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AF-Skeletons and Real Rank Zero Algebras
with the Corona Factorization Property

D. Kucerovsky and P. W. Ng

Abstract. Let A be a stable, separable, real rank zero C∗-algebra, and suppose that A has an AF-skeleton

with only finitely many extreme traces. Then the corona algebra M(A)/A is purely infinite in the sense

of Kirchberg and Rørdam, which implies that A has the corona factorization property.

1 Introduction

Recall that in [7] Kirchberg and Rørdam called a C∗-algebra C purely infinite if it had
no characters, and if furthermore for every pair of positive elements a, b in C such

that b lies in the closed two-sided ideal generated by a, there is a sequence of elements
(rn)∞

n=1
such that rnar∗

n
converges in norm to b. This definition generalizes Cuntz’s

definition of purely infinite simple C∗-algebras.

Given a separable stable C∗-algebra B, it is of interest to determine when the
corona algebra M(B)/B is purely infinite in the sense of Kirchberg and Rørdam. This

property is connected with fundamental results about the structure of B, in partic-
ular, the corona factorization property, which will be defined later. One reason for
the interest in the corona factorization property is that this condition is an algebraic
characterization of a basically topological (or perhaps category-theoretical1) prop-

erty: every full extension τ : A → M(B)/B of the C∗-algebra is absorbing in the
nuclear sense.

We should mention that there is another notion of pure infiniteness for nonsimple
algebras, due to Zhang. An algebra is purely infinite in the sense of Zhang if every

nonzero hereditary subalgebra has an infinite projection. This definition is neither
stronger nor weaker than the Kirchberg–Rørdam purely infinite property, except in
the special case of simple algebras (then the two properties are equivalent). However,
even though the corona of a stable separable and real rank zero C∗-algebra is purely

infinite in Zhang’s sense, this does not imply, unlike the Kirchberg-Rørdam property,
that the original algebra has the corona factorization property.

In this paper, we give a sufficient condition for the corona algebra M(B)/B of a
stable separable real rank zero C∗-algebra B to be purely infinite in the Kirchberg–

Rørdam sense. Our condition is stated in terms of an AF-skeleton of B.

Definition 1.1 Let B be a C∗-algebra. Then, a pair (A, ι) is an AF-skeleton of B if

A is an AF-algebra and ι : B → A is a quasi-unital ∗-homomorphism, inducing an
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1It is interesting to note that Higson’s construction [2] of a theory that is in many cases equivalent to
KK-theory involved an explicitly category-theoretical construction.
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isomorphism on primitive ideal spaces, such that every projection in B is Murray–
von Neumann equivalent to a projection in ι(A).

When the context is clear, we will sometimes refer to A as “the AF-skeleton,”

which is of course a misnomer, as A is not unique. A homomorphism is said to
be quasi-unital (the term proper has also been used) if it maps some (hence all) ap-
proximate unit(s) of the domain to an approximate unit of the target algebra. Perera
and Rørdam[10] actually used the equivalent form ι(B)Aι(B) = A

The term quasi-unital is not entirely standard, and sometimes other terms or

slightly different definitions of this term are used in the literature. Actually, AF-ske-
letons have an additional technical property (involving the order structure in the
projection monoid) that we have omitted from the above list since we do not need it.

Lin [9] has shown that if B is a simple separable unital real rank zero C∗-algebra,
with stable rank one and with K0(B) a dimension group, then B has an AF-skeleton.

Perera and Rordam [10] have shown more generally that arbitrary separable real rank
zero C∗-algebras have AF-skeletons.

In this paper, we prove the following result.

Theorem 1.2 Let B be a stable separable real rank zero C∗-algebra having an AF-ske-

leton with finitely many extremal tracial rays. Then M(B)/B is purely infinite in the

sense of Kirchberg and Rordam.

