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Abstract. The motion of a rigid sphere embedded in an adhering medium and
subjected to an external force is analysed exactly in the context of classical
elastodynamics. For the limiting case of an incompressible medium it is
possible to write down a simple second order differential equation relating
displacement of the ball to the external force.

The theory is generalised to the case of a viscoelastic solid and the results
obtained are pertinent to recently developed experimental methods for testing
the dynamical mechanical properties of very low modulus polymer gels.

1. Introduction

The present paper is concerned with the problem of a rigid sphere embedded
in a sticky elastic or viscoelastic medium and subjected to an external time
dependent force. The sticky nature of the medium is taken into account in the
sense that the boundary conditions assumed at the surface of the ball ensure
that material initially in contact with the surface remains in contact.

This problem was suggested to the author by Professor M. Gordon and
arises from the following experimental situation. In the course of formation of
any network polymer, a chemical " cross linking " reaction converts a liquid
system to a gel at a critical (gel) point. Thereafter, the elastic shear modulus of
the solid gel increases monotonically. The rate of increase of modulus, at first
vanishingly slow, subsequently increases to a maximum and then finally dies
away again as the chemical equilibrium of a glassy state is approached. Inter-
mediately, the gel has rubbery-elastic type properties with shear modulus
ranging from 102-105 dynes/cm2. This region is of especial interest from the
viewpoint of developing molecular theories of rubber elasticity (Dobson and
Gordon (1965), (1966)) and it is desirable to have available experimental tech-
niques for measurement of the relevant shear moduli. It is not possible to test
such soft materials by conventional methods. At first it was proposed to use
ball indentation techniques obtaining the shear modulus from the Hertz theory
of contact stresses. Unfortunately the experiment is complicated by surface
tension effects and this method was abandoned in favour of using a completely
immersed metallic ball which is displaced in the medium by an external magnetic
field. Measurement of the ratio (Magnetic force/ball displacement) then leads
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56 S. C. HUNTER

directly to a value of the elastic shear modulus for a near incompressible medium
(equations (1.1), (1.2) below). The general case for this method of testing as a
rational geometry for the measurement of viscoelastic and elastic parameters of
rubbery materials has been argued elsewhere (Gordon, Hunter and Ward
(1967)).

It is an easy calculation in elastostatics to derive the formula

„ 24TT(1—v) E , . , .
E = —±—iitat (1.1)

(5-6v)
relating the magnitude of the applied force E to the ball displacement £; other
parameters appearing in equation (1.1) are the radius of the ball a, and the shear
modulus n and Poisson's ration v for the medium. For the case of an incom-
pressible solid v = \ and (1.1) reduces to

E=6nna£ (1.2)

which result is reminiscent of Stoke's formula for the steady slow motion of a
sphere through a viscous liquid. In obtaining equation (1.1) we have assumed
the sticky nature of the medium.*

Equation (1.1) is valid for small static displacements of the ball in an elastic
medium (i.e. for £/a -41). However, in view of the interest in measuring dynamic
shear moduli (for which purpose it is imperative to use a ball in motion), the
question arises as to whether (1.1) provides a valid first approximation for the
dynamic case, and also the nature of correction terms accounting for inertial
effects in the medium. A possible method for assessing first order inertial
corrections is to use energy variational techniques in which kinetic and potential
energies are evaluated using a quasi static displacement field. The latter is
algebraically identical with the static field, but the parameter £ is allowed to
depend on time. This method fails for the present problem because the static
displacement field is of order r" 1 for large r and the resulting kinetic energy
integral diverges. In fact the far field of the true dynamic problem is quite
different from that of the static problem, and the only method of computing
the dynamic analogue of equation (1.1) is to solve the equations of elasto-
dynamics.

It is with the latter problem that this paper is concerned. Section 2 deals
with the motion of a rigid sphere in an elastic medium and the extension to the
viscoelastic case follows in Section 3. In both cases considerable simplifications
ensue with the assumption of incompressibility; this is a highly valid approxi-
mation for the polymer solutions, for which typical values of the bulk modulus
are 1010 dynes/cm2. For both elastic and viscoelastic cases we consider periodic

* The corresponding non-sticky problem, defined by boundary conditions of zero tangential
shear stress and non-tensile normal stress at the surface r = a of the sphere, is much more
difficult. For this problem the surface r = a is divided into a contact region with prescribed
normal displacement and a stress free region. The resulting mixed boundary value problem
leads to a pair of dual series equations in Legendre Polynomials.
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motion and motion generated impulsively from rest by a delta function type
force.

