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On the relevant domain of the Hilbert
function of a finite multiprojective scheme

Mario Maican

Abstract. Let X be a zero-dimensional reduced subscheme of a multiprojective space V. Let s; be the
length of the projection of X onto the i-th component of V. A result of Van Tuyl states that the Hilbert
function of X is completely determined by its restriction to the product of the intervals [0, s; — 1].
We extend this result to arbitrary zero-dimensional subschemes of V.

1 Introduction

Letgandn,,...,n, be positive integers. Let K be a field. Consider the multiprojective
space V = P™ X ... X P" over K. The coordinate ring of V is the Z9-graded algebra

SzK[xinSiSq,OSani].

We have deg(x;;) = e;, where e, € Z9 is the i-th basis element. Let M be a finitely
generated Z9-graded S-module. The Hilbert function H ;: Z9 — Z of M is defined by
H ys(a) = dimy (M,,). Let X C V be a zero-dimensional subscheme and let /(X) C S
be the ideal generated by the Z7-homogeneous forms in S that vanish on X. The Hilbert
function H y of X is defined to be the Hilbert function of S/I1(X).

The exploration of the Hilbert functions in the multiprojective setting is a natural
extension of the rich theory of Hilbert functions of zero-dimensional subschemes of P".
The simplest case, when V = P! x P!, was first investigated by Giuffrida et al. in [11].
This exploration was then continued by many authors. The case of P! x P! remains the
most assiduously studied case, see [3], [4], [7], [12], [13], [14], [15], [16], [17], [21], [22], [26].
For other ambient spaces V we refer to [1], [4], [8], [9], [25], [26]. The theory now follows
three broad directions of development: Hilbert functions of sets of points, as in [8], [16],
[17], [21], [22]; Hilbert functions of sets of fat points, as in [3], [4], [7], [13], [14], [15], [24];
and Hilbert functions of ACM schemes, as in [8], [9], [13], [14], [16], [17], [21], [22], [26].

In connection with the first and third directions of development, we mention two
fundamental results belonging to Van Tuyl. According to [25], if X is reduced and K is
algebraically closed, then H y is uniquely determined by its restriction to a rectangular
region of the form R = [0,r] X --- X [0,r,] C Z9. More precisely, R is a relevant
domain for H y in the sense of Definition 2.1 and Lemma 2.2. Our first achievement is
the generalization of this result to the case of an arbitrary zero-dimensional subscheme
X C V over an arbitrary ground field K. See Theorem 4.4. If K is algebraically closed,
then, according to [26], the functions H y, where X runs through the zero-dimensional
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reduced ACM subschemes of V, are precisely the functions H whose difference A H,
defined at Equation (1), is the Hilbert function of an artinian Z9-graded quotient of
S/ Xy -+ - xqo). Our second achievement is the generalization of this result to the case
of an arbitrary zero-dimensional subscheme X C V over an arbitrary infinite ground
field K. See Theorem 6.6.

We give three proofs to Theorem 4.4. The first proof consists of comparing the coho-
mology of the twists of 7, with the cohomology of the twists of the ideal sheaf of X in
a smaller ambient space W, C V. Here W, is obtained from V by replacing P"/ with the
projection of X onto P" . See Lemma 4.1. The second proof, located in Section 7, applies
only in the case when K is algebraically closed, V = (P')4 and X is ACM or sub-ACM
(meaning depth(S/1(X)) = g — 1). The technique we use draws on the technique of
Giuffrida et al., who dealt with the case when V = P! X P!, The key ingredients here are
the constraints satisfied by the Hilbert function of an ACM or sub-ACM scheme. See
Propositions 7.1 and 7.2. The third proof of Theorem 4.4, located in Section 9, applies
only in the case when K is infinite and V = (P!)4. It is based on Macaulay’s theorem and
on a vanishing criterion for the difference A Hg, s of the Hilbert function of the quotient
of S by a monomial ideal. See Proposition 8.4. We think that approaching Theorem 4.4
from three different angles provides a clearer picture of the subtleties that arise in the
study of multiprojective Hilbert functions.

An important consequence of Theorem 4.4 is an upper estimate on the regularity
index of S/I(X), regarded as a Z-graded S-module, in terms of the regularity indices of
the projections of X onto the components P" of V. See Corollary 4.7.

Van Tuyl’s method for proving his version of Theorem 6.6 consists of finding a
regular sequence {u,, ...,u,} for S/1(X), as in Proposition 5.6. We adapt Van Tuyl’s
argument to the case when X C V is an arbitrary zero-dimensional subscheme and K
is an arbitrary infinite field.

In this paper we also consider quasi-rectangular domains, that is, finite unions of
rectangular domains, which are relevant to H y in the sense of Definition 2.1. The third
achievement of this paper is Proposition 9.5, which gives sufficient conditions for the
existence of quasi-rectangular relevant domanins that are strictly contained in R. The
problem of describing all quasi-rectangular domains Q C R that are relevant for Hy
remains open. An important class of schemes X for which this problem has been settled
is the class of ACM subschemes of (P!)4. See Corollary 6.7.

