal symmetry and use the notation
in the diagram (3.2). First suppose o(G) = 12(g - 1 ) . Then, simply, the full group
A(W) = A./K+ and G = A+/K+. The signature of the canonical Fuchsian subgroup A+ is
(3.3) [13, p. 236].

Next suppose o(G) > I2(g — 1). By Lemma A, G is a quotient of a triangle group
r = T(/, m, n), and we may take / < m < / i . Then G = T/K+, where T = N+(K+). From
(2.2) i*(K+) = An{g - 1) and fi(T) = 2JT(1 - 1// - Urn - 1/n). Then o(G) = n(K+)/n(T)
by (2.3), and o(G) is a multiple of 12(g — 1). It is now a simple matter to check all
possibilities for /, m and n.

4. Surfaces of low genus. Here we examine the large automorphism groups of
Riemann surfaces of genus g, where 2 < g ^ 5 . The proof of our main result depends
upon this study of the low genera, although perhaps the examples help illuminate the
theoretical development.

Let IV be a Riemann surface of genus g, 2 ^ g s 5 . First we determine the
possibilities for A+(W) with order equal to 36(g - 1), 48(g - 1) or 84(g - 1); fortunately
there are not many. For each possible group we next obtain a presentation for A(W) as a
quotient of the appropriate extended triangle group; Theorem 2 of [15] is helpful when
only the presentation for A+(W) is known. Then for each reflection T in A(W), we
calculate the order of its centralizer C{x) in A(W). This can be determined by finding the
number of conjugates of r in A(W), since this number equals the index of C(T) in A(W).
If the order of C(r) is less than 24(g - 1), then the bordered Klein surface W/r does not
have maximal symmetry. It turns out that in these genera, no Riemann surface with more
than 24(g — 1) orientation-preserving automorphisms is the complex double of a surface
with maximal symmetry. We omit the details.

PROPOSITION 2. Let X be a bordered Klein surface with maximal symmetry of genus g,
2 < g < 5. Then the order of A{XC) is 24(g - 1) or 48(g - 1).

There is a strong connection here with the theory of regular maps on surfaces. We
are using "regular" in the usual way [4], not in the strong sense of [6]. Large groups of
automorphisms of Riemann surfaces correspond to groups of regular maps. A Riemann
surface is called symmetric [15] if it has an anti-conformal involution.

Let G be a group of conformal automorphisms of a Riemann surface W. If G is a
quotient of a triangle group T(2, n, k), then there is a regular map of type {n, k) on the
topological surface W. If the map is reflexible, then W is a symmetric Riemann surface,
and further A(W) is isomorphic to the full automorphism group of the map.

Conversely, if G is the rotation group of a regular map of type {«, k} on a surface S,
then G is a quotient of a triangle group T(2, n, k) and G acts as a group of conformal
automorphisms of a Riemann surface homeomorphic to 5. However, the symmetry of the
Riemann surface need not imply the reflexibility of the map. Indeed there are symmetric
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Riemann surfaces that correspond to irreflexible maps [15, p. 30]. However, irreflexible
maps of positive genus are rather exceptional, and in fact Garbe [5, p. 42] has shown that
for 2 < g < 6 , there are no irreflexible maps at all. This is relevant here. Also, if n=tk,
then the symmetry of the Riemann surface does imply the reflexibility of the map. For
more details on this correspondence, see [15, pp. 27, 28].

Hence, for 2 ^ g ^ 5, symmetric Riemann surfaces with large automorphism groups
correspond to reflexible regular maps. A great deal is known about the automorphism
groups of Riemann surfaces and regular maps of these genera. The possibilities for
A+(W) when W has genus 2 were first determined by Wiman in 1895, and the full
automorphism groups are worked out in [3]. The regular maps of genus 3 were classified
by Sherk [12], and those of genera 4 and 5 by Garbe [5]. The possibilities that must be
considered to establish Proposition 2 are in the table. The symbols for the maps and
groups are from [4].

Order Triangle
Genus Map A+(W) A(W) A(W) group References

2 {3,4 + 4} (-3,412) 96 T(2,3,8) [4, p. 140], [12, p. 460], [3, p. 518]
3 {3,8}6 (2,3,8;3) G 3 8 6 192 P(2,3,8) [4, p. 139], [12, p. 475]
3 {3,8}7 PSL(2,7) PGL(2,7) 336 r(2,3,7) [4, p. 139], [12, p. 475]
5 384 T(2,3,8) [5, p. 54]

We conclude this section by presenting the Klein surface with maximal symmetry
such that its complex double has 48(g — 1) automorphisms.