F. M. Leslie (1961) has solved the related problem of the slow steady
motion of a rigid sphere in a viscoelastic liquid of the Oldroyd type. There are
no points of comparison between the present work and that of Leslie. Leslie's
analysis is not limited to small deformations as is the case here; on the other
hand the present paper takes account of both inertial and unsteady effects for
arbitrary linear viscoelastic materials.

2. Elastic analysis

Without loss of generality we assume motion of the sphere t; = £{t) to take
place in the z direction. Choosing spherical polar coordinates, r, 9, <f> defined
by

2 = r cos 9, x = r sin 9 cos <j>, y = r sin 6 sin <j>

the boundary conditions at r = a for a medium which adheres to the sphere
are

u, = £(0 cos 9, ue = - £ ( 0 sin 9 (2.1)

where ur and ug are respectively displacement components in the r and 9 direc-
tions, and where for t, = 0 the centre of the sphere lies at r = 0.

The equations of elastodynamics are satisfied by a displacement field

u = g r a d $ + cur l^ (2.2)

where the scalar and vector potentials are respectively solutions of the wave
equations

V2O = c:2d2Q>/dt2, V2A = C22d2A/dt2 (2.3)

Here ct and c2 are the speeds of dilatational and shear waves; in terms of the
Lame constants A, n and the density p

cf = a + 2/i)/p, ci = /i/p (2.4)

The axisymmetric problem defined by the boundary conditions (2.1) is met
by assuming

O = iKr, /) cos 9, Ar = Ao = 0, A+ = B{r, i) sin 9. (2.5)

where Ar, Ae and A$ are the spherical polar components of A. Substituting
(2.5) into equations (2.3) leads to the equations

dhj/ 2 # _ 2 ^ _ _ 2 5 V d^B 2 8B _2B _ _2d
2B

8r2 +rdr r2 ~ °' dt2' 8r2 + "r dr r2 ~ °2 ~d? ( >

with outgoing wave solutions

i> = | [ '•-1*10-(r-a)/c1)], B = i {r-l
X2{t-{r-a)lc2)-\ (2.7)

dr dr

in which Xi and x2 are arbitrary functions of the indicated arguments. For
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subsequent convenience we have incorporated the constants a\c^ and a/c2 into
the arguments of Xi and / 2 .

From (2.2) and (2.7) we derive the following expressions for the displacement
components ur and ug,

ur = cos 0(z1/c?r + 2x1/c1r
2 + 2x1/r3-2x2/c2r2-2Z 2/r3) (2.8)

ue = -sin 6(z2/clr + x2lc2r
2 + X2lr3-Xilcir2-Xilr3) (2.9)

where the fluxion dots denote differentiation with respect to the arguments of
Xi and Xi (and also differentiation with respect to time).

The boundary conditions (2.1) now yield the pair of coupled ordinary
differential equations for Xi(0 and / 2(0.

2#2/c2a2-2x2/a3 = C(0 (2-10)

-xJc^-xJa3 = C(0 (2.11)
For motion initiated at t = 0 the initial conditions on Xi> Xi a nd t n e i r derivatives
derive from the requirement of material continuity at the wave fronts r = a + c^t
and r = a+c2t. If no fracture occurs for all positions of the wave fronts
equations (2.8) and (2.9) necessitate

Xi = Xi = Xi = X2 = Xi = h = 0 for t = 0. (2.12)
However, since for t = 0, £ = 0, equations (2.10) and (2.11) imply that the
conditions 2i(0) = 0> Xi(®) = 0 are redundant. It follows that equations
(2.12) yield a necessary and sufficient number of initial conditions (4) to effect
a complete solution of (2.10) and (2.11) for specified !;(t).