We now present the outline of the paper. In Section 2 we gather a few elementary
facts about relevant domains. In Section 3 we examine complete intersections and we
collect a few well-known facts about Hilbert functions of finite subschemes of P"*. These
facts will be needed in the proof of our first main theorem, concerning the rectangular
relevant domain, to which Section 4 is devoted. In Section 5, whose role is to prepare
the ground for the next two sections, we construct regular sequences for S/I1(X) and
for I(X) in the case when X is ACM or sub-ACM. Section 6 contains our second main
theorem, concerning ACM schemes. In Section 7 we combine the results of Section 5
with Lemma 3.5 in order to obtain inequalities involving the partial difference functions
of Hy and WI(X). As an application, we obtain our second proof of Theorem 4.4. In
Section 8 we find a formula for A?{S e where J is a monomial ideal. This leads us to
our vanishing criterion for A H ;7 Section 9 contains our third proof of Theorem 4.4
and our procedure for detecting quasi-rectangular relevant domains.

2025/09/02  04:23

https://doi.org/10.4153/S0008414X25101764 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101764

On the relevant domain of the Hilbert function of a finite multiprojective scheme 3
2 Relevant domains

Let g be a positive integer. Given a = (ay, ..., aq) and b = (b,...,b,) in Z4, we
write a < bif a, < b, for all indices i € {1,...,q}. Let e = ©,...,1,...,0) be the
element of Z7 that has entry 1 on position i and entries 0 elsewhere. Let 7 : Z9 — Z be
a function. We introduce the difference function A ¥ : Z9 — 7Z by the formula

AF@=F@+ Y (- > Fla-e, ——e). 1)

1<p=<q 1<ij<-<ip<q
In this paper we only consider functions ¥ that vanish on the complement of the positive
quadrant Z? = {a € Z9 | a > 0} because we are chiefly interested in Hilbert functions
of ideals in S. For such functions we can recover # from A ¥ by means of the formula

Fla) = Z AF(b) forall acZd. @)

0<b<a
Givenr, s € Z9 such thatr < s, we write [r,s] = {a € Z9 | r < a < s}. A rectangular
domain in Z7 has the form R = [0,r], for some r € Zz. A quasi-rectangular domain
Q C Z4 is a finite union of rectangular domains. The boundary B 0 of Q is defined to be

the boundary of Q inside Z%:
B, = {aeQla+te; +ote ¢ Q for some indices 1 <i; < --- <i, < g}.
In particular, for R = [0,7], By = {a € R | a, = r, for some index 1 <i < g}.

Definition 2.1. Under the above notation, a quasi-rectangular domain Q is said to be
relevant to F if AF(a) = Oforalla € 27 \ Q.

Lemma 2.2. A rectangular domain [0, r] C Z9 is relevant to F if and only if for every i in
{1,....q} and for every a € Z such that a; > r, we have F(a) = F(a,,...,r;, ..., a,).

Proof. Assume that R = [0, 7] is relevant to ¥ and choose a € Z such that a, 2 r;.
Equation (2) can be rewritten as

Fla)= D oy e DUAFB)+ Y D Y AT,

0<bi<a; 0<b;<r; 0<b,;<aq 0<bi<a; ri<b;<a; 0<b,<ay

The first summation equals F(ay, .. ., Fipeens aq), again by virtue of Equation (2). The
second summation vanishes because A #(b) = 0 if b lies outside R.

Conversely, assume that for every indexi € {1,..., g} and for every a € Z9 such
that @, > r; we have the equation ¥ (a) = F(a,,....7;,...,a,). This is equivalent to
saying that for every indexi € {1,...,q} and for every a € Z9 such that a, > r, we
have the equation F(a) = ¥ (a — ¢;). Choose a € Z? \ R. There is an index i such that
a; > r;. Equation (1) can be rewritten in the form

AF(a) = (Fla) - Fla-e)

oD Y (Fla—e—me ) - Fla—e—e = —e)).
1<p=<qg-1 1<)1<-<jp<q
Jtseenjp#i
All terms in parentheses vanish, hence A ¥ (a) = 0. Thus, R is relevant to F. [ |
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Lemma 2.3. Assume that the rectangular domain [0, r] is relevant to F. Then F (a) = F(r)

forall a € Z4 such thata > r.

Proof. Applying Lemma 2.2 repeatedly, we obtain the equations
Fla)=F(ri,a5....a,) = F(r,rpay,...;a,) = =F(r). =

Remark 2.4. The above lemmas show that, if R is relevant to F, then F | Br determines

the function # on the complement of R. The same is true for a relevant quasi-rectangular
. . _ . 2

domain Q. Take for instance Q = [0, s] \ [r, s]in Z*, where 0 < r; < 5,0 <71, < 5,,

and take a € [r, s]. We have the equation

Fla)=F(ap,r,-D)+F(ry—Lay)-F(r,—-1r,-1)
and (a,,r, = 1), (r; — 1, a,), respectively, (r, — 1,r, — 1) lie on BQ.

Given a € Z7 we write |a| = a,+---+a, Let¥: Z9 — Zbe a function that vanishes

on the complement of ZZ. Let F:Z, — Zbe given by the formula
Fd)= > Fla.
aeZl,|al=d

Lemma 2.5. Let F: Z9 — Z be a function that vanishes on the complement of . Assume
that [0, r] is relevant to F. Then the restriction of F to [|r|, c0) is a polynomial function in
the variable d, with rational coefficients and with dominant term F(r)d?='/(q — 1)!

