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1. The problem discussed is the temperature distribution in a semi-infinite
solid, initially at zero, when the surface is suddenly raised to and maintained
at a temperature which is an arbitrary function of the distance from some line
which lies in that surface.

In the rectangular system of axes (O, xyz) the surface of the solid is the
plane x = 0 and Ox the inward drawn normal. Oz is the given line in this
surface. The surface temperature is a function of y only and may be denoted
by F(y). We take V(x, y, t) to be the temperature of the medium, k the thermal
conductivity of the medium, p the density of the medium, s the specific heat

k
of the medium; h2 = is the diffusivity of the medium and F(y) is surface

p.s
temperature. The equation of conduction may be written

dx2 5y2 ~ h2 6t C )

The initial and boundary conditions are:

V(x,y,0) = 0, (x,y)tS (2)

V(0,y,t) = F(y), t>0 (3)

V(x,y,t)^0 as*->oo, />0 (4)

We also assume that as t ->oo, V tends to a steady finite value at all points.
We solve the set of equations (l)-(4) by means of the operational calculus

based on the Laplace transform (1)

W(x,y,p) = 2>{V(x,y,ty,p (5)

Since V(x, y, 0) = 0 (cf. (2) above) we have

so that equation (1) is equivalent to the Helmholtz equation

h2V2W-pW= 0 (6)
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Also (3) gives the boundary condition

W(0,y,p) =P~1F(y) (7a)
and (4) the condition

W(x,y,p)->Oasx-KX> (7b)

Once we have solved the set of equations (6), (7) we recover the form of V by
means of the

V(x, y, t) = ^'~1{W(x, y, p); t}

C ' " ep'W(x, y, p)dp (8)= J_ fe+'°

where the path of integration in the contour integral (the standard contour C),
goes from (c—ico) to (c+ico), where c is real and greater than 0, and all the
singularities of the integrand are to the left of the path.

2. We now consider the case of a sinusoidal surface temperature

F(y) = cos ny.

From (7a) we see that W(0, y,p) — p~l cos ny and this suggests that we assume
a solution of (6) of the form

W(x,y,p) = <t>(x,p) cos ny.
It is easily shown that

<Mx,p) = p-1 exp l-Xy/(n
2+p/h2)l

Hence in this case we find that

V(x,y,t) = cosny . J?'1 {p-1 expl-xj(n2+plh2)~];t} (9)

so that we have to evaluate the integral

x¥(x,i) = — p exp[pt — x,J(n+plhy]dp (10)

It is now necessary to transform this contour integral into a real integral.
The singularities of/7"1 exp \_pt — xsj{n2+plh2)'\ are a simple pole zXp = 0 and
a branch point at/7 = — n2h2. Fig. 1 shows a contour equivalent to the standard
contour C, consisting of the infinite quarter circle from — ico to — oo, the real
negative axis from — oo to 0 indented at x = — n2h2 and at x = 0 to pass below
the singularities and the similar contour in the upper part of the plane. The
contour is bounded on the right hand side by a straight line parallel to the
imaginary axis.

Since the contour does not include any singularities, the integral round the
closed curve is zero. Let Iu I2, etc. denote the values of the integral over
various parts of the contour as shown in Fig. 1. Then the sum of these separate
integrals is zero.

The integrals I2, I\ over the infinite quadrants vanish by Jordan's lemma (1),
since p~l[exp — x^J(n2+p/h2)'] tends uniformly to zero over the whole semi-
circle. The integral, /6 , round the singularity at the origin contributes the
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residue at this point. Allowing for the direction in which the integral is taken
round the contour.

76 = — 2ni exp (— nx).

The integrals, 74, 74 round the infinitesimal semi-circles about/? = —n2h2

vanish since the function is finite there. The two integrals, 75, l\ from —n2h2

to the origin are equal and opposite since the origin is not a branch point and
the function is unchanged by a circuit round it. There remain the integrals
73, I\ between — oo and —n2h2.

FIG. 1.

When the substitutions p = z exp (in), p — z exp (— i.n) are made in 73

and I\ respectively and allowance is made for the change of phase of y](n2 +p/h2)
in the two integrals, then using the radical sign to denote the positive square
root, we can easily show that

/^ = 2i V " sin [xj(zlh2-n2)~]dz.