We have been unsuccessful in removing the AF-skeleton from the hypothesis, but
this may form a topic for future investigation. On the other hand, the use of AF-
skeletons allows us to consider a fairly wide class of algebras A. In [11], Rørdam asks
for an example of a real rank zero simple algebra which contains an infinite and a

finite projection. If such an example exists, it would not be surprising if it had a
corona that is purely infinite in the sense of Kirchberg and Rørdam, and one could
hope that our theorem might be applicable to show this.

As a corollary of our main result, we get that algebras B satisfying the hypothesis
above have the corona factorization property [8].

Definition 1.3 Let B be a separable, stable C∗-algebra. We say that B has the corona

factorization property if full projections in M(B)/B are properly infinite.

Recall that a positive element is full if the norm-closed ∗-ideal generated by the
element is the whole algebra. It can be shown that, at least in our setting of stable
algebras, the corona factorization property is equivalent to having full projections of
the multiplier C∗-algebra M(B) be properly infinite. From the above definition and

Theorem 1.2, we have the following corollary.

Theorem 1.4 Suppose that B is a stable separable real rank zero C∗-algebra and sup-

pose that B has an AF-skeleton with only finitely many extreme tracial rays. Then B has

the corona factorization property.

This theorem implies that every full extension of B is absorbing in the nuclear sense.
As an additional application of our main theorem, notice that it can readily be used
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to show, via the two of three property of purely infinite algebras, that the multi-
plier algebra of a real rank zero purely infinite algebra is purely infinite whenever the

AF-skeleton has finitely many extremal tracial rays.

2 Main result

Our hypothesis is stated in terms of the tracial cone of a stable AF-algebra. Of
course, the traces on the algebra are not continuous. Hence, it is most natural to
view the traces as forming a convex cone of positive linear functionals on the ordered
K0-group. The natural topology on any collection of linear functionals is usually, as

in this case, the weak topology, coming from evaluation at points of the underlying
space. A base for such a cone T is a convex subset K such that any nonzero trace in T

can be expressed uniquely as a scalar multiple of some element of K. (For example,
one can construct a base by intersecting T with a hyperplane missing the origin.)

We denote the tracial cone of A by T+(A), and, fixing some choice of base, we
denote the chosen base by T(A). The base2 is a Choquet simplex when it is compact,

but of course it may or may not be compact in general. For example, T(C0(R)),
where C0(R) is regarded as a C∗-algebra, is noncompact.

We use the following compactness criterion of Elliott and Handelman [3, Theo-
rem 3.1, part (iii) ⇔ (vii)] as a lemma.

Lemma 2.1 Let A be a separable AF-algebra with no nonzero unital quotients. Then

the space T(A) is compact if and only if there exists a unital copy of O∞ in the corona

M(A)/A.

The proof of the above very interesting result is impacted by a counterexample

due to Goodearl [4, p. 479], and hence we give an outline of the changes needed
(with thanks to George Elliott). The counterexample affects [3, Theorem 2.10], and
[3, Theorem 2.11] must be modified, with the conclusion weakened to only allow
traces (extended) from B, and the hypothesis strengthened to include compactness

of the base of the trace cone of B. It turns out that the equivalence of nine conditions
in their Theorem 3.1 is still valid if conditions (v) and (vi) are omitted. In particular,
the equivalence of their condition (iii) and condition (vii) is what we need for our
proof.

We now give more detail on the modifications that need to be made to the proof in
[3]. At the bottom of page 109 of [3], the stated inequality is now only for τ ∈ T(A).

The first line of page 110 of [3] needs to be modified to read:

Hence by the proof of Theorem 2.11 (with the conclusion weakened to the

statement with T(M(A)) replaced by T(A), and the hypotheses strengthened to
include compactness of T(A)), there exists a projection e ∈ M(A) such that. . .

In the next line T(M(A)) should again be replaced by T(A).