Proof. Letus write R = [0,r] and r = (r},...,r,). Given b € By there is an integer
P =p, €{Ll,...,q} and there are indices 1 < i} < --- <i, < gsuchthath; <r, for
ie{l,....q}\{i},.. .,ip} and bl.l =TI .,bip = rl.p.We consider the set

A(b) = {aeZ?| A 2 Tyseeesly 20, 0 = biforie{l,....qt \ {ij,....i,}}.

According to Lemma 2.2, ¥ (a) = F(b) foralla € A(b). For d > |b| we consider the set
A, (b) ={a € A(b) | |a| = d}.

We now recall the fact that, for a fixed non-negative integer s, the number of integer

solutions to the equation ¢, + - -+ + ¢, = s, with unknowns ¢; > 0, is (H’:l). For

a € A () we have the equation (a[.1 - ril) +o+ (aip — rip) =d — |b|, hence

14,(b)] = (d—|b|+p—1).

-1

Assume now that d > |r|. The decomposition {a € Z? | |a| = d} = Lpesr A (P)

leads us to the following expression for F(d):

Y@=y Y Fw= Y roiaei- Y re(’ )

-1
anz beBRr aEAd(b) beBRr beBRr b
la|=d

The r.h.s. is a polynomial function in d with rational coefficients. The assertion about
the dominant term follows from the fact that p, = g whilep, < gforb € Bg\{r}. =
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On the relevant domain of the Hilbert function of a finite multiprojective scheme 5

Definition 2.6. The polynomial P(d) € Q[d] of Lemma 2.5, satisfying the relation
P(d) = F(d) for d > |r|, will be called the Poincaré polynomial associated to F.

Lemma 2.7. Let F: Z9 — Z be a function that vanishes on the complement of Z. Assume
that the rectangular domain R = [0, r] is relevant to F. Assume, in addition, that there is an
integer 0 < 7 < |r| such that F is constant on the set T = {a € R | |a| = 7}. Then
F(d) = P(d) for d > T, where P is the Poincaré polynomial associated to .

Proof. We adopt the notation from the proof of Lemma 2.5. For d > 7 we denote
Cy={aczi|lal=ay\ | a,0).
beBr \T
By hypothesis, ¥ (a) = ¥ (r) if a € T. According to Lemma 2.2, ¥ (a) = F(r) if a lies
in A(b) for some b € By N T. Thus, F(a) = F(r)ifa € C,;. Ford > 7 we calculate:

Fly= Y Fl@

aeZl,|al=d

=Y F@+ Y > Fla)

aeCy beBR\TaeAd(b)
=FOIC I+ > Fb)ALD)
bEBR\T
d+qg-1 d—|bl+p, -1
-ro|( ) 2 ()
4 beBR\T Py
d-|bl+p, -1
£y T(b)( b1+, )
p, —1
beBR\T b

This is a polynomial expression in the variable d, which, in view of Lemma 2.5, must
coincide with P(d). [ ]

3 Generalities concerning Hilbert functions

Welet V =P" X - .- xP" be a multiprojective space over a field K. We let X € Vbea
zero-dimensional subscheme with ideal sheaf 7, and structure sheaf O . It is customary
to denote length(X) = dimy HO(OX). We choose a € Z9. From the short exact sequence

0— Iy — 0y — 04y —0
we obtain the exact sequence in cohomology
0 — I(X), — S, — H%(Ox) — H'(Zx(a)) — H'(Oy(a)).
The group on the right vanishes if a lies in the positive quadrant. Thus,
H y(a) = length(X) — dimKHl(Ix(a)) if aez?. 3)

Lemma 3.1. Assume that [0, r] is relevant for H .. Then H y(a) = length(X) foralla > r.
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Proof. It is well-known that H'(, (@) vanishesifa, ..., a, are sufficiently large. See
(19, Theorem IIL.5.2]. Consequently, in view of Equation (3), Hy(a) = length(X) if
a,...,a, are sufficiently large. We saw in Lemma 2.3 that H y is constant on [r, c0).
We conclude that H y takes the value length(X) on [r, c0). [ |

It is well-known that H y has a relevant domain when V is a projective space. The
following proposition is a straightforward consequence of [10, Proposition 1.1].

Proposition 3.2. Let Z C P" be a zero-dimensional subscheme. Then there is an integer
r > 0 such that H , increases on the interval [0, r] and is constant on the interval [r, co).
Thus, [0, r] is the smallest relevant domain for H y.

Notation 3.3. The integer r = rin(Z) is known as the regularity index of Z.

Notation 3.4. Let S be a K-algebra and let M be an S-module. Consider elements
ViseesV, € S. We denote by {el, .. .,ep} the standard basis of the K-vector space
E =KP. Consider the elementv =€ ® v, + -+ €, ® v, € E @ S. The sequence

0> M-S EQM — - ANEQM -5 AM'TEQM — - APTVEQM -5 \PEQM

is the Koszul complex associated to v, .. ., v, and M, denoted K(v,, . . ., vp) QM.

Lemma 3.5. Let M be a Z9-graded S-module. Assume that {u,, . .., u,} is M-regular with
u, € span{xij | 0 <j <n;} Then AH , is the Hilbert function of M [(u,, . . ., u, )M.

Proof. We denote by {61, U Eq} the standard basis of the K-vector space E = K9.

