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In this paper we study the statistical relations between three latent trait models for accuracies and
response times: the hierarchical model (HM) of van der Linden (Psychometrika 72(3):287–308, 2007),
the signed residual time model (SM) proposed by Maris and van der Maas (Psychometrika 77(4):615–
633, 2012), and the drift diffusion model (DM) as proposed by Tuerlinckx and De Boeck (Psychometrika
70(4):629–650, 2005). One important distinction between these models is that the HM and the DM either
assume or imply that accuracies and response times are independent given the latent trait variables, while
the SM does not. In this paper we investigate the impact of this conditional independence property—or a
lack thereof—on the manifest probability distribution for accuracies and response times. We will find that
the manifest distributions of the latent trait models share several important features, such as the dependency
between accuracy and response time, but we also find important differences, such as in what function of
response time is being modeled. Our method for characterizing the manifest probability distributions is
related to the Dutch identity (Holland in Psychometrika 55(6):5–18, 1990).

Key words: drift diffusion model, Dutch identity, graphical model, hierarchical model, item response
theory, response times, signed residual time model, conditional independence.

1. Introduction

In this paper we wish to study the statistical relations between three latent trait models for
accuracies and response times: the hierarchical model (HM) of van der Linden (2007), the signed
residual time model (SM) of Maris and van der Maas (2012), and the drift diffusion model (DM)
proposed byTuerlinckx andDeBoeck (2005). Thesemodels come fromdifferent backgrounds and
differ inmany respects. A key distinction between the three latent traitmodels is in the relation they
stipulate between accuracy and response time after conditioning on the latent variables. Whereas
responses are independent of response times after conditioning on the latent variables in both
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the DM and the HM, this is not the case for the SM. The conditional independence property has
receivedmuch attention in the psychometric literature on response timemodeling (e.g., Bolsinova,
De Boeck, & Tijmstra, 2010; Bolsinova & Maris, 2016; Bolsinova & Tijmstra, 2016; Bolsinova,
Tijmstra, & Molenaar, 2017; van der Linden & Glas, 2017).

The way that these and other latent trait models for accuracy and response time are related
has been the topic of several publications (e.g., Molenaar, Tuerlinckx, & van der Maas, 2017a;
2015b; van Rijn &Ali, 2015a), but what sets our approach apart from earlier comparison attempts
is that we do not work with their latent trait formulations. A serious complication with comparing
latent trait models is that they are usually not defined on a common metric or space. As a result,
it is unclear what the conditional independence property, for example, says about the distribution
of observables, or how one can compare latent variables and their impact on observables across
models. The manifest distribution —i.e., the distribution of observables after having integrated
out the latent variables—does not suffer from these complications and is easily compared. We
therefore work with manifest distributions in this paper.

The comparison of manifest probability distributions crucially depends on having their ana-
lytic expressions available to us, but unfortunately, this is not the case for the latent trait models
that we study here. To overcome this complication, we reverse-engineer an approach that was orig-
inally used by Kac (1968) to find a latent variable expression of a graphical model known now as
the Ising model (Ising, 1925). The work of Kac has revealed a broad equivalence between psy-
chometric item response models and network models from statistical physics (Epskamp, Maris,
Waldorp, &Borsboom, 2018;Marsman et al., 2018;Marsman, Tanis, Bechger, &Waldorp, 2019).
Here we use it to characterize the manifest distribution of latent trait models that are in the expo-
nential family. Another way to express themanifest distributions of latent trait models is the Dutch
identity (Holland, 1990). Our approach and the Dutch identity are, of course, very much related,
and we will study this relation in detail.

The remainder of this paper is structured as follows: In the next section, we formally introduce
the three latent trait models. We will focus on versions of the latent trait models that either use or
imply the two-parameter logistic model for the marginal distribution of response accuracies—i.e.,
the conditional distribution of accuracies given the latent variables after having integrated out the
response times. After having introduced the three latent trait models we introduce our approach
for characterizing their manifest probability distributions. Here we will also study the relation
between our approach and the Dutch identity. We then characterize and analyze the manifest
probability distributions that are implied by the three latent trait models. Our paper ends with a
discussion of these results.

2. Models

Before we introduce the three latent trait models we first wish to introduce some notation
and clarify our terminology. We will assume that the item parameters of the latent trait models are
fixed constants, but that the accuracies, the response times, and the latent variables are random.
Since these variables are assumed to be random everywhere in this paper, we do not distinguish
between (vectors of) random variables and their realizations. We will use x to denote a vector of
p response accuracies—xi ∈ {0, 1}—and use t to denote a vector of p response times—ti ∈ R

+
for the HM and DM and ti ∈ (0, di ) for the SM, see below. The two latent variables ability and
speed will be denoted with θ and η, respectively. Finally, we will use “marginal distribution” to
refer to the conditional distribution of one type of observable, e.g.,
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p(x | θ, η) =
∫
R+

p(x, t | θ, η) dt,

where the other observables have been integrated out, and we will use “manifest distribution” to
refer to distributions of the form

p(x, t) =
∫
R

∫
R

p(x, t | θ, η) p(θ, η) dθ dη,

where the latent variables have been integrated out.

2.1. The Hierarchical Model

TheHM, as proposedbyvanderLinden (2007), is a general statistical framework formodeling
accuracies and responses times that is based on the idea that there are two latent traits at work;
ability θ governs the response accuracy distribution and speed η the response time distribution.
Importantly, the response accuracy distribution is assumed to be independent of speed η given
ability θ , the response time distribution is assumed to be independent of ability θ given speed η,
and it is also assumed that accuracies and response times are independent given the full set of
latent traits, i.e.,

p(x, t | θ, η) = p(x | θ) p(t | η).

This setup provides a plug-and-play framework for modeling accuracy and response times: The
measurement model for ability θ —marginal distribution of accuracies p(x | θ)—can be chosen
independently of the measurement model for speed η—marginal distribution of response times
p(t | η). The HM is concluded with a model for the two latent traits.