While (2.10), (2.11) and (2.12) solve the proposed problem for given £,(f),
the present paper is concerned primarily with the determination of £(f) for a
given external force E(t). For this purpose we require to compute the resistive
force exerted by the medium on the sphere. At the surface r = a we find from
(2.8) and (2.9) the following values of the strain components

srr = cos 0F(t), eeg = e^ = 0, er9 = \ sin 0G(t) (2.13)

where F and G are given by

a4 (2.14)

Git) = X2lcla + 3x2lcla2 + 6X2/c2a
3 + 6x2l^

-2x1 /c2a2-6x1 /c1a3-6Z l /a4 (2.15)

The results that the hoop strains vanish at r = a is a direct consequence of
assuming the sticky boundary conditions (2.1). From Hooke's law and (2.13)
the stresses oTT and <rr9 &tr — a are

arr s A(efr + ee9 + e^) + 2//8,r = (A+2/i)err = pc\F{i) cos 6 (2.16)

arB = 2ftsrg = pc2
2G{t) sin 6 (2.17)
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The total internal force /(/) exerted by the medium on the sphere lies in the z
direction and is given by the integral

J (0= (cos 6 orr-sin 0 org) dS
Js

evaluated over the surface of the sphere r = a. Substituting from (2.16) and
(2.17) leads finally to

= (Mla){c\F-2c\G) (2.18)

where M is the mass of media displaced by the sphere. Our equations are
completed by Newton's law of accelerated motion for the sphere,

E(t) = m { - / ( 0 (2.19)

where m is the mass of the sphere.
For given external force E(t), the equations (2.10), (2.11), (2.14), (2.15),

(2.18) and (2.19) may be combined to yield a single sixth order ordinary differen-
tial equation relating £(t) to E(t). The algebra is cumbersome and complicated
by the necessity of expressing the initial conditions (2.12) entirely in terms of
%(t). A much more attractive approach is through the use of periodic solutions
which may be used to generate general solutions by Fourier analysis techniques.
Further the periodic solutions are (a) of direct interest (b) readily generalise to
the viscoelastic case and (c) obviate the necessity of considering initial conditions.

We look for solutions ^, #,, /2» E a n d J °f o u r equations in the form

t = %fo)#», Xl = Xi(.co)e'°", I = / » e t e < etc. (2.20)

Substituting from (2.20) into (2.10), (2.11), (2.14), (2.15), (2.18) and eliminating
Xi! '/.i, F> G, there results (after some algebra)

7(e») = - Q(cu)?(a)) (2.21)
with Q(a>) given by

0 = Mc?[9 + 9i(l+y)Q-(2 + 9y+y)Q-iy(2 + y)Q] ( 2 2 2 )

fl2[l + 2 2 + i ( l + 2 ) f i 2 n 2 ]
where

(2.23)

fi = aco/Ci (2.24)
Also from (2.19)

E(co) = -(ma)2 |+J) = -Oa>2-g(a>)]f (2.25)

which completes the solution of the periodic problem.
To obtain solutions for arbitrary E{t) we write

£ ( 0 = \ E((o)eia'dco-r
J - 0 0
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where E is obtained from Fourier's theorem. From (2.25) the corresponding
£(0 is given by

The simplest non-periodic problem is that of a sphere set into motion
impulsively at t = 0 by a force

E(t) = P05(t) i.e. E(co) = P0/2n (2.27)

Substituting from (2.27) for E into (2.26) yields a Fourier integral whose inver-
sion is straightforward in principle. However the practice entails solving the
equation mco2—Q(co) = 0 and this is essentially a quartic equation in ico with
real coefficients which are functions of two parameters (y, M/m). The solution
could only be effected by numerical methods and in view of the simplifications
which ensue with the assumption of incompressibility, we indicate only the form
the solution takes for the compressible problem. The solution is of the form

£ = £ Ai(?" (2.28)
i = 1

where the at axe solutions of a quartic equation with real coefficients. For all
y(l<y<oo), and for sufficiently small values of M/m, the a; comprise two
complex conjugate pairs of numbers with negative real part; thus (2.28) is a
sum of damped harmonic terms. With increasing (M/m) one pair of the a;

become real and negative and with further increase of M/m all the exponents
become real and negative. Realistic values of M/m for the practical situation
of a metal ball (density 4.0-8.0) immersed in a polymer solution of density -M.O
lead to

0.125<M/w<0.25 (2.29)

and for this range of values the a, are always complex (see also the incompres-
sible results below). The only result of the compressible calculation of sub-
sequent interest is the initial velocity with which the ball is set into motion.
The detailed solution (2.28) yields

ft* = 0 + ) = P0/m (2.30)

in accord with the law of momentum generation.
Two limiting cases of the general theory are of interest. We note first that

in the limit of low frequency behaviour
_ 9Mc\

a\\+2y2)