Foreach k € {1,..., g} we endow AKE ® M with a Z7-grading as follows: if h € M
is Z7-homogeneousand 1 < i, <--- <i_ < g, then

deg(e; A --- A g, ®h) =deg(h)+ Z e;.
P€{Leen@ P\ {iypeoiy }

The Koszul complex K(u,, . . ., u,) ® M introduced at Notation 3.4 becomes a complex
of Z49-graded S-modules. According to [5, Corollary 17.5], K (u, . . ., uq)®M is exact, by
virtue of the fact that {ul, U uq} is M -regular. Note the isomorphism M ~ ATE @ M
of Z7-graded S-modules givenby & > € A~ - - A€, ® h. The cokernel of the last map in
the Koszul complex is thus isomorphic to M/(u,, . .., u,)M. The lemma follows from
the additivity of the Hilbert function on short exact sequences. |

We recall that the projection pr,(X) onto P"i of a subscheme X C V is the subscheme of
P" defined by the ideal /(X) N'S;. Here S; = K[xl.j | 0 < j < n,]. We recall that a
zero-dimensional subscheme X C V is called a complete intersection if I(X) is generated
by a regular sequence of lengthn; +--- +n,.

Proposition 3.6. A zero-dimensional subscheme X C V is a complete intersection if and
only if each Z; = pr,(X) is a complete intersection in P" and X = Z; X -+ X Z,,.

Proof. Assume that X is a complete intersection, so /(X) is generated by a regular
sequence {f,..., f,}, wheren = n; + -+ + n,. Write d, = ., ..., dZ) = deg(f,):
Arguing as in the proof of Lemma 3.5, we can show that K(f;, . . ., f,,) ® S is a resolution
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On the relevant domain of the Hilbert function of a finite multiprojective scheme 7

of S/I(X), hence, by the additivity of the Hilbert function on short exact sequences,

Hyla)=Hg(@+ > (-1 > Hyla—dy ——d).
I<p<n 1<k <---<kp<n
Assume now that a = (a,, 0, .. ., 0). We have the equation
Hyla) =Hyla) = Hg (a)+ D 1 > Hgla—dy —-—d, ). (@)
1<p<n 1<ki<---<kp<n

Put {g,....&n} = {fi»---» fu} NS, and write e, = deg(g,) € Zfor1 < k < m.
Notice that {g,,...,g,,} is S,-regular, hence m < n,.Let Z C P™ be the subscheme
defined by the ideal (g, . . ., g,,,). If for some indices 1 < u < pand 2 < i < g we have
d,’< > 0, then H(a - dk1 — = dk,,) = 0. Discarding the superfluous terms, we can

rewrite Equation (4) in the form

Hz (a)) =Hg (a)) + Z (=P Z Hs (a; — ¢, _"'_"’k,,)'

1<p<m 1<ki<---<kp<m

The r.h.s. equals H 4(a,) because K(g,, ..., 8,,) ® S, is exact. Thus H, = H,. By
construction, Z, is asubscheme of Z,hence Z = Z,,and hencem = n,. Moreover, Z, isa
complete intersection. The same argument works for all Z, so each of them is a complete
intersection. We have proved that I(X) = I(Z,)+-- -+ I(Z,),s0 X = Z; X---XZ,. &

Notation 3.7. We assume that the zero-dimensional subscheme Z C P" is a complete
intersection. Say I(Z) = (f}, ..., f;,). We write

5(2) = deg(f;) — 1 ifn=1,
 \deg(f,) + - +deg(f,) -2 ifn>2.

We assume that the zero-dimensional subscheme X C V is a complete intersection. As
per Proposition 3.6, each Z, = prl.(X) is a complete intersection, so we may write

5(X) = (8(Zy), ..., 6(Z,).

In the following proposition we collect several well-known properties of the regularity
index. For the convenience of the reader we include their proofs. Let us recall that the
Castelnuovo-Mumford regularity reg(S) of a coherent sheaf S on a projective space is the
smallest integer p such that H"(S(p —m)) = {0} if m > 1. The Castelnuovo-Mumford
regularity reg(Z) of a subscheme Z of a projective space is reg(Z,).

Proposition 3.8. Let Z C P" be a zero-dimensional subscheme of length s and regularity
index rin(Z). Then the following statements hold true:

@ H,(a) = s fora > rin(Z);
(ii) HI(IZ(a)) = {0} for a > rin(Z);
(iii) H™(Z,(a)) = {0} form > 2anda 2 —-n;
(iv) rin(Z) < s - 1;
W rin(Z)=s—-1lifn=1;
(vi) rin(Z) + 1 = reg(2);
(vii) rin(Z) < 8(Z) if Z is a complete intersection. See Notation 3.7.
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Proof. Write r = rin(Z). To prove statement (i) we apply Proposition 3.2 and
Lemma 3.1. In light of Equation (3), we have dimy, HI(IZ(a)) =5 - Hyla) = 0for
a > r. This proves (ii). To prove statement (iii) we employ the exact sequence

0— 1, — Op — 0, —0.
Applying the long exact cohomology sequence we obtain the exact sequence
H"™1(0,) — H"(I(a)) — H"(Opa(a)).

The group on the left vanishes because O, has support of dimension zero. The group
on the right vanishes for @ > —n. Thus, the group in the middle also vanishes.