Different measurement models for ability θ have been used in the literature. For example,
van der Linden (2007) used normal ogive models, Bolsinova, De Boeck, and Tijmstra (2017) used
their logistic counterparts, while Zhan, Jiao, and Liao (2018) used cognitive diagnosis models
instead. Here, we use the two-parameter logistic model,

p(x | θ) =
p∏

i=1

p(xi | θ) =
p∏

i=1

exp (xi αi (θ + βi ))

1 + exp (αi (θ + βi ))
, (1)

where αi is an item discrimination parameter and βi is an item easiness parameter. There are
two reasons for using the two-parameter logistic model here. Firstly, the marginal distribution
of accuracies p(x | θ) that is implied by the versions of the SM and DM that are used here is
also a two-parameter logistic model. Secondly, the two-parameter logistic model is a member
of the exponential family of distributions, which will be convenient for expressing the manifest
probability distribution p(x, t).

Different measurement models for speed η have also been used in the literature. For example,
van der Linden (2006) used a log-normal distribution, Fox, Klein Entink, and van der Linden
(2007) used a linear factor model for log-transformed response times, and Klein Entink, van der
Linden, and Fox (2009) used models based on Box–Cox transformations of response times. In
this paper we will use the log-normal distribution,

p(t | η) =
p∏

i=1

p(ti | η) =
p∏

i=1

√
φi

2π

1

ti
exp

(
−1

2
φi (ln(ti ) + η − ξi )

2
)

, (2)
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where ξi is an item time intensity parameter andφi an item precision parameter. The item precision
φi is the response time analogue of the item discrimination in the two-parameter logistic model;
larger values of φi imply that speed explains a larger portion of the log-time variance. The log-
normal distribution is a common choice for the measurement model for speed η in the HM
framework and is also a member of the exponential family of distributions.

To conclude the HMwe specify a distribution for ability θ and speed η. Typically, a bivariate
normal distribution is used in which ability and speed are correlated. To identify the model,
however, the means of the bivariate normal need to be constrained to zero and the marginal
variance of ability needs to be constrained to one.1

2.2. The Signed Residual Time Model

The SM has been proposed by Maris and van der Maas (2012) as a measurement model for
ability θ in the context of tests with item-level time limits. The model was specifically designed
for tests that use the following scoring rule,

s =
p∑

i=1

si = (2xi − 1)(di − ti ),

where di is the time limit for item i . This scoring rule encourages persons to work fast but punishes
guessing: Residual time di −ti is gainedwhen the response is correct, but is lost when the response
is incorrect. VanRijn andAli (2017b) demonstrated that the SM is also appropriate for applications
where these time limits are not specified a priori, but “estimated” from the observed response time
distributions.

The SM specifies the following distribution for accuracy x and response times t:

p(x, t | θ) =
p∏

i=1

(θ + βi )
exp ((2xi − 1)(di − ti )(θ + βi ))

exp(di (θ + βi )) − exp(−di (θ + βi ))
, (3)

where βi is an item easiness parameter. Observe that the SM is an exponential family model and
that the scoring rule s is the sufficient statistic for ability θ . The SM has been generalized by van
Rijn and Ali (2017b) allowing the items to differ in their discriminative power even when the time
limits are the same across items. In this paper we will use the standard version of the SM.

Whereas the HM characterizes the joint distribution of accuracies and response times by
specific choices of themarginals p(x | θ) and p(t | η), the SMdirectly specifies a joint distribution
for accuracies and response times p(x, t | θ). By integrating out the response times we obtain
the marginal distribution for accuracies p(x | θ). Maris and van der Maas (2012) show that this
marginal distribution is the two-parameter logistic model in Eq. (1), where the item discrimination
αi is equal to the item time limit di . In a similarway,we obtain themarginal distribution of response
times p(t | θ) by summing out the accuracies,

p(t | θ) =
p∏

i=1

(θ + βi )
exp((di − ti )(θ + βi )) + exp(−(di − ti )(θ + βi ))

exp(di (θ + βi )) − exp(−di (θ + βi ))
.

1Alternatively, one may choose an item i and constrain βi and ξi to zero and constrain αi to one for this item.
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An alternative specification of the SM is in terms of accuracies and what Maris and van der
Maas (2012, p. 624) refer to as pseudo-response times t∗. Pseudo-response times are obtained
from response times through the transformation

t∗i =
{

ti if xi = 1,

di − ti if xi = 0.
(4)

This transformation from response times to pseudo-response times is one-to-one, so that no
information is lost. One convenient feature of using pseudo-response times instead of response
times is that the pseudo-response times and accuracies are (conditionally) independent in the SM,
i.e.,

p(x, t∗ | θ) = p(x | θ)p(t∗ | θ),

where the marginal distribution p(t∗ | θ) is equal to,

p(t∗ | θ) =
p∏

i=1

(θ + βi )
exp

(−t∗i (θ + βi )
)

1 − exp (−di (θ + βi ))
. (5)

2.3. The Drift Diffusion Model

The DM was introduced by Ratcliff (1978) as a model for two-choice experiments. In the
DM, evidence for either choice accumulates over time until a decision boundary is reached. One
way to characterize this evidence accumulation process is in terms of a Wiener process with
constant drift and volatility, and absorbing upper and lower boundaries (Cox &Miller, 1970). The
drift μ of the diffusion process determines how fast information is accumulated, the volatility σ

determines how noisy the accumulation process is, and the distance between the two boundaries
α determines how much evidence needs to be accumulated before a choice is made. The process
has two additional parameters: a bias parameter z that indicates the distance from the starting
point to the lower boundary, and the non-decision time T(er). A commonly used simplification of
the DM assumes that the process is unbiased z = 1

2α.
The DM has been extended to model differences between persons and tasks. For example,

Tuerlinckx and De Boeck (2005) proposed to decompose the drift μ of the accumulation process
into a person and an item part—i.e.,μ = θ +βi—and to treat the distance between the boundaries
as an item characteristic —i.e., α = αi . The person component θ in the drift specification carries
the interpretation of an ability in item response theory models, as a higher value of θ implies an
increased probability of choosing the correct alternative. To identify the DM, Tuerlinckx and De
Boeck (2005) fixed the volatility σ to one. The joint distribution of decision times and the chosen
alternatives —i.e., response accuracies if the upper and the lower boundaries correspond to the
correct and incorrect responses—is then equal to:

p(x, t | θ) =
p∏

i=1

π

α2
i

exp

(
1

2
αi (2xi − 1) (θ + βi ) − 1

2

(
ti − T(er)

)
(θ + βi )

2
)

×
∞∑

n=1

sin

(
1

2
πn

)
exp

(
− 1

2α2
i

π2n2 (
ti − T(er)

))
. (6)
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Both the SM and the DM directly specify a joint distribution of accuracies and decision
times (response times) that is based on one latent trait, ability θ . In contrast to the SM, however,
accuracies and response times are independent given ability in the (unbiased) DM. The marginal
p(x | θ) is the two-parameter logistic model in Eq. (1), where the discrimination parameter equals
the distance between the boundaries in the diffusion process, and the easiness parameter is an
item effect on drift of the diffusion process. The marginal p(t | θ) is equal to

p(t | θ) =
p∏

i=1

2π

α2
i

cosh

(
1

2
αi (θ + βi )

)
exp

(
−1

2

(
ti − T (er)

i

)
(θ + βi )

2
)

×
∞∑

n=1

sin

(
1

2
πn

)
exp

(
− 1

2α2
i

π2n2
(

ti − T (er)
i

))
.