Thus since the sum of the integrals round the closed path is zero, it follows
that

2" ! Jc-ioo
exp [pt-

Using (11) in (10), it follows that

^(x, 0= exp(- 1 C
(-MX)- i

(11)

ie'*'sin [Xyj(zlh2-n2y]dz. ...(12)
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It may be noted from this equation that as t tends to infinity, the integral
tends to zero, and V tends to exp (—nx) cos ny which thus represents the final
steady state.

1 f00
The integral l(t) = - I z~1e~a sin [xN/(z/fc2 — n2)~\dz may be transformed

71 Jn^/i2

further. Substituting /i2 = — —n2, we get

7 ( 0 = - e-
h^i+^' sin (fix) ^ (13)

t Jo n +n

But it can easily be shown that exp ( — nx) = - « „ , du so that we have
t jo M +«

2 f00 - ( p 2 + n 2 ) f c 2 (

Jo

2/i2 f00 f ,, , ,
, f) = —r e (" " sir

« Jo Jo

a) »dii , (14)
/i2 + n2

. . 1 - exp [-h(n + n)t] ,, f r , 2 , 2N o w 5 - i - — ^ r LJ = h2 exp [ —
- exp [-h2(n2 + n2)t]

•• + n

so that on substitution in (14) we get

Inverting the order of integration, we have

, t) = — dt\ e-W+^sin
n Jo Jo

it Jo <5*Jo
'cos(nx)dn (15)

it Jo tfxJo
see (2). Now since

(-a2 2)cos(b )d = ^ e x (- —
;o 2a \ 4a2

it may be seen by substituting this value in (15) that
f
Jo

Writing u for — x we find that (17) can be written in the form
Hit1

<P(X; t)= -2—\ dt — J - ^ L exp [-/i2n2f-x2/(4ft20] j
i Jo ^ UfcVf J

^(x, 0 = -!-=_ [' t-3l2xe-hV'-x2/(4h2t)dt (17)
2hJn Jo

(18)
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Since the steady state must be derivable from (18) by letting f->oo, we see
from (12) that in the steady state

*/t(x, 0 = exp(-nx)= A f" e-«2-i-2^«-2du (19)

3. We now consider the case of a surface distribution consisting of an
uniform temperature //over the range — l\2<y<l\2 and vanishing outside this
range. By Fourier's integral theorem we see that F(y) can be represented in the
form

„, , 2H f00 cos ny sin (\

i Jo n

The solution of this problem will be found by substituting for cos ny in the
integral in (20), the solution corresponding to a surface temperature cos ny.
Thus using (18)

V = % r n~i sin (i«/) cos (ny)dn f" e^-*"2"2""2^. ...(21)
71 Jo Jx/(2ft!%)

g the order of integration we

'Iff /*oo f<x>

= %\ du\ n-^-^-^
n Jx/(2/«1/j) Jo

Inverting the order of integration we find that

V

Now by integrating (16) with respect to b from 0 to b, it may be seen that

f°° /T1 sin (btie-'^dn = ^ f e-^
Jo 2a J o

using this result in (22), we find that

2 f ^ e-^'-'dk (23)
nx

-il+y

Again inverting the order of integration we find that

f i ' + y
2 2 1

f

J -
(24)

The steady state may be obtained from this equation by making t-*co when it
follows that

. Hx Cil+y

K,y,co)= —

n J-±/+

= n | t a n \ x J

V(x,
n J-it + y

u C / . . i l A

-tan"11'—L-ft, (25)

where -\n^
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4. Next we discuss a surface distribution consisting of a line source of given
strength. The solution of this problem may be obtained from (24) by making
l->0 and H-* oo so that the product HI remains constant and equal to 9. In
the limit (24) takes the form

V= —^-^expi-ix2+ y2Wh2t)-] (26)

and the steady state

y=-r^-j (27)
n(x2+y2)

5. Finally we consider the case of an arbitrary surface temperature distribu-
tion, F(y). By the superposition of line sources of intensity F(yo)dyo situated
at y = y0, we can obtain the temperature distribution due to F(y). It can be
easily shown that the temperature distribution is

^ V \ ( 2 8 )
-y0)

2
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