(iv) According to Proposition 3.2, H , increases on the interval [0, r]. By definition,
H ,(0) = 1, hence H ,(r) > r + 1, and hence, in view of statement (i), s > r + 1.

(V) For0 < a < s — 1 we have H ,(a) = a + 1 because there are no forms of degree
a vanishing on a subscheme Z C P! of length s. Thus, H, increases on the interval
[0, s — 1] forcing the inequality s — 1 < r. The reverse inequality was obtained at (iv).

(vi) From statements (ii) and (iii) we see that H"(Z,(r + 1 —m)) = {0} if m > 1.
From the definition of r and from Equation (3) it follows that H' (Z,,(r — 1)) # {0}.

(vii) In the case whenn = 1 wehaver = s — 1 = 6(Z). Assume that n > 2.
Write d; = deg(f;). The hypothesis that { |, . .., f, } be a regular sequence implies that
K(fi,..., f,) ® Sisaresolution of S/I(Z). Consult the proof of Lemma 3.5. Thus,

Hyla)=Hg(@)+ > (-1 > Hgla—dy - —d, ).

1<p=<n 1<ki<---<kp<n

Differentiating both sides, we obtain the equation

M{z(a)=(a;le)+ PGS (a_d"‘_m_d"fﬁn_l).

1<p<n 1<k <<k, <n n-1

We need to prove that AH ,(a) = 0fora > 6(Z) + 1, that is, we need to prove the
combinatorial equation

g )

1<p<n 1<k <<k, <n n—1

fora > 6(Z) + 1.Put A = {1,2,...,a+ 1}.For 1 £ k < n, consider mutually
disjoint subsets D, C A with d, elements. Such subsets exist because, by hypothesis,
a+12>d +---+d,.Let C be the set of repeat combinations of n — 1 elements chosen
in A. Let C, be the set of repeat combinations of n — 1 elements chosen in A \ D, . The

Lh.s. of Equation (5) equals |C| and

a—d

=y An— 1

Applying the inclusion-exclusion principle, we deduce that the r.h.s. of Equation (5)
equals |C1 U---u Cn|. Equation (5) reduces to proving that C = C, U --- U C,,. Take
(cppens cnfl) € C. By construction, the sets D,, ..., D, are mutually disjoint, hence
there is k such that c; ¢ Dk for all indices 1 <i < n—1.Thus, (cl, e, cn_l) € Ck. ]
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4 The rectangular relevant domain

Let V =P™ X --- X P"¢ be a multiprojective space over a field K. Let pr;: V — P"i be
the projection onto the i-th component. Let X C V be a zero-dimensional subscheme
and let Z; = pr;(X) be the zero-dimensional subscheme of P"/ defined by the ideal
1(Z,) = I(X)N K[xl.j | 0 < j < n,]. Write s; = length(Z;). As per Notation 3.3, write
r, =rin(Z,). Let W, = pr;1 (Z,) be the pull-back scheme, i.e. the subscheme of V defined
by the ideal of S generated by /(Z,). Note that X is a subscheme of W,. We denote by
Iy w, the ideal sheaf of X in OW,_.

Our purpose in this section is to prove that the domain [0, , | X+ - -X[0, r,, ] is relevant
for H . As mentioned in the introduction, a similar result was proved by Van Tuyl. See
the comments below Corollary 4.6. Van Tuyl’s approach was based on his version of
Proposition 4.2. Our approach is to replace the ambient space V with W;. Our main
technical tool is the following lemma.

Lemma 4.1. Let X C V be a zero-dimensional subscheme. Fix an arbitrary index i in
{1,....q} and let W, and r, be as defined above. Let a € Z9 satisfy the conditions a > 0 and
a; 2 r;. Then H'(Zy(a)) ~ HI(IX’Wi (a—ase,)).

Proof. By symmetry, we may assume that i = 1. By virtue of the Kiinneth formula,

H"(Iy,@)= P H"(I,(a) @ H"(Opny(a,)) ® - @ H"(Opay (a,)).

my+--+mg=m

By hypothesis, a, > r,, hence, in view of Proposition 3.8, H"”(IZI (a,)) = {0} for
m; > 1. By hypothesis, a, > 0,...,a, > 0, hence the higher cohomology groups of
Opn, (ay), . ... Opny (a,) also vanish. We deduce that H’"(fW1 (a)) = {0} form > 1.
From the short exact sequence

0— Iy — Iy — Iyy, —0
of sheaves on V we obtain the long exact sequence
{0} = H'(Zy, (@)) — H'(Iy(a)) — H'(Zy,y, (@) — H*(Zyy, (a)) = {0}.

The middle arrow becomes an isomorphism. The line bundle O, (a,) is trivial on Z,
because the latter is supported on finitely many points. We obtain the isomorphism
Iy w, (a) = Iy w, (0,a,, ..., a,), which leads us to the desired isomorphism

H'(Zy(@) = H'(Zy . (0, a3, - .., a,)).

Proposition 4.2. Let X C 'V be a zero-dimensional subscheme. Assume that the ground field
K is algebraically closed. Fix an arbitrary index i € {1, ..., q} and assume that Z, is reduced,
say Z, = {P,, ..., P, }. For each index k € {1,...,m} consider the scheme

W, = pr;(P) =~ P" x - x P x .- x P"a.