Even though the marginal distribution p(x | θ) is a member of the exponential family,
neither the marginal distribution p(t | θ) nor the joint distribution p(x, t | θ) is a member of
the exponential family. The primary reason that the latter cannot be written in exponential family
form is because it implies a statistic s1 = s1(x, t) = ∑

i αi xi − ∑
i βi ti that is sufficient for θ

and another statistic s2 = s2(t) = ∑
i ti that is sufficient for − 1

2θ
2. If we express the latter as

η = η(θ) = − 1
2θ

2, we end up with an exponential family model subject to constraints on the
parameters θ and η: η is functionally related to ability θ . This is known as a curved exponential
family model (Efron, 1975, 1978).

3. Characterizing Manifest Probabilities of Latent Trait Models

We consider the general case of an item response theory (IRT) model for accuracy and
response times in an exponential family form:

p(x, t | ζ ) =
p∏

i=1

p(xi , ti | ζ ) =
p∏

i=1

1

Zi (ζ )
bi exp

(
sTi ζ

)
, (7)

where si = si (xi , ti ) is a (possibly vector-valued) statistic that is sufficient for the (possibly
vector-valued) latent variable ζ , and the function bi = bi (xi , ti ) is a base measure that does not
depend on the value of this latent variable. The base measure serves as the probability measure
when the exponential term in Eq. (7) is given no weight, i.e., when ζ = 0. Finally, the function
Zi (ζ ) is a normalizing constant that is defined as

Zi (ζ ) =
1∑

xi =0

∫
R+

bi (xi , ti ) exp
(
si (xi , ti )

Tζ
)
dti ,

which, when it exists, ensures that the probabilities add up to one.
We will make use of the fact that the three latent trait models can be written in the form of

Eq. (7), and outline an approach for expressing the manifest distribution for latent trait models
of this form. But since Eq. (7) ignores any functional relation that may exist between its latent
variables, a variant of our approach needs to be used to express the manifest distribution for the
DM. We will point out how our approach can be used for models, such as the DM, that can be
written in the form
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p(x, t | θ) =
p∏

i=1

p(xi , ti | θ) =
p∏

i=1

1

Zi (θ)
bi exp

(
si1θ − si2

1

2
θ2

)
. (8)

For latent trait models that are of the form of Eq. (7) or Eq. (8) we can make use of the following
latent variable distribution to express its manifest distribution.

Definition 1. For models p(x, t | ζ ) that are of the form of Eq. (7) or Eq. (8) we may define the
latent variable distribution

g(ζ ) = 1

Z

p∏
i=1

Zi (ζ ) k(ζ ), (9)

where k(ζ ) is a kernel density and Z is the normalizing constant of g(ζ ). For every kernel
distribution k(ζ ) for which the normalizing constant Z is finite, i.e.,

0 < Z =
∫


ζ

p∏
i=1

Zi (ζ ) k(ζ ) dζ < ∞,

where 
ζ is the support of ζ , g(ζ ) is a valid probability distribution.

The distribution in Definition 1 was inspired by the latent trait distribution that has been
introduced with the latent variable expression of a graphical model from physics known as the
Ising (1925) model by Kac (1968, see also Marsman et al., 2018; Epskamp, Maris, Waldorp,
& Borsboom, 2018), but a similar construction can also be found in, for instance, Cressie and
Holland (1983, Eq. A9) and McCullagh (1994). We can now state our first result.

Theorem 1. When p(x, t | ζ ) is of the form of Eq. (7) and the latent variable distribution g(ζ )

in Eq. (9) is a valid probability distribution, then the manifest distribution p(x, t) is given by

p(x, t) = 1

Z

p∏
i=1

bi E

( p∏
i=1

exp
(
sTi ζ

))
,

where Z is a normalizing constant and the expectation is an integral with respect to the kernel
density k(ζ ).

We omit the simple proof of Theorem 1, which requires one to fill in the definitions of the
models in Eqs. (7) and (9), and then integrate out the latent variable ζ . In a similar way, the
manifest distribution for latent trait models that are of the form of Eq. (8) can be expressed as

p(x, t) = 1

Z

p∏
i=1

bi E

( p∏
i=1

exp

(
si1θ − si2

1

2
θ2

))
. (10)

Theorem 1 shows that for any latent trait model of the form of Eq. (7), combined with a latent
variable distribution of the form of Eq. (9), the manifest distribution can be characterized in terms
of the basemeasures bi and themoment generating function of the kernel distribution k(ζ ). This is
similar to Holland’s (1990) Dutch identity, which was initially formulated for locally independent
binary response models by Holland (1990) and extended to a locally dependent response model
by Ip (2002) and a polytomous response model by Hessen (2012). The following theorem gives
an extension of the Dutch identity for response models that are of the exponential family form of
Eq. (7). Its proof is in the Appendix.
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Theorem 2. (The Dutch identity) Suppose that p(x, t) is of the form

p(x, t) =
∫


ζ

p(x, t | ζ ) f (ζ ) dζ ,

where 
ζ is the support of ζ , and p(x, t | ζ ) is of the form of Eq. (7). Then for any vector y ∈ 
x
and w ∈ 
t, where 
x and 
t denote the support of x and t, respectively, we have

p(x, t)
p(y, w)

=
p∏

i=1

bi (xi , ti )

bi (yi , wi )
E

( p∏
i=1

exp
(
[si (xi , ti ) − si (yi , wi )]

T ζ
) ∣∣∣∣∣ S =

∑
i

si (yi , wi )

)
,

where the expectation is an integral with respect to the posterior density f (θ | S = ∑
i si (yi , wi )).