EXAMPLE. Let G^ be the group with generators A, B, and C and defining relations

A2 = B2 = C2 = (AB)4 = (BC)6 = (AC)2 = (BABCf = 1. (4.1)

The group G48 is a group of order 48 that acts on a unique Riemann surface W of genus
two [3, p. 517]. Also G48 is the full automorphism group of the map {4, 6 | 2} [4, p. 110],
the only regular map of type {4, 6} with genus two. The group G^ is a quotient of the
extended triangle group T[2,4,6], and the uniqueness of W follows from the uniqueness
of this triangle group together with the classification of the regular maps of genus two [4,
p. 140]. Also see [3, p. 518]. The centralizer of the reflection A has order 24, so that the
Klein surface Y = WIA has the maximal symmetry. Topologically Y is a sphere with three
holes; the automorphism group of Y is D6, the only M*-group of genus two.

The conjugacy class of A is {A, BAB}, and the Klein surfaces W/A and W/BAB are
dianalytically equivalent [1, pp. 57, 58]. Outside this conjugacy class no reflection has a
centralizer with order greater than 16. Thus there is a unique bordered Klein surface Y of
genus two with maximal symmetry and complex double W. Theorem 1 says that Y is very
special indeed.

5. The proof of Theorem 1—part one. We now show that the automorphism group
of the complex double of a surface with maximal symmetry cannot be too large. We first
eliminate the three largest possible group orders in Proposition 1.

Let X be a bordered Klein surface with maximal symmetry of genus g > 2, and let W
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be its complex double. Let a be the antianalytic involution of W such that W/o = X. We
set

G=A+(W) H = {feG\of=fo} L={a)

Then H is isomorphic to the M*-group A{X) = (L x H)/L. We identify H and /l(A').
The following is basic.

LEMMA 1. Suppose N is a normal subgroup of G such that N <=H with [H: N] > 6. Set
W = WIN, X' = X/N, G' = GIN, H' = H/N. Then

1) X' is a bordered surface with maximal symmetry of genus g ' > 2 .
2) W is the complex double of X'.
3) The following diagram commutes, and each quotient mapping is unramified.

w —
i

X= W/L —

-» W'

-* X'

= W/N

I
= X/N

Proof. Part 1) was established in [6, p. 271]. We are identifying N and (L x N)/L, so
that X' = X/((L x N)/L) = W/(L xN) = (W/N)/((L x N)/N). Thus the diagram comm-
utes, and (L x N)/N = C2 acts on W' as a reflection. The quotient space W' is a Riemann
surface since NcA+(W). The mapping X^>X' is unramified [6, p. 271] so that each
mapping in the diagram must be unramified. Finally W' is the complex double of A", by
the uniqueness of this covering [1, p. 37].

COROLLARY 1. If o{G) = k(g - 1), then o(G') = k(g' - 1).

Proof. Since the quotient map from W to W is unramified, the classical Hurwitz
ramification formula gives

COROLLARY 2. If o(G) = k(g - 1) where k is 36, 48, or 84, then G'=A+{W).

Proof. Since G' is a subgroup of A+(W), the result follows by Lagrange's Theorem.
We also need the following technical result.

LEMMA 2. Let H be a solvable M*-group with o(H)> 48. Suppose A is a normal
subgroup with [H:A] = 6. If A is an elementary abelian 2-group, then H = C2 x 54.

Proof. The quotient HI A = 53, the only possible quotient of an M*-group of order
6. Now it is not hard to see that H has no elements with order larger than 6. Hence H is a
quotient of a group G3 m", where m s n < 6 [6, p. 278]. Then from the table in [4, p.
139], the only possibility is H = C2 x 54.

The following result gives a way to find normal subgroups with index larger than 6 in
solvable M*-groups. As usual, we denote the Frattini subgroup of a finite group G by
<&(G). Also, if p is a prime, then G has a unique largest normal p-subgroup [10, p. 57],
which is denoted OP(G). Both 3>(G) and OP(G) are characteristic subgroups of G.