SetY, = XNW . Let Hy, be the Hilbert function of Y, as a subscheme of W, the latter being
regarded as a multiprojective space. Let a € Z9 satisfy the conditions a > Oand a; > r,. Then

Hy(a) = Z Hy, @y, Ty ..o ay)-

1<k<m
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Proof. From the decomposition W, = W, LI - - - LI'W,, we obtain the decomposition
H' (Zy . (a - a;e;)) = @ H'(Zy, o (@, s Ty ).
1<k<m
Applying Equation (3) and Lemma 4.1, we calculate:
H x(a) = length(X) — dimy, HI(IX(a))
= length(X) — dimy HI(IX’WI, (a-aje;))
= Z length(Y, ) — Z dimy HI(IYk’Wk (@, ....a;,..., a,))

1<k<m 1<k<m
= Z Wyk(al,...,ai,...,aq). [ ]
1<k<m

The above result, in the particular case when X is reduced and a ;=8 — 1, was obtained
by Van Tuyl using different methods. Consult [25, Proposition 4.2].

Definition 4.3. Let X C V be a zero-dimensional subscheme. For eachi € {1,..., g},
let Z; be the projection of X onto P"/. Recall Notation 3.3. The tuple

rem(X) = (rin(Z;), . . ., rin(Z,))

will be called the regularity multi-index of X. We write R(X) = [0, rem(X)].

Theorem 4.4. Let X C P™ X --- X P" be a zero-dimensional subscheme. We assert that
R(X) = [0, rem(X)] is the smallest rectangular relevant domain for H .

Proof. Write rem(X) = (r,...,r,). Consider a € Z1 satisfying the condition a; >,
for some indexi € {1,.. ., g}. According to Lemma 4.1, the expression dim; H' (Zy (b))

remains constant as b, varies in the interval [r;, c0) and bj are nonnegative fixed integers
for all indices j € {1,...,q} \ {i}. Thus,

dimy HI(IX(a)) = dimy Hl(IX(al, cees T dg)).
Applying Equation (3), we calculate:
Hy(a) = length(X) — dimy H'(Zy(a))
= length(X) — dimKHl(IX(al, N )
=Hx(ay,...,r;.. .,aq).

From Lemma 2.2 we deduce that R(X) is relevant to H . We cannot shrink R(X) to
a smaller rectangular relevant domain because, as seen at Proposition 3.2, the function
Hx(aze;) = Hy (a;) increases on the interval [0, r;]. [

The above result, in the particular case when V = P! x P! and K is algebraically closed,
was obtained by Giuffrida et al. We refer to [11, Remark 2.8 and Theorem 2.11]. Guardo
and Van Tuyl gave a different proof to Giuffrida’s result in the particular case when X is
a union of fat points. Consult [14, Corollary 3.4].
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Proposition 4.5. Let X € P™ X - - - X P" be a zero-dimensional subscheme of length s and
regularity multi-index rem(X). For each i € {1,...,q}, let 5, be the length of the projection
of X onto P™. Then the following statements hold true:

@) Hx(a) = s fora > rem(X);

(ii) Hl(fx(a)) = {0} for a > rem(X);
(iii) H™(Iy(a)) = {0} form > 2 and a > O;
(iv) rem(X) < (s; = L,...,5, — 1)

V) rem(X) = (s,=1,...,5,—1)if V = (P")2 Thus, R(X) = [0, s, —1]x- - -x[0, 5,—1];
(vi) rem(X) < 6(X) if X is a complete intersection. See Notation 3.7.

Proof. Statement (i) follows from Theorem 4.4 and Lemma 3.1. To prove (ii) and (iii) we
argue precisely as in the proof of Proposition 3.8(ii and iii). Statements (iv) and (v) follow
from their counterparts at Proposition 3.8. Statement (vi) follows from Proposition 3.6
and Proposition 3.8(vii). ]

Proposition 4.5(i), in the particular case when X is a union of fat points and K is
algebraically closed, was obtained by Sidman and Van Tuyl. See [24, Proposition 4.4].
Complete intersection schemes contained in a simplicial toric variety were studied
in [23]. Restricting [23, Theorem 3.16] to the case when the ambient space is a multi-
projective space we obtain the following result: “Let X be a zero-dimensional complete
intersection scheme contained in a multiprojective space of dimension n defined over an
algebraically closed field. Assume that I(X) = (f}, ..., f,). Then Hy(a) = length(X)
for a > deg(f,) + -+ + deg(f,)” In Proposition 4.5 we proved that the equation

H y(a) = length(X) holds for the improved bound a > §(X),

Corollary 4.6. Let X C P™ X - .- X P" be a zero-dimensional subscheme. For each index
i €{l,...,q} lets; bethelength of the projection of X onto P". Then the rectangular domain
(0,5, = 1] X -+~ x[0,5, — 1] is relevant to H y.

The corollary follows from Theorem 4.4 and Proposition 4.5(iv). The above result, in
the particular case when X is reduced and K is algebraically closed, was obtained by
Van Tuyl. Consult [25, Proposition 4.6(ii) and Corollary 4.7].