It is easy to verify that whenever f (ζ ) is of the form of g(ζ ) in Eq. (9), the identity in Theorem
2 reduces to

p(x, t)
p(y, w)

=
p∏

i=1

bi (xi , ti )

bi (yi , wi )
× E

(∏p
i=1 exp

(
si (xi , ti )Tζ

))
E

(∏p
i=1 exp

(
si (yi , wi )Tζ

)) ,

which was to be expected from Theorem 1. Observe that in this case the expectations imply
integrating with respect to the kernel density k(ζ ) that is used to define g(ζ ) in Eq. (9).

Both Theorems 1 and 2 characterize themanifest distribution in terms of amoment generating
function, and for their practical application it is important to find a convenient form for this
moment generating function. The Dutch identity, for example, has provided a general analytic
solution for the (extended) Rasch model (Cressie & Holland, 1983; Tjur, 1982), but to come
to an analytic expression for other latent trait models an assumption has to be made about the
posterior distribution of the latent variable. In a similar way, we have to choose a kernel k(ζ ) for
the practical application of Theorem 1. The following corollary shows how a multivariate normal
kernel distribution k(ζ ) can be used to express the manifest distribution in a simple analytic form.

Corollary 1. If p(x, t | ζ ) is of the form in Eq. (7), and the latent variable distribution g(ζ )

is of the form in Eq. (9) with a multivariate normal kernel k(ζ ) having a mean vector m and
covariance matrix V, then (i)

p(x, t) = 1

Z
exp

⎛
⎝

p∑
i=1

ln bi +
[ p∑

i=1

si

]T

m + 1

2

[ p∑
i=1

si

]T

V

[ p∑
i=1

si

]⎞
⎠ , (11)

where Z is a normalizing constant, and (ii) the posterior distribution g(ζ | s1, . . . , sp) is multi-
variate normal with mean vector m + V

[∑p
i=1 si

]
and covariance matrix V.

We will omit the proof of Corollary 1, which requires one to insert in Theorem 1 the moment
generating function of the multivariate normal distribution, i.e.,

E

(
exp

(
rTζ

))
= exp

(
rTm + 1

2
rTVr

)
,
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using r = ∑
i si as the interpolating parameter vector. Since we cannot make use of this moment

generating function for the curved exponential family models in Eq. (8), the normal kernel does
not result in the same simple form for these models. We can, however, make use of the following
identity

E

(
exp

(
r1θ − r2

1

2
θ2

))
=

√
v2

r2 v2 + 1
exp

(
r21 v2 + 2r1 m − r2m2

2r2 v2 + 2

)
,

where the expectation is taken with respect to a normal distribution with mean m and variance
v2. Inserting this identity into the expression of the manifest distribution in Eq. (10) with r1 =∑

i s1i = s1+ and r2 = ∑
i s2i = s2+, we end up with the following expression

p(x, t) = 1

Z

p∏
i=1

bi

√
v2

s2+ v2 + 1
exp

(
s21+ v2 + 2s1+ m − s2+m2

2s2+ v2 + 2

)
. (12)

This is a relatively simple analytic expression when we set m to zero. We will use Corollary 1
and Eq. (12) to characterize the manifest probability distributions of the three latent trait models.

Corollary 1 mirrors the results for assuming posterior normality of the latent trait in combi-
nation with the Dutch identity as evidenced in Corollary 1 of Holland (1990), Corollary 1 of Ip
(2002), and Theorem 2 of Hessen (2012), see also the log-multiplicative association models of
Anderson and Vermunt (2000), and Anderson and Yu (2007), and the fused latent and graphical
IRT model of Chen, Li, Liu, and Ying (2018).

There appears to be a deeper connection between the prior assumption that leads to our
Corollary 1 and the posterior assumption that leads to Corollary 1 of Holland (1990). What we
know is that the latent variable distribution in Eq. (9) with a normal kernel is one way to ensure
posterior normality of the latent variables for any latent trait model of the form of Eq. (7). To see
why this is the case, consider the posterior with a prior distribution f (ζ ) = g(ζ ) of the form of
Eq. (9),

g(ζ | s) ∝
p∏

i=1

1

Zi (ζ )
e

[
si (yi , wi )

Tζ
]
g(ζ )

∝
p∏

i=1

1

Zi (ζ )
e

[
si (yi , wi )

Tζ
] p∏

i=1

Zi (ζ ) k(ζ )

= exp

([ p∑
i=1

si (yi , wi )
T

]
ζ

)
k(ζ ),

which is proportional to a multivariate normal distribution if and only if the kernel k(ζ ) is a
multivariate normal distribution. The reverse need not be true since there exists at least one
counterexample: Suppose that si follows a multivariate normal distribution with a mean equal
to ζ (or some linear function of ζ ), such that p(si | ζ ) can be written in the form of Eq. (7),
then a normal prior distribution for ζ , which is not of the form of Eq. (9), also ensures posterior
normality of the latent variables. Itmaywell be the case that this is the only exception to the general
correspondence between the prior assumption that leads to our Corollary 1 and the posterior
assumption that leads to Corollary 1 of Holland (1990).
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4. The Manifest Probabilities of the Three Latent Trait Models

In this section we use Corollary 1 and Eq. (12) to characterize the manifest distributions for
the three latent trait models. For the HM and SM we will use Corollary 1 to generate a manifest
distribution over the realizations of some vector random variable q that is of the form

p(q) = 1

Z
exp

(
qTμ + qT� q

)
ω(q), (13)

where μ denotes a vector of intercepts, � denotes a symmetric matrix of pairwise interactions,
ω(q) denotes a base measure that serves as the probability measure when the pairwise interactions
are equal to zero, and Z denotes the model’s normalizing constant. For the DM we will use Eq.
(12) to generate a manifest distribution over the realizations of a random vector q that is of the
form

p(q) = 1

Z
exp

(
qTμ + h(q)qT� q

)
ω(q), (14)

which resembles the manifest distribution in Eq. (13), except that the pairwise interactions are
now “weighted” by h.What we shall see is that the three latent trait models fundamentally differ in
what the random variable q is, revealing key differences in the function of response time they are
modeling, but also that accuracies and responses times are dependent in the manifest distribution
of each latent trait model, except for fringe cases that are uncommon in practice. We will now
consider each of the models in turn.