LEMMA 3. Let H be a solvable M*-group with o{H)>48, and let N be a normal
subgroup of H with [H:N] = 6. Then N has a nontrivial characteristic subgroup C.
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Proof. Since N is solvable, OP(N)J=1 for some prime p [10, p. 155]. If OP(N)^N,
then set C = OP(N). So assume OP(N) = N. Since 12 divides (?(//), we must have p = 2
and /V is a 2-group. Now <£>(N) ¥= N. If <&(N) = 1, then N would be an elementary abelian
2-group. But this would contradict Lemma 2. Hence <&(A') =£ 1. Now set C = <t>(N).

PROPOSITION 3. The order of G is not 48(g — 1).

Proof. Suppose to the contrary that there are bordered surfaces with maximal
symmetry that have complex doubles with 48(g — 1) orientation-preserving automorph-
isms. Assume that X is such a bordered surface of the lowest genus. By Proposition 2, we
know its genus g > 5.

Now o(G) = 48(g — 1) so that G is a quotient of a F(2, 3, 8) triangle group. Thus G is
solvable [11, p. 19].

Also [G:H] = 4 and there is a homomorphism / : G—» S4 with / = kernel/ c //. Since
H is an M*-group, the order of H/J cannot be 3. Thus [H :J] = 1, 2, or 6. In each case J
has a characteristic subgroup C with [H: C] > 6. If [//:/] = 6, then this is immediate from
Lemma 3. The other two cases are harder.

First assume [H:J] = 2. Clearly H' cJ, and we know [H:H'] divides 4 [6, p. 278].
Hence either H' = J or [J: H'] = 2.

Suppose / / ' = / . Then //" = / ' of course. But [//'://"] divides 9 [6, p. 278]. The
group H' is solvable, and a quotient of the A/*-group H cannot have order 18. Hence
[//': //"] = 3. Now [H: H"] = 6, and by Lemma 3 H" has nontrivial characteristic subgroup
C. Since H" = J' is characteristic in J, so is C.

Next suppose [7://'] = 2. Then H"cJ'<=H' and [//':«"] is 3 or 9. If J' = H', then
H" is characteristic in 7 and [H: H"] is 12 or 36; set C = H". If J'¥=H', then [//' :7'] > 3
and [// : / ' ]> 12; set C = / ' .

Now assume H = J. Then [# : / / " ]>6 . If [H:H"]>6, then take C = H". If
[//: //"] = 6, then //" has a nontrivial characteristic subgroup C by Lemma 3 again, and C
is characteristic in J.

Since J is normal in G, so is its characteristic subgroup C [10, p. 40]. Now applying
Lemma 1 produces a bordered surface X' = X/C of lower genus g' that has maximal
symmetry and a complex double with 48(g' — 1) orientation-preserving automorphisms.
But this contradicts the choice of X.

The proof of the following is similar but easier, and we omit the details.

PROPOSITION 4. The order of G is not 36(g — 1).

The key here is that if o(G) were 36(g - 1 ) , then G would be a quotient of a
T(2,3,9) triangle group and therefore solvable [11, p. 19].

Since the F(2,3,7) triangle group is not solvable, the proof in the remaining case is
different.

PROPOSITION 5. The order of G is not 84(g — 1).

Proof. Suppose to the contrary that o(G) = 84(g — 1). Now [G : H] = 7 and there is a
homomorphism f.G^Sj with J = kernel/cH. Now o(G/J) divides 71 = 84.60. But
G/J is a Hurwitz group. Let g' be the genus of W/J so that G/J has order 84(g' - 1).
Now g' — 1 divides 60. The Hurwitz groups of low order are well known [11, pp. 37, 38].
The only possibilities for g' are 7 and 3. But H/J is an M*-group. Since there are no
M*-groups of genus 7 [9, p. 392], we must have g' = 3. But this contradicts Proposition 2.

https://doi.org/10.1017/S0017089500008041 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008041


68 COY L. MAY

6. The proof of Theorem 1—part two. Here we consider the remaining possibilities
in Proposition 1. The approach of §5 will not work here due to the existence of the
surface Y of genus two. We use NEC groups.

Let X be a bordered Klein surface of genus g > 2 , and suppose the M*-group H acts
on X. Then represent X as D/K where K is a bordered surface group. Then there is an
NEC group A with signature (2.5) such that H = A/K.