Let M be a finitely generated Z?-graded S-module. The canonical Z-grading on S is
given by the degree of a polynomial. Given a € Z7, write |a| = a; + - -+ + a,. We note

that M is also a Z-graded S-module by setting M, = @|a|=dMa' The Hilbert function

of this module is the function H M- Z — Zgiven by

Hy(d)= Y Hyla).
|lal=d
There exists a polynomial #,, in one variable, with rational coefficients, called the

Hilbert-Poincare polynomial of M, such that 7_‘{M(d) = P,,(d) for d sufficiently large.
See [5, Theorem 1.11]. The regularity index rin(M) of M is the smallest integer with
the property that WM = P,, on [rin(M), ). Given a subscheme X C V, we put
WX = WS/I(X), Py = SDS/I(X), and rin(X) = rin(S/I(X)). These concepts become
more familiar once we slightly change the point of view. Writen = n; +---+n, +q—1

and let P" have the coordinate ring S, equipped with its Z-grading. Let X C P" be the
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subscheme defined by the ideal I(X). As an aside, note that, if X is reduced, then X is
an arrangement of (¢ — 1)-dimensional planes in P". Clearly, Hy is the usual Hilbert
function of X, Py is the usual Hilbert-Poincare polynomial of X, and rin(X) = rin(X).

Corollary 4.7. Let X C V be a zero-dimensional subscheme. Recall from Definition 4.3 the
regularity multi-index rem(X). We assert that rin(X) < |rem(X)|. We further assert that
Py (d) has dominant term length(X)d4=' /(g — 1)!

Proof. Clearly, the Poincaré polynomial associated to H y, introduced at Definition 2.6,
coincides with $,,. We apply Lemma 2.5 to HH  and to its relevant domain [0, rem(X)].

We deduce that P, = Hyx on [|rem(X)]|, o), and that $, has dominant term
Hy(rem(X))d97" /(g — 1)! It follows that rin(X) < |[rem(X)|. In accordance with
Proposition 4.5(i), H y (rem(X)) = length(X). This proves the second assertion. |

Lemma 4.8. Let X C V be a zero-dimensional subscheme of length s. Assume that there is
an integer 0 < 7 < |rem(X)| such that Hy(a) = sifa € R(X) and |a| > 1. Then
rin(X) < 7.

Proof. We apply Lemma 2.7 to the function # = H y. The hypothesis of Lemma 2.7 is
satisfied because H y takes the value s on the region {a € R(X) | |a| = 7}. We deduce

that ﬁx(d) = Py (d) for d > 7, forcing the inequality rin(X) < 7. [ ]

Proposition 4.9. Let X C P! xP! be a zero-dimensional subscheme of length s. LetY_C P3
be the associated one-dimensional subscheme. Then rin(X) < s—1,i.e. rin(X) < deg(X)—1.

Proof. According to Corollary 4.7, deg(X) = s, hence the two inequalities above are
equivalent. Assume that | rem(X)| < s—1. Applying Corollary 4.7 we get the inequalities
rin(X) < |rem(X)| < s — 1. Assume now that s — 1 < |rem(X)|. According to [20,
Corollary 4.5], Hy(a) = sifa € R(X) and |a] > s — 1. Applying Lemma 4.8 with
T = s — 1 we obtain the inequality rin(X) < s — 1. [ ]

Let Y be a projective scheme. The inequality rin(Y) < deg(Y) — 1 is satisfied in the case
when Y is zero-dimensional, as per Proposition 3.8(iv). This inequality is also satisfied
in the case when Y = X, as in Proposition 4.9. The question whether the inequality is
satisfied for arbitrary ¥ remains open.

5 Regular sequences in the case of ACM and sub-ACM schemes

In this section we assume that the ground field K is infinite. Let m be the maximal ideal
of S generated by all the variables. The depth of a Z9-graded S-module M is the maximal
length of an M-regular sequence contained in m. Let X C V be a zero-dimensional
subscheme. Since K is infinite, there exists a non-constant Z2-homogeneous form that
does not vanish at any point of red(X). This form is a non-zerodivisor of S/I1(X). Thus,
we have the inequalities 1 < depth(S//(X)) < dim(S/I1(X)) = g. We recall that X is
said to be arithmetically Cohen-Macaulay (ACM) if depth(S/I1(X)) = q.1f ¢ = 1, then X
must be ACM. We say that X is sub-ACM if ¢ > 2 and depth(S/I(X)) = q — 1.
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Notation 5.1. Throughout this section we shall employ the following notation:

U
U.

1

span{x;; | 1 <i<q, 0<j<n}

span{xij |0<j<n}
U? = {u; € U, | u; does not vanish at any point of red(X)}.

Remark 5.2. The spaces U? are non-empty and each u; € U? is a non-zerodivisor for
S/1(X). Indeed, for each closed point P € V, I(P) N U, is a proper vector subspace of
U;. A vector space over an infinite field cannot be a finite union of proper subspaces,
hence U? # 0. The ideals I(P) with P € red(X) are the associated primes of X, hence
u, is a non-zerodivisor of S/1(X).

Remark 5.3. If K is algebraically closed and red(X) = {P,,..., P,,}, then, for each
index k € {1,...,m}, there are vector subspaces U,, C U, of codimension one such

that I(P,) = (U, | 1 <i < g). Wehave U) = U; \ U <k < U, ;-

In the case when K is algebraically closed and X is reduced and ACM, Van Tuyl proved
that we can choose a regular sequence {u, ..., u,} for S/I(X) with u; € U,. Consult
[26, Proposition 3.2]. The aims of this section are, first, to generalize this result to the
case when X is an arbitrary zero-dimensional ACM subscheme and K is an arbitrary
infinite field (Proposition 5.6), second, to obtain a version of this result for sub-ACM
schemes (Proposition 5.9), and, third, to show that the u i above can be chosen generically
(Proposition 5.10). These results and their corollaries will be used in Sections 6 and 7.