(5-6v)

in agreement with the static result (1.1). Of more interest is the limit of (Qca)
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for the case of incompressibility (v->^). Taking account of (2.23), (2.24) we
find

Lt^Qffo) = Af f-i<»2 + y(c2/«)a>+Kc2/a)2l (2.31)

which result is of such algebraic simplicity that the equation resulting from
substituting (2.31) into (2.19) can be inverted directly into the time domain to
yield the following differential equation for £(0

)C = £(0 (2.32)

Equation (2.32) is susceptible to an interpretation in which the ball behaves
with an effective mass (m+^M), while the behaviour of the medium is modelled
by a linear spring in series with a dashpot dissipative mechanism (the actual
dissipative mechanism is the radiation of elastic energy away from the ball).

The principal curiosity in (2.32) is the result that for an initially quiescent
system subject to a delta function force (2.27), the initial velocity is given by

fa = 0+) = Pol(m + iM) (2.33)
in contrast to (2.30), and in seeming contradiction with the momentum law.
The apparent anomaly is resolved by appealing to the limit v->^ in the compres-
sible solution (2.28). For small values of (l-2v), the (negative) real parts of
two of the exponents <x; are of order 0(1 — 2v)~ -, while the associated coefficients
are of order 0(1 — 2v)*. As v->-£ the pair of terms in question tend to zero for
all /; however, consideration of the derivative shows that while the terms yield
no contribution as v-*i for t>0, there is a finite contribution to | at t = 0.
Thus initially |(0 + ) is given by (2.30) and this is followed by an instantaneous
decay to the value (2.33). Clearly the instantaneous decay is associated with
the limiting process whereby CJ-KXJ, allowing the instantaneous transmission
of momentum (and kinetic energy) to the medium. In reality this transmission
occurs in a finite time of order a/ct ~ 10"6 sees, for a ball of 2 mm. diameter;
the corresponding time scale for the solution of (2.32) is of order

a/c2~10-2-Hr4secs .

In the context of the incompressible limit we note that for polymer solutions
the bulk modulus is approximately 1010 dynes/cm2 so that for shear moduli
in the range 102-106 dynes/cm2

l -2v~10" 4 -10~ 8

and the incompressible approximation is excellent. From the theoretical view-
point it is to be noted that it is not possible to introduce the limit v-*-J at any
stage prior to (2.31) and obtain physically meaningful results.

Equation (2.32) is so elementary that there is no necessity to discuss detailed
solutions beyond the case of impulsive motion defined by (2.27). For this case
we find for M/m < 1.6,

'1' sin (j?,0 (2.34)
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where
<5i = c28/a, ^

and where
5 _ 2-25M/m _ = l-5(2M/m-5M2/4m2)*

~ l + iM/m 1+iM/m

For M/m> 16 the solution reduces to the sum of two exponentially decaying
terms, but this is a rather academic result in view of (2.29).

Typically M/m = 015 and

5 = 0-314, 0 = 0-727

so that the motion is virtually extinguished within two cycles of the trigono-
metric term [see Fig. 2.]

3. Yiscoelastic analysis

To solve the problem of motion in a viscoelastic solid it is only necessary to
replace the Lame constants k and n in the periodic elastic solutions by the cor-
responding complex moduli k(ia>) and n(i(o) (defined e.g. as in Hunter (I960)).

We consider in detail the incompressible case, solved for an elastic solid by
(2.26) with Q(ca) given by (2.31). The Lame constant k has disappeared in the
limiting process while pi is retained implicitly in (2.31) through

c2 = Oi/P)*
Carrying out the indicated substitution leads to the general solution

= _ f
J= _ f E(q))e<to
J [( + iM)a)2fiMco((iu)/p)*/fMM«)/p2]

which replaces (2.32) for the viscoelastic case. It is no longer possible to express
the motion in terms of a differential equation.

The evaluation of (3.1) is simplified by recalling that fi{ico) is the represent-
ation of a function n{S) of the complex variable S along the imaginary axis
S = i(o (e.g. see Hunter—ibid). Changing the variable from ct> to S in (3.1)
and considering again the case of impulsive motion, leads to the inverse Laplace
transform

— \2ni) F
- i - i ^'dSI

Jk-i

where k>0 and the path of integration lies to the right of any singularities of
the integrand. It may be shown that the integrand in (3.2) is free from singu-
larities for Re(S)>0 and this justifies the transition from a Fourier to a Laplace
integral.