4.1. The Hierarchical Model

The version of the HM that is considered here is of the form

p
(
x, t | ζ = (θ, η)T

)
g

(
ζ = (θ, η)T

)
= p(x | θ) p(t | η) g(θ, η),

where themarginal p(x | θ) is the two-parameter logisticmodel introduced inEq. (1), themarginal
p(t | η) is the log-normal distribution introduced in Eq. (2), and g(θ, η) is of the form of Eq. (9)
using a bivariate normal kernel distribution k(θ, η) for ability θ and speed η, using a mean vector
m = 0 and covariance matrix

V =
(

1 ρ vη

ρ vη v2η

)
,

where ρ denotes the a priori correlation between ability and speed, and v2η the a priori variance
of speed.

To come to an expression for the manifest probability distribution of this version of the HM
we first rewrite the conditional distribution of accuracies and response times p(x, t | θ, η) to fit
the form of Eq. (7). To this aim, we introduce the statistic

si = si (xi , ti ) =
(

xiαi

− ln(ti ) 1
2φi

)
,
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the base measures

bi = bi (xi , ti ) = exp

(
xiαiβi − ln(ti )

2 1

2
φi − ln(ti ) (1 − φiξi )

)
,

and the normalizing constants

Zi (θ, η) =
√
2π√
φi

exp

(
1

2
φi (η − ξi )

2
)

{1 + exp (αi (θ + βi ))} .

Having expressed the conditional distribution of accuracies and response times in the form
of Eq. (7), we can now apply Corollary 1 to obtain the manifest distribution. It is convenient
to characterize this manifest distribution in terms of log-transformed response times ui = ln(ti )
instead of response times. Themanifest probability distribution of accuracies and log-transformed
response times that results is equal to

p(x, u) = 1

Z
exp

((
x
u

)T (
α � β

φ � ξ

)
+ 1

2

(
x
u

)T (
α αT −ρ vη α φT

−ρ vη φ αT v2η φ φT

) (
x
u

))

p∏
i=1

exp

(
−1

2
φi u2

i

)
,

where � refers to Hadamard product. Observe that this manifest distribution is of the form of Eq.
(13) for a random variable q = (xT,uT)T, with intercepts

μ =
(

α � β

φ � ξ

)
,

a rank two matrix of pairwise interactions

� = 1

2

(
α αT −ρ vη α φT

−ρ vη φ αT v2η φ φT

)
= 1

2

(
α

vη φ

) (
1 −ρ

−ρ 1

)(
α

vη φ

)T

,

and a normal base measure

ω(u) =
p∏

i=1

ωi (ui ) =
p∏

i=1

exp

(
−1

2
φi u2

i

)
,

with precisions φi . In this model the associations, or pairwise interactions, between accuracies and
log-response times, are of the opposite sign of the correlation ρ between the two latent variables of
theHM: Faster responses correspond to correct answerswhenρ > 0; slower responses correspond
to correct answers when ρ < 0.

There are two important characteristics that can be observed from the manifest probability
distribution of our version of the HM. Firstly, the base measure ω(u) that is used here stipulates
an a priori restriction on the variance of the speed parameter v2η and the item-specific precisions
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φi . To see this, observe that for this base measure the manifest distribution is a proper probability
distribution—i.e., integrates to one—if and only if

v2η < min
i

(
1

φi

)
.

Since the variance of the log(ti ) is equal to

Var(log(ti )) = E(Var(log(ti ) | η)) + Var(E(log(ti ) | η)) = 1

φi
+ v2η,

this restriction on v2η and φi implies that the speed variable can account for less than 50% of the
total variance of the log(ti ).

A second important characteristic that can be observed from the manifest probability distri-
bution of our version of the HM concerns the associations between accuracies and log-response
times, which are encoded in the matrix of pairwise interactions �. First, note that when the inter-
action between an accuracy xi and log-transformed response time ui in the manifest distribution
is equal to zero, these variables are independent conditional upon the remaining accuracies and
log-transformed response times:

σi(p+i) = ρ vη αi φi = 0 ⇐⇒ xi � ui | x(i), u(i).

Thus, xi and ui are conditionally independent whenever one of the following conditions apply:
The correlation ρ between speed and ability is zero; the discrimination αi of item i is zero; the
precision φi of item i is zero, and/or the a priori variance v2η of the speed variable is zero. The
only non-trivial condition that leads to conditional independence between accuracy and response
time is the a priori independence of ability and speed in the HM. But this entails the extreme case
in which all of the accuracies are independent of all of the response times, which is unlikely to
occur in psychometric practice.

4.2. The Signed Residual Time Model

There are two versions of the SM that are considered here. The first version of the SM
stipulates a distribution of accuracies and residual response times, and the second version of the
SM stipulates a distribution of accuracies and pseudo-response times.Wewill first characterize the
manifest probability distribution of accuracies and residual times and revert to pseudo-response
times after that.

4.2.1. The Manifest Distribution of Accuracy and Residual Response Time The SM was intro-
duced in Eq. (3) and can be expressed in the exponential family form of Eq. (7) with statistics

si = si (xi , ti ) = (2xi − 1)(di − ti ),

base measures

bi = bi (xi , ti ) = exp ((2xi − 1)(di − ti )βi ) ,
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and normalizing constants

Zi (θ) = exp (di (θ + βi )) − exp (−di (θ + βi ))

θ + βi
.

Having expressed the conditional distribution of accuracies and residual times of the SM in
the form of Eq. (7) we can now use Corollary 1 to obtain their manifest distribution. Assuming
a normal kernel with mean m = 0 and variance v2 = 1, Corollary 1 leads us to the following
manifest distribution,

p(x, t) = 1

Z
exp

([
(2x − 1p) � (d − t)

]T
β + 1

2

((
2x − 1p

) � (d − t)
)T ((

2x − 1p
)

� (d − t)
))

,

where 1p is the unit vector of length p. One way to write this distribution more succinctly is to
express it in terms of the random variables yi = (2xi − 1) and residual times ri = di − ti , which
gives

p(y, r) = 1

Z
exp

(
(y � r)T β + 1

2
(y � r)T (y � r)

)
. (15)

This is of the form of the manifest distribution in Eq. (13) for the random variable q = y�r, with
intercepts μ = β, a rank one matrix of pairwise interactions � = 1

21p1Tp, and a uniform base
measure ω(q) = 1. In this model, larger residual times (faster responses) are associated with an
increased probability that a person responds accurately to easy items (βi > 0) and a decreased
probability to respond accurately to difficult items (βi < 0). The association between the response
accuracies of different items is positive and increases with increasing residual response times
(faster responses).