Lemma 5.4. We assume that K is infinite. We writex = (X, ..., x,,) andy = (y;, ..., ¥,).
We let p C K[x,y] be a prime ideal. We assert that ht(p) > ht(p N K[x]) + ht(p N K[y]).

Proof. Put k = dimK[x]|/p N K[x] and / = dimK[y]/p N K[y]. The assertion is
equivalent to the inequality dimK[x,y]/p < k + [, see [5, Corollary 13.4]. Applying
the Noether normalization theorem [5, Theorem 13.3] we deduce that there are linearly
independent one-forms u,, . . ., u, € K[x], respectively, v,, .. ., v, € K[y] such that the
algebra K[x]/p N K[x] is integral over K[u] and the algebra K[y]/p N K[y] is integral
over K[v]. We wrote u = (uy,...,u;) and v = (v,...,v,). The extension of alge-
bras K[u, v]/p N K[u, v] € K[x,y]/p is integral, hence the two algebras have the same
dimension, see [5, Theorem A, p. 286]. Thus, dimK[x,y]/p < dimK[u,v]=k +/. =

Lemma 5.5. Let X C V be a zero-dimensional subscheme. Choose u; € U?. Then (U;) is
contained in rad((u;) + 1(X)).

Proof. Recall that 7(X)NK[x, ; | 0 < j < n,]defines azero-dimensional subscheme Z;
inP". By hypothesis, u, does not vanish at any point of red(Z,), hence (,)+1(Z;) defines
the empty subscheme in P". Thus (U,) C rad((y;) + I(Z;)) C rad((»;) + I(X)). [ ]

Proposition 5.6. We assume that K is infinite. We let X C V be a zero-dimensional ACM
subscheme. Then there are u; € U, such that {u,, . .., u, } is regular for S/1(X).

Proof. Set X; = (xl.o, .. «» Xip, ). Performing induction on k, we will construct a regular
sequence {u, ..., uk} for S/I(X) with u, € U?. To start the induction, choose u,
U ? and recall Remark 5.2. For the induction step, assume that k € {1,...,¢g — 1} and
that {u,,...,u, } has already been constructed. Write J = (u) + --- + (u,) + I(X).

in
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Choose a prime ideal p that is associated to J. By hypothesis, S/I(X) is Cohen-Macaulay
of dimension ¢, hence S/J is Cohen-Macaulay of dimension ¢ — k. According to [5,
Corollary 18.14], J is unmixed, hence dim(p) = ¢ — k and ht(p) = n, +--- +n, + k.
According to Lemma 5.5, (U, .. ., Uk) lies in rad(J), so it is contained in p. We claim
that ht(p N K[x;]) = n, for each indexi € {k + 1,...,¢q}. Indeed, the inequalities
ht(pNK[x,]) > n, follow from the fact that pNK[x; | contains the ideal of the projection
of X onto P". According to Lemma 5.4, we have the inequality

ht(p) > Z ht(p N K[x;]) or, equivalently, Z n; > Z ht(p N K[x,]).

1<i<q k+1<i<q k+1<i<q

This proves the claim. The claim implies that U, _, is not contained in p. The same is
true for all associated primes of J. Since K is infinite, we can choose u, , , € U, ,8 .1 Such
that Uy does not lie in any associated prime of J. Thus, ui; is a non-zerodivisor for

S/J, hence {u,, ..., u,, }is regular relative to S/I(X). [ |

Lemma 5.7. We assume that K is algebraically closed. We let X C 'V be a zero-dimensional
subscheme. We write red(X) = {P,,..., P, }. We choose p € {1,...,q} and u; € U?for
1 < i < p. Then the ideals p,, = (U}, ..., U,) + I(P,) for | < k < m are the minimal
prime ideals containing (u,, . .., u,) + 1(X).

Proof. In view of Remark 5.3, we have P = ..., Up) + (Uk Pl U, q). This
is clearly a prime ideal. Some of these ideals may coincide, however, if P P then
Py Lo p, and p, o P, The lemma reduces to proving that

ﬂ P, = rad((uy, . . .,up) + I(X)).

1<k<m

The inclusion “D” is obvious, so we focus on proving the reverse inclusion. We denote
by r the ideal on the r.h.s. Take f* € (1 <x <, P, and write f = g + h, where g lies in the
ideal (U,, ..., U,) and h is a polynomial in the variables XpPp+1<i<q0<j<n,
According to Lemma 5.5, (U, . . ., Up) C 1, hence g € 1. By construction,

he ﬂ U, p+l<i<g)c ﬂ 1(P,) = rad(I(X)) C t.

1<k<m 1<k<m
We conclude that f liesin . |

Lemma 5.8. Let S be a Z-graded K-algebra and let M be a Z-graded S-module. Let
{vi,...svp} € S be an M-regular sequence such that all v; are homogeneous of the
same degree. Consider a non-singular matrix G = (Kl.j)1 <ij<p with entries in K. Then
{k v, + o+ KipVp | 