2The base is in many cases unique up to affine homeomorphism (see [5, 6.17, 10.2]). The case of
non-compact base is not too well understood, but it is likely that different choices of base are still at least
homotopy equivalent in a suitable sense.
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Lemma 2.2 Let A be a stable AF-algebra such that the cone T+(A) of traces of A has

only finitely many extremal rays. Projections in M(A) have an image that is either zero

or properly infinite in the corona algebra.

We thank the referee for suggesting the use of the Elliott–Handelman result to
simplify the proof of this lemma, and for suggesting that we generalize to the case of
non-simple AF-algebras.

Proof We may as well assume that P is not in A. If P is a projection in the multiplier
algebra with APA equal to A, then by the result of Combes and Zettl [1], the tracial
cone of the full hereditary subalgebra PAP is algebraically isomorphic to that of A,
and hence is finite-dimensional. In particular it follows that T(PAP) is finite-dimen-

sional and hence compact. Since P is not in A/I for any ideal I, it follows that PAP has
no unital quotients. By Lemma 2.1, there thus is a unital copy of O∞ in the corona
M(PAP)/PAP = P(M(A)/A)P. This implies that P has properly infinite image in the

corona.

If P is a projection in the multiplier algebra with APA not equal to A, then we can
reduce to the previous case, simply by perturbing P to q := P + c where c is strictly

positive in (1−P)A(1−P). This element q is equal to P in the corona, which is all we
need. By the Combes–Zettl result quoted above, the tracial cone of qAq is compact.
We need only check that there are no unital quotients, and then we can proceed as
before. To verify this, suppose that in some quotient B := A/I it happens that qBq

is unital. Denoting the unit of the hereditary subalgebra by u ∈ B, it follows that
(u − 1)q multiplies B into zero, and hence is zero in M(B). But then uq = q and this
contradicts the fact that (the image of) q is not in B.

Looking at the preceding result, one might hope that the finite-dimensionality

hypothesis could be replaced by the compactness of any base of the tracial cone.
However, this form of compactness is rather delicate and in particular is not always
preserved under passage to full hereditary subalgebras. In fact, as several people have
pointed out to us, the converse of the above lemma also holds: for an AF-algebra,

purely infinite corona implies finite-dimensional tracial cone.

Theorem 2.3 Let B be a stable separable real rank zero C∗-algebra such that the

AF-skeleton has only finitely many extremal tracial rays. Then every projection P in

M(B) is either zero or properly infinite in the corona algebra M(B)/B.

Proof By hypothesis, let (A, ι) be an AF-skeleton for B that has only finitely many
extreme traces. We can stabilize both A and B without changing the hypothesis (we
just replace ι by ι ⊗ 1), thus, we may as well assume that A is stable. The monomor-
phism ι maps an approximate unit to an approximate unit, thus is strictly continuous,

and extends to a strictly continuous map of multiplier algebras Ψ : M(A) → M(B).
The extended map, Ψ, is a unital monomorphism.3

Since Ψ maps A into B, it also induces a unital map of corona algebras.

3This is because the kernel of the extended map Ψ is the strict closure of the kernel of the given map ι.
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By the definition of an AF-skeleton, we have that every projection in B is Murray–
von Neumann equivalent to a projection in Ψ(A). It follows from this that the map

Ψ maps the projection monoid V (A) onto the projection monoid V (B). We claim
that the same is true for the projection monoids of the multiplier algebras. Certainly,
Ψ induces a map, say ΨV , from the projection monoid V (M(A)) into the projection
monoid V (M(B)), and we are to show that this map is onto.

Suppose then that Q is a projection in M(B). Since B has real rank zero, QBQ has

real rank zero. Choose a countable approximate unit {qn}
∞

n=1
for QBQ, consisting

of an increasing sequence of projections. Set e1 := q1 and en := qn − qn−1 for
n ≥ 2. Then

∑
∞

n=1
en converges to Q in the strict topology of M(B). Now by the

AF-skeleton property, for each n ≥ 1, there is a projection fn in A such that en is

Murray–von Neumann equivalent to Ψ( fn). Considering R :=
∑

vn fnv∗
n

where the
vi are the usual sequence of orthogonal multiplier isometries of M(A) that come from
the stability of A, we obtain a projection R in M(A).