Now let G=A+(XC), G*=A(XC) and assume o(G) = 24(g - 1 ) . We have the
subgroup lattice (3.2), but now A+ is a normal subgroup of index 2 in N+(K+). The
normality is quite helpful. Of course G = N+(K+)/K+.

PROPOSITION 6. The full automorphism group G* is a quotient of the extended triangle
group T[2, 4, 6].

Proof. By Proposition 1, N+(K+) is either F(2,4,6), F(2,3,12) or F(3,3,4). It is
easy to see that neither F(2,3,12) nor F(3,3,4) contains a subgroup isomorphic to A+.

First let F = F(2, 3,12) have presentation

Assume A is a subgroup of F with [F: A] = 2. Then x, y2 e A, y $ A so that y2 induces an
ordinary period 6 on A [3, p. 506]. Thus A could not have signature (3.3).

The group F(3,3,4) is generated by two elements of order three and thus has no
subgroups of index two.

Therefore, N+(K+) is the triangle group F(2,4,6), and N(K+) is F[2,4,6], since
there is no other NEC group with its canonical Fuchsian subgroup isomorphic to F(2,4,6)
[15, p. 21].

Now let F* = F[2,4, 6] have presentation

a2 = b2 = c2 = (ab)4 = (6c)6 = {acf = 1.

We have the following diagram of groups and quotient mappings.

I
1 C2

There is only one possibility for A.

PROPOSITION 7. A = (a, c, bob, bcb).

Proof. The group A is a normal subgroup of index two in F*. If any two of the three
generators a, b, c were not in A, then the product of these two would be in A and A
would have an ordinary period [3, p. 506]. Hence exactly one of the three generators is
not in A. If a $ A, then A would have a link period 6 induced by b, c [3, p. 506]. If c $ A,
then a, b would induce a link period 4 on A. Therefore b $ A, a, c e A. Also bab, bcb e A
since A is normal in F*.

Now let M = (a, c, bab, bcb). Then clearly M e A, M is normal in F* and
F*/M = C2. Hence A = M.

Now set (= bcb, u = bab, j = a, and v = c. The four elements (, u, j and v generate
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A, of course, and it is a simple matter to check that they satisfy the relations

e- = u2=f = v2 = (tuf = (ujf = (jv)2 = (tv? = 1.

Thus t, u, j and v form a standard generating set for the group A. Now consider the
quotient mapping 0 : A—» H of A onto the M*-group H. Following the proof of Theorem
1 of [8], we see that t $ K = kernel <j>, v $ K, but one of the remaining two generators is
inK.

Assume ; e K. The proof in the other case is very similar. Let T = <t>(t), U - <t>(u),
and V = <j){v). Then T, U and V generate the A/*-group H and satisfy the relations (2.4).
(If ueK, then choose T = <p(v), U = <p(j), V = <j>{t).) See [8, pp. 5,6].

Next consider the quotient mapping « : A - > C 2 x H of A onto C2xH with
kernel a = K+. Since the reflection / is in K but not in the Fuchsian surface group K+, the
image a(j) must generate the factor C2. Write / = a-(y). Then the direct product C2 x H
has generators J, T, U and V that satisfy the relations (2.4) and

The reflection J acts on the complex double Xc = D/K+ and X = XJJ.
But conjugation by b is an inner automorphism h of T* that interchanges t and v and

also M and j . This is perhaps the crucial observation. The normal subgroup K+ is invariant
under h, of course. Therefore h induces an automorphism 6 of the quotient group
G* = T*/K+. This is severely limiting, since / generates the factor C2 of C2 x H.

PROPOSITION 8. The index of the M*-group H is 2, H = D6 and the genus of the
bordered Klein surface X is 2. Topologically X is a sphere with three holes.

Proof. The index q of H is o(UV). The action of 6 on G* is to interchange T and V
and also U and /. But the order of UV is equal to the order of 6(UV) = JT, which is two.
Hence q = 2 and H = D6, the only M*-group with index 2 [9, p. 377]. With this index, D6

acts on a unique topological type of bordered surface, a sphere with three holes.
It is interesting that the index of the A/*-group must be two. In fact, we have

established more.