There are two important characteristics that can be observed from the manifest probability
distribution of the SM. One characteristic appears when we view the manifest distribution as a
distribution for the random variables y, as this closely resembles a graphical model from physics
that is known as the Ising model (Lenz, 1920; Ising, 1925). The Ising model is characterized by
the following probability distribution over realizations of y

p(y) = 1

Z
exp

(
yTμ + yT� y

)
,

where μ denotes a vector of p intercepts μi , and � is a symmetric p × p matrix of pairwise
interactions σi j , similar to our Eq. (13). However, where the intercepts and interactions are fixed
effects in the Ising network model, they are random effects here, with μ = r � β and � =
1
2rr

T. This view of the SM thus provides a novel way for modeling the intercepts and matrix of
associations in the Ising model.

A second important characteristic that can be observed from themanifest probability distribu-
tion of the SM concerns the association between accuracies and residual response times. Whereas
we have found that for the manifest distribution of the HM that accuracy can be conditionally
independent of response time in a non-trivial manner, at least in theory, this is not the case with the
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SM. This can be observed, for example, from the conditional distribution of accuracy and residual
response time for an item i given the accuracies and residual times of the remaining items

p
(

yi , ri | y(i), t(i)
)

=
exp

(
yiri

[
βi + ∑

j 
=i y j r j

])

exp
(
βi +∑

j 
=i y j r j

)
−exp

(
−βi −∑

j 
=i y j r j

)
βi +∑

j 
=i y j r j

,

from which it is clear that there are no values of βi (or y(i) and r(i)) that render yi and ri

(conditionally) independent.

4.2.2. The Manifest Distribution of Accuracy and Pseudo-response Time An alternative for-
mulation of the SM is in terms of accuracies and pseudo-response times, which is of the form

p(x, t∗ | θ) = p(x | θ) p(t∗ | θ),

where the marginal p(x | θ) is the two-parameter logistic model in Eq. (1), and the marginal
p(t∗ | θ) is given in Eq. (5).

To characterize the manifest distribution of accuracies and pseudo-response times for this
version of the SMwe can take two approaches. Firstly, wemay express the conditional distribution
of accuracies and pseudo-response times p(x, t∗ | θ) in the exponential family form of Eq. (7)
and then apply Corollary 1 using a normal kernel distribution with mean m = 0 and variance
v2 = 1 to this conditional distribution. Alternatively, we may rewrite the sufficient statistic for
residual response times in the manifest distribution in Eq. (15) through the relation

s∗i = xidi − t∗i =
{
di − ti if xi = 1

−(di − ti ) if xi = 0
⇐⇒ (2xi − 1)(di − ti ) = yiri = si .

Both approaches lead to the following manifest distribution of accuracies and pseudo-response
times

p(x, t∗) = 1

Z
exp

((
x
t∗

)T (
d � β

−1p � β

)
+1

2

(
x
t∗

)T (
d

−1p

) (
d

−1p

)T (
x
t∗

))
,

which is of the formof themanifest distribution inEq. (13) for the randomvariableq = (xT, t∗T)T,
with intercepts

μ =
(

d � β

−1p � β

)
,

a rank one matrix of pairwise interactions

� = 1

2

(
d

−1p

) (
d

−1p

)T

,

and a uniform base measure ω(q) ∝ 1. Observe that for this model both the associations between
accuracies and the associations between pseudo-response times are positive, yet the associations
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between accuracies and pseudo-response times are negative: Correct responses are associated
with smaller pseudo-time values (faster response times); incorrect responses are associated with
larger pseudo-time values (slower response times).

The manifest distribution of accuracies and pseudo-response times of the SM is of the same
form as the manifest distribution of accuracies and the log-transformed response times of the HM,
and thus they share certain characteristics. For example, both models share the following Markov
property: When the association between an accuracy and a response time for an item i is equal to
zero, then this implies that these two variables are independent conditional upon the remaining
accuracies and response times,

−1

2
di = 0 ⇐⇒ xi � t∗i | x(i), t∗(i).

However, it is immediately clear that this association is never zero in practice, since di = 0 would
imply a zero second time limit for item i .

4.3. The Drift Diffusion Model

The version of the DM that is considered here—which was introduced in Eq. (6)—can be
expressed in the form of Eq. (8), with statistics

si (xi , ti ) =
(

αi xi − βi ti
ti

)
,

base measures

bi = bi (xi , ti ) = exp

(
αi βi xi − 1

2
β2

i ti

) ∞∑
n=1

sin

(
1

2
πn

)
exp

(
− 1

2α2
i

π2n2 (
ti − T(er)

))
,

and normalizing constants

Zi (θ) = α2
i

π
exp

(
1

2
αi (θ + βi ) − 1

2
T(er)(θ + βi )

2
)

.

Having expressed the DM in the form of Eq. (8), we may now use Eq. (12) to express
its manifest distribution. Assuming a latent trait distribution g(θ) of the form of Eq. (9) with a
normal kernel with a meanm = 0 and variance v2 = 1, Eq. (12) leads us to the followingmanifest
distribution

p(x, t) = 1

Z
exp

((
x
t

)T (
α � β

− 1
2β � β

)
+ 1

2t+ + 2

(
x
t

)T (
α

−β

) (
α

−β

)T (
x
t

))
ω(t)

where t+ = ∑
i ti , and ω(t) is a base measure,

ω(t) = 1√
t+ + 1

p∏
i=1

∞∑
n=1

sin

(
1

2
πn

)
exp

(
− 1

2α2
i

π2n2 (
ti − T(er)

))
.
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This is of the form of the manifest distribution in Eq. (14) for the random variable q = (
xT, tT

)T
,

that is characterized by the intercepts

μ =
(

α � β

− 1
2β � β

)
,

a rank one matrix of pairwise interactions

� = 1

2

(
α

−β

) (
α

−β

)T

,

the weight function h(t) = (t+ + 1)−1, and the aforementioned base measure.
There are two important characteristics that can be observed from the manifest probability

distribution of our version of the DM. The first observation is that the association between both
accuracies and response times is scaled by the total time t+ that is spent on the test. This implies
smaller associations between accuracies and response times for pupils that take longer to complete
the test, and larger associations for pupils that take less time to complete the test. In none of the
three other manifest probability distributions that were considered here have we seen an influence
of the total time that was spent on the test.