Further progress is possible only by specifying in detail the transform
modulus n(S). For p(S') = constant we recover the elastic solution (2.34).
This result may be compared with experimental profiles to yield an estimate of
c2/a and hence a direct estimate of the only relevant mechanical property i.e.
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H = pel. This approach could provide the basis for evaluating the " dynamic
modulus under the conditions of the experiment " in the most naive model of a
viscoelastic solid.

A more sophisticated viscoelastic model is that of a Voigt solid for which
the constitutive equation relating shear stress Z to shear strain e is

£ = 2no(e + Te) (3.3)

Here /i0 is the static shear modulus while T is a parameter of dimension time.
For the Voigt solid (3.3), the transform modulus is

n(S) = ixo(l+ST) (3.4)

and it is possible to effect the inversion (3.2) in closed form. We find

c, =

where g(u) is the function

g(u) = e"A'" sin ((<£ + A2)u) — e~kl" sin

and the various parameters are defined by

c0 = (nolp)*' h = c0T/a

Xt = ihd — R cos <j> 22 = ^i/? — K sin

! cos 0 A4 =

In these equations <5 and /? are as defined in (2.35) and the assumption
(M/m)<l.6 has been retained.

Equation (3.5) is not in a form that is useful for either indicating the effects
introduced by viscoelasticity or comparison with experiment. For the latter
purpose it would be necessary to invest considerable computational effort, and
this would hardly be justified for the Voigt solid which provides a valid visco-
elastic model for real materials only over a very limited frequency range. In
view of the algebraic complexity of (3.5) it is clear that attempts to evaluate
(3.2) for any finite element model (of which the Voigt is the simplest) will lead
to expressions which are virtually useless to the experimentalist.

A model, much more useful for present purposes, is the one based on the
assumption of constant loss angle A. With a number of acceptable approxi-
mations, the model leads to an expression for £(t) which is readily susceptible
to numerical analysis. Also the model provides a valid description of many real
viscoelastic materials over wide ranges of frequency (e.g. see Kolsky (1956),
Hunter (ibid)). The loss angle A(co) is an odd function of (o defined by

tan A = ^2/^1

where nk and fi2 are respectively the real and imaginary parts of fi(ico). It is an
experimental observation that over wide frequency ranges many viscoelastic
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materials display a linear dependence of nt with log (<a) and concomitantly a
negligible variation in A(co). Both of these results are modelled by the solid
with transform modulus

KS) = KSn (3.6)

where K and n are real constants. On substituting S = coe±i7l/2 we have
immediately

tan A = tan (inn), co>0;

= — tan (i«7i), co<0

so that for positive co the index n is related to the loss angle by

n = 2A/TT

and A is precisely constant. Also (3.6) leads to

= KcosAenIogt0

(3-7)

which for A <g 1 is a valid expansion for a wide frequency range [in practice from
two to four decades]. In (3.7) cu0 is a parameter that may be chosen arbitrarily
to select an appropriate frequency range pertinent to the experimental condi-
tions. Thus in the present application co0 would lie near the centre of the Fourier
spectrum of £,(t). The linear dependence of//, on log co in (3.7) is in accord with
the experimental observations.*

On substituting (3.6) into (3.2) and scaling appropriately the integration
variable we obtain

£ = (3.8)
m-t-$ivi)

where H is the contour integral

dS (3.9)

and where T the time scale is defined by

2 ^ - n (3.10)

The integrand in (3.9) possesses simple poles at the points Su S2

i») (3.11)

and a branch point at S = 0. To evaluate H{tlx) we complete the Bromwich

* All of these results are known (e.g. (3.7) appears in Kolsky (1956)) but the connection of
the model with (3.6) appears to have remained unnoticed. In particular the present derivation
of (3.7) from (3.6) is trivial in comparison with previous analyses of the constant loss angle
model.
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contour as indicated in Fig. 1 and apply Cauchy's theorem. In the limi Iwhere
the radii of C2 and C6 are indefinitely large and the radius of C4 indefinitely

c«*

FIG. 1

Completion of Bromwich contour (Ci) for evaluation

small there are no contributions from any of these arcs to the Cauchy integral.
Thus in the limit we have

H(t/t) = (2TT/ ) - 1 f
J c + 25S1+in+25Sn

es"rdS

CA + 25Sl+in+28S'il
where ^(SJ, R(S2) denote the residues at St and S2. The residues are easily
evaluated by the usual methods, while for the integrals along C3 and d we
write respectively