Since Ψ is strictly continuous, we have ΨV (R) =
∑

∞

n=1
Ψ(vn fnv∗

n
), where the sum

converges since
∑

∞

n=1
vn fnv∗

n
is known to converge in the strict topology in M(B).

Since Ψ preserves Murray–von Neumann equivalence, Ψ(vn fnv∗
n

) is equivalent to

Ψ( fn), which is in turn equivalent to en. Let wi be a partial isometry in B with initial
projection en and range projection Ψ(vn fnv∗

n
).

The sum W =
∑

∞

n=1
wn converges in the strict topology in M(B) and has initial

projection Q, range projection Ψ(R). Hence, Ψ(R) is Murray–von Neumann equiv-
alent to Q, and thus ΨV maps V (M(B)) onto V (M(A)).

Now let P be a projection in M(B) that is not in B. This projection has been

shown to be equivalent to a projection, say Ψ(U ), in the image of Ψ. Clearly, the
preimage U cannot be in the canonical ideal, so by Lemma 2.2 the projection U

has properly infinite image in the corona M(A)/A. (The AF-skeleton is stable, and
hence has no unital quotients, so Lemma 2.2 can be applied.) As pointed out earlier,

the map Ψ induces a homomorphism of corona algebras, and therefore the image
Ψ(U ) + B in the corona is the image of the properly infinite projection U + A under
a homomorphism. A homomorphism maps a properly infinite projection to either
zero or another properly infinite projection, so Ψ(U ) + B is properly infinite in the

corona. Of course Murray–von Neumann equivalence also preserves this property, so
that the original projection P has properly infinite image in the corona, as asserted.

For the main result, we need two more results from the literature. First of all, from
Zhang’s work [12, Theorem 1.1], we have the following result.

Lemma 2.4 Let B be a σ-unital real rank zero C∗- algebra. A hereditary subalgebra

of the multiplier C∗-algebra M(B) is the linear span of its projections.

We also need the following sufficient condition, due to Rørdam and Kirchberg [7,
Proposition 4.7], for an algebra to be purely infinite in their sense. We note that the
hypothesis is strictly stronger than the property of being purely infinite in the sense
of Zhang.
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Lemma 2.5 Let C be a C∗-algebra with the property that every nonzero hereditary

C∗-subalgebra in every quotient of C contains an infinite projection. Then C is purely

infinite in the sense of Kirchberg and Rordam.

We now prove the main result.

Proof of Theorem 1.2 By Lemma 2.5, it is enough to show that every hereditary
subalgebra of every quotient of M(B)/B contains an infinite projection. By Theorem
2.3, nonzero projections in the corona of B that lift to projections of the multiplier
C∗-algebra M(B) are properly infinite in the corona. It follows from Lemma 2.4 that

every hereditary subalgebra of M(B)/B therefore is (linearly) spanned by properly
infinite projections.

Let I be a two-sided norm-closed ideal in M(B)/B. If H is a nonzero hereditary

subalgebra of the quotient (M(B)/B)/I, then the pre-image of H in the multiplier
C∗-algebra M(B) is again a hereditary subalgebra and as before is spanned by projec-
tions. It follows that H is itself the span of projections coming from M(B). Since the
map from M(B) to (M(B)/B)/I factors through M(B)/B, these projections in H are,

by Theorem 2.3, each the (nonzero) image of a properly infinite corona projection
under a homomorphism, and since the properly infinite property is preserved by ho-
momorphisms, it follows that they are properly infinite in H. Hence, by Lemma 2.5,
the corona M(B)/B must be purely infinite in the sense of Kirchberg and Rordam.

Note From a forthcoming paper by Kucerovsky and Perera, it now appears that all
stable real rank zero C∗-algebras have the corona factorization property.
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