A second observation is that since the interaction between accuracy and response time is
scaled with the total test time, i.e.,

−xi ti
1

1 + t+
1

2
αi βi ,

and the same holds for the interactions between accuracies, i.e.,

xi x j
1

1 + t+
1

2
αi α j ,

the accuracy of an item is related to all of the response times. There is only oneway for the accuracy
of an item to be conditionally independent from its response time in the manifest distribution,
which is when the associated discrimination is equal to zero. However, the accuracy is then not
only independent of all of the response times, but also of all remaining accuracies (and of ability
in the latent trait formulation). As a consequence, accuracy and response time are conditionally
independent only in a fringe case that we do not expect to see in psychometric practice.

5. Discussion

The goal of this paper was the statistical comparison of three latent trait models for accuracy
and response time: the hierarchical model (HM) of van der Linden (2007), the signed residual time
model (SM) of Maris and van der Maas (2012), and the drift diffusion model (DM) as proposed
by Tuerlinckx and De Boeck (2005). Our idea was to work with the manifest distributions of
observables that were generated by these latent trait models, as they are more easily compared
than their original latent trait formulations. To characterize these manifest distributions we have
reverse-engineered an approach by Kac (1968), which inspired a new method for expressing
manifest distributions. This method is summarized in our Theorem 1 and Corollary 1 and is
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related to the Dutch identity (Holland, 1990), which is our Theorem 2 for the response models
considered in this paper. Our assumption of a normal kernel density for the latent trait parameters
appeared to be closely related to the posterior normality assumption that is often used with the
Dutch identity, but more importantly, it has allowed us to characterize the manifest distributions
of observables analytically. So what did this formal exercise teach us about the three psychometric
models?

The observation that accuracies and response times are dependent in the analyzed manifest
distributions is a warm reminder of the fact that integrating over a common cause, or set of
correlated common causes, will generate a dependency between observables that are conditionally
independent. In fact, the statistical modeling of suchmanifest dependencies is what latent variable
models are made for. Viewed in this way, it hardly seems relevant how the three latent trait models
treat these dependencies locally, e.g., assuming conditional independence between observables
or not, since these local properties have disappeared in the manifest distribution. Given that
the manifest probabilities are all that we can ever learn from our observables, the conditional
independence property may be a convenient tool to model dependencies at the latent trait level,
but for the three response models it is hardly more than that.

A more sensible division of the three latent trait models appears to be the response time
function that is being modeled, as it is here that we find major differences between the three
response models. For example, the log-transformed response times are modeled in the HM, the
residual response times or pseudo-response times are modeled in the SM, and in the DM the
response times are modeled directly, although the latter does so in proportion to the total test time.
This offers an interesting new view on response models that take response times into account, and
one may wonder if there is a way to find out which function tells us the most about the unknown
abilities. The manifest distributions in this paper offer one approach to address such questions.

That the conditional independence property at the latent trait level does not resonate in the
practical application of the three latent trait models does not imply that this property has no impact
on the manifest distribution. To see the impact of the conditional independence property at the
manifest level we first note that for exponential family response models our Corollary 1 generates
manifest distributions that are of the form of Eq. (13). The distribution in Eq. (13) is a prototypical
example of a Markov random field (MRF; Kindermann & Snell, 1980), which is an undirected
graphical model with certain conditional independence relations —known as Markov properties
(e.g., Lauritzen, 2004)—that are encoded in the matrix of pairwise interactions. When accuracy
and response time are independent at the latent trait level we may write this interaction matrix as

� =
(

�x x �x t

�T
x t �t t

)
,

where �x x encodes the interactions between response accuracies, �t t the interactions between
(functions of) response times, and �x t the interactions between the two types of observables.
The division of these interactions allows us to flesh out dependencies between the two types of
observables in the manifest distribution, and to specifically model any patterns of interactions that
we might observe. If we wish to model such local properties we could start with models of the
form of Eq. (13) or we could use higher-dimensional latent trait models (e.g., Epskamp, Kruis, &
Marsman, 2015; Marsman, Maris, Bechger, & Glas, 2017; Marsman, Waldorp, & Maris, 2017).

Even though the manifest probability distributions of the DM and SM for residual times are
not MRFs with respect to the two types of observables,2 we observed some interesting properties

2Observe, however, that for both models the conditional distribution p(x | t) is an MRF, because they share the
Markov property that when the association between the accuracy of an item i and an item j is equal to zero, these two
variables are independent given the accuracy on the remaining items. Incidentally, for the manifest expressions of both
the SM and the DM the associated conditional distribution is another instance of the Ising model.
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in theirmanifest distributions. In themanifest expression for theDM, for example, the associations
between accuracies and response times are a function of the total time the pupil has spent on the
test, an aspect that is not being modeled in any of the other manifest expressions. This property
could be used to inform about the underlying strategies that pupils use, for example. The manifest
expression of the SM, on the other hand, provides a new and interesting way to view an old model,
the Ising model. The Ising model is an undirected graphical model that is characterized by the
following distribution,

p(x) = 1

Z
exp

(
xTμ + xT�x

)
,

where x is a p-dimensional vector of (0, 1) or (−1, 1) variables xi , μ a p-dimensional vector
of main effects, and � a p × p symmetric matrix of pairwise associations between variables.
Whereas the pairwise associations are fixed effects in the Ising model, the manifest distribution
of the SM indicates one way to model these associations as a random effect.