E.M.S.—E
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with q a real integration variable in the range 0<#<oo. After some algebra
we obtain the following formula for H(z)

H(z) = e"''* j[>4 sin (p'z)-B cos 0?'z)]

In this expression
6' = d+n[-kdlog(2S)+P(n-tan-iiPld)']+0(n2)
P = p+n[_iplog(25)-id(n-tan-1(fi/S))']+0(.n2)
A = ^-1[l+i«-i«log(2«5)]+0(«2)
B= -inp-^n-tan-'ip/d^ + Oin2)

M(q) = $[}+q {sin (q)ci(q) +cos (q) si(q)y\

where the logarithmic cosine and sine integrals ci(q) and si(q) are denned as in
Erdelyi (1953). In obtaining (3.12) we have assumed «<| 1 and neglected terms
of order n2 compared to unity.

The inequality n<^l (i.e. A<^1) is characteristic of most real materials. In
the present use of the inequality we have made expansions of the type

(2<5)"^ l+nlog(2£)

and there is a limitation that <5 should be neither too small nor too large. For
values of <5 obtaining in the experimental situation discussed previously, the
expansion is valid.

The damped harmonic terms in (3.12) derive from the residues at the poles,
the remaining terms originate from the line integrals along C3 and C4. The
integral remaining in (3.12) possesses finite limits and is evaluable only by
numerical or approximate analytic methods. In the example considered below
the evaluation was based on the results </?permitting an expansion of (x2 +P2)~2

as a power series in x2, and leading to integrals expressible in terms of elementary
functions.

We have evaluated as a function of (t/r) the dimensionless displacement

for the case M/m = 0-15, n = 0-0637

i.e. P = 0-724, <5 = 0-312, A = 0-1.

The results are displayed in Fig. 2 and compared with the corresponding elastic
case (A = 0) for the same mass ratio (and hence the same values of p and 8).
In the comparison we identify T with a \ c2 for the elastic case. In Fig. 2 the
viscoelastic curve is estimated to be accurate to within 1%.
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Displacement-time plots for elastic and viscoelastic solid
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For the mass ratio chosen for Fig. 2, viscoelastic plots for values of A other
than 0-1 are obtainable with comparable accuracy by noting that the difference
between the ordinates of the two curves is approximately a linear function of A.*
[A different value of the mass ratio entails a new diagram with similar charac-
teristics.]

It is of some importance to note characteristic features which would distin-
guish experimentally between elastic and viscoelastic materials. The most
significant difference between the two curves of Fig. 2 appears to be the ampli-
tude ratio of the first maximum to the first minimum. For A = 0-1, the ratio
is a 7-7; for A = 0 the ratio is ^ 2-6. Thus the ratio is a sensitive measure of
A whose determination defines completely the shape (though not the scale) of
the normalised theoretical viscoelastic curve; comparison of experimental
and theoretical time intervals between successive amplitude zeros (or turning
points) then leads directly to a measure of the remaining viscoelastic parameter
K.

A second characteristic feature of the viscoelastic curve is the dominating
presence of a term of order t~l for sufficiently large t. In time this term, which
derives from the integral in (3.12), swamps the remaining contributions to £, and
leads to an essentially monotone asymptotic approach to the abscissa. For the
viscoelastic curve of Figure 2, the term in question is dominant for t/r>l2.
However it seems unlikely that this asymptotic behaviour could serve other than
as a qualitative indication of viscoelastic behaviour.
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Note added in proof

A recent paper by Chadwick and Trowbridge [Proc. Camb. Phil. Soc. 63
(1967), 1189] also solves the elastodynamic problem of Section 2 of the present
paper. The approach is different and complements that given here; in parti-
cular Chadwick and Trowbridge give a more extensive discussion of the roots
of the quartic equation mco2 = Q((o) together with some detailed numerical
results on energy partition. As pointed out by Chadwick and Trowbridge the
quadratic equation obtained from the quartic in the inconpressible limit was
obtained by Lamb (Proc. London Math. Soc. Ser. I, 32 (1900), 120) in the study
of the diffraction of elastic sheer waves by a spherical obstacle.

* Since for small values of A and modest values of tjr (3-12) may be expanded as a Taylor
series in « ( = 2A/TT).
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