PROPOSITION 9. G* = G48, and X is dianalytically equivalent to the surface Y of genus
two.

Proof. We have o(G*) = 48. Let JZ:T*—*G* be the quotient mapping, and write
A = Ji(a), B = n{b), C = n{c). In G*, (UV)2 = (BAB. Cf = 1, from the previous proof.
Thus the generators A, B and C for G* satisfy the denning relations (4.1) for G4g. Hence
G* = G4S.

Now the complex double Xc is the Riemann surface W of the example of §4 and X is
the surface Y =W/A, since A =J.

Note that the other possibility for kernel (f> gives the surface W/BAB. This concludes
the proof of Theorem 1.

7. Teichmuller space. Let V be a NEC group, and let T(F) be the Teichmuller
space of F. Then T(T) is homeomorphic to a real open ball of dimension d(F). If F is a
Fuchsian group with signature (g; +; [mu . . . , mr\, { }), then d(T) = 6g - 6 + 2r. If F is
a proper NEC group, then d(T) = d(T+)/2 [15, p. 19].
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Now let Fi and F2 be NEC groups, and let a:T1^>T2 be a monomorphism. Then a
induces an embedding ar»:r(r2)-*r(r1) . The points in the image of this embedding
correspond to groups isomorphic to I\ which are contained in groups isomorphic to F2. In
particular, if K is a surface group that is a normal subgroup of F, then the points in the
image of the embedding of T(T) in T(K) correspond to surfaces with a group of
automorphisms isomorphic to F/K.

An NEC group F, is said to be maximal if F! is not a proper subgroup of another
NEC group. Let Max^j) denote the subset of TiTx) that consists of the maximal groups.
Then Max(Ft) is usually an open, everywhere dense subset of T(Fi). However there are
some exceptional NEC groups for which M a x ^ ) is empty.

The signatures of all Fuchsian groups for which Max^,) is empty have been classified
by Singerman [14]. In addition, Bujalance [2] has determined all inclusions between NEC
groups with d ^ ) = d(F2), with the additional condition that F! is a normal subgroup of
F2-

Now let A' be a bordered Klein surface with maximal symmetry, and let H = A(X).
Then there are an NEC group A with signature (2.5) and a homomorphism <p:A—>H
onto H such that X = D/K where K = kernel <f> is a bordered surface group. We have the
inclusions

K+ K A

and induced imbeddings of the Teichmuller spaces

The points in the image of 7(A) in T(K) correspond to bordered Klein surfaces with
automorphism group H; each surface has the same topological type as X. The points in
the image of T(A) in T{K+) correspond to Riemann surfaces with a group of
automorphisms isomorphic to C2 x H; each surface is the complex double of a bordered
Klein surface with maximal symmetry. Now let F denote the set of points in the image of
T(A) in T(K+) that correspond to Riemann surfaces with full automorphism group
C2 x H. The set F is just the image of Max(A). The canonical Fuchsian group A+ has
signature (3.3), and this signature is not one of the exceptional ones [14, p. 33]. Therefore
A is not exceptional either, and F is an open, everywhere dense subset of the image of
T(A) in T(K+). Just from these considerations, then, it follows that for most Klein
surfaces with the same topological type as X and automorphism group H, the complex
double of the surface has full automorphism group C2 x H. Theorem 1 says that, except
for one topological type, all the surfaces have complex doubles with that automorphism
group. Most spheres with three holes that have maximal symmetry have complex doubles
with automorphism group C2 x D6. However, the complex double of the special surface Y
has automorphism group G4S, which is twice as big.

There is also a connection here with the main result of [3], which classifies the
symmetry types of Riemann surfaces of genus two. There must be Riemann surfaces of
genus two with automorphism group C2 x D6 that are complex doubles of orientable
surfaces with three boundary components, but no surface with species +3 appears in the
table [3, p. 518]. However, Singerman has informed us [16] that the table should have an
additional entry, a surface X with A+(X) = D6, A(X) = C2xD6, UCT group (0;+;
[2,2,2,3]; { }), EUCT group (0; +; [ ]; {(2,2,2,3)}) and symmetry type {0, +1, +3,+3}.

https://doi.org/10.1017/S0017089500008041 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008041


BORDERED KLEIN SURFACES 71

Finally, we would like to thank David Singerman for his help with the ideas of §6
and §7.
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