One famous conjecture fromHolland (1990, p. 11) is that if there are large number of items on
a test, and a smooth unidimensional IRT model (for accuracies) is used, the posterior distribution
of the latent trait will be approximately normal. This conjecture has inspired several publications
on the posterior normality of the latent trait in the context of IRT models for response accuracy
(e.g., Chang and Stout, 1993; Chang, 1996; Zhang and Stout, 1997). An interesting conclusion that
Holland (1990) deduced from this conjecture, in combination with the assumption that the log-
likelihoods of the p items can be approximated using a p-variate normalwith a rank one covariance
matrix, is that the log of the manifest distribution of accuracy is approximately of quadratic form
consisting of p main effects and a p × p matrix of associations that was of rank one. This enticed
Holland (1990) to add a second conjecture that only two parameters can be consistently estimated
per item. This idea points to interesting avenues of future research, such as the asymptotic posterior
normality of the latent trait in the context of IRTmodels for response accuracy and response times.
If it is reasonable to approximate the posterior of the latent trait (or the log-likelihood function)
with a normal distribution, then we can use this approximation in combination with Corollary 1 or
Theorem 2 to investigate the complexity of models for response accuracy and response times, and
how model complexity is impacted by the conditional independence property of the underlying
latent trait model.

The latent variable distribution g(ζ ) has allowed us to express the manifest probability dis-
tributions for a large class of latent trait models, but it also generated an unexpected parameter
restriction in the manifest distribution of the HM, where we found that the variance of the speed
variable v2η needed to be smaller than the smallest log-normal varianceφ−1

i . This parameter restric-
tion follows from omitting the normalizing constants Zi (ζ ) of the latent variable model in Eq.
(7), which provides prior model structure. When a regular latent variable distribution is used—for
example, a normal distribution on η—the model structure that is provided by the normalizing
constants Zi (ζ ) is integrated instead. Marsman et al. (2018) studied a similar scaling issue of the
posterior distribution that results from using the latent variable distribution g(ζ ) in the context of
multi-dimensional IRT (see also Marsman et al., 2017). The correspondence that we have found
between our normal kernel assumption and the posterior normality assumption with the Dutch
identity suggests that similar observations can be made for the prior and posterior of the latent
variables in Corollary 1 of Holland (1990), Corollary 1 of Hessen (2012), and Theorem 1 in Ip
(2002).

The particular restriction that is imposed on the variance of the speed variable v2η in the
HM is a rather strong restriction from a substantive point of view. From the perspective of the
manifest distribution, however, it might be less of an issue since v2η is simply a scaling factor
for the interactions between the log-transformed response times and accuracies x. That is, the
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manifest structure would not change when we absorbed v2η in the precisions and simply use the
matrix of associations:

� =
(

ααT −ρα φT

−ρφ αT φ φT

)
.

Alternatively, we may adopt a different base measure ω(·) to remove the restriction.
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Appendix

Proof of Theorem 2

The ratio of manifest distributions can be expressed as

p(x, t)
p(y, w)

=
∫
R

p(x, t | ζ ) f (ζ ) dζ∫
R

p(y, w | ζ ) f (ζ ) dζ
,

where the latent variable model is of the form of Eq. (7), such that

p(x, t)
p(y, w)

=
∫
R

∏p
i=1

1
Zi (ζ )

bi (xi , ti ) exp
(
si (xi , ti )Tζ

)
f (ζ ) dζ∫

R

∏p
i=1

1
Zi (ζ )

bi (yi , wi ) exp
(
si (yi , wi )Tζ

)
f (ζ ) dζ

.

Since the base measures bi do not depend on the value of the latent variables, we can place them
outside of the integral ratio, and we can, moreover, nest the two integrals

p(x, t)
p(y, w)

=
p∏

i=1

bi (xi , ti )

bi (yi , wi )

∫
R

∏p
i=1

1
Zi (ζ )

exp
(
si (xi , ti )Tζ

)
f (ζ )∫

R

∏p
i=1

1
Zi (ζ )

exp
(
si (yi , wi )Tζ

)
f (ζ ) dζ

dζ .

We next multiply the integrand of the outer integral with the factor

1 =
p∏

i=1

exp
(
si (yi , wi )

Tζ
)

exp
(
si (yi , wi )Tζ

) ,

as follows

p(x, t)
p(y, w)

=
p∏

i=1

bi (xi , ti )

bi (yi , wi )

∫
R

p∏
i=1

exp
(
si (yi , wi )

Tζ
)

exp
(
si (yi , wi )Tζ

)
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∏p
i=1

1
Zi (ζ )

exp
(
si (xi , ti )Tζ

)
f (ζ )∫

R

∏p
i=1

1
Zi (ζ )

exp
(
si (yi , wi )Tζ

)
f (ζ ) dζ

dζ

=
p∏

i=1

bi (xi , ti )

bi (yi , wi )

∫
R

p∏
i=1

exp
(
si (xi , ti )Tζ

)
exp

(
si (yi , wi )Tζ

)
∏p

i=1
1

Zi (ζ )
exp

(
si (yi , wi )

Tζ
)

f (ζ )∫
R

∏p
i=1

1
Zi (ζ )

exp
(
si (yi , wi )Tζ

)
f (ζ ) dζ

dζ ,

so that we can now recognize the second factor in the integrand as the posterior distribution

f

(
ζ

∣∣∣∣S =
∑

i

si (yi , wi )

)
=

∏p
i=1

1
Zi (ζ )

exp
(
si (yi , wi )

Tζ
)

f (ζ )∫
R

∏p
i=1

1
Zi (ζ )

exp
(
si (yi , wi )Tζ

)
f (ζ ) dζ

,

and we can express the ratio in the following form

p(x, t)
p(y, w)

=
p∏

i=1

bi (xi , ti )

bi (yi , wi )

∫
R

p∏
i=1

exp
(
si (xi , ti )Tζ

)
exp

(
si (yi , wi )Tζ

) f

(
ζ

∣∣∣∣ S =
∑

i

si (yi , wi )

)
dζ

=
p∏

i=1

bi (xi , ti )

bi (yi , wi )

∫
R

p∏
i=1

exp
(
[si (xi , ti ) − si (yi , wi )]

T ζ
)

f

(
ζ

∣∣∣∣S =
∑

i

si (yi , wi )

)
dζ

=
p∏

i=1

bi (xi , ti )

bi (yi , wi )
E

( p∏
i=1

exp
(
[si (xi , ti ) − si (yi , wi )]

T ζ
) ∣∣∣∣∣ S =

∑
i

si (yi , wi )

)
,

which completes our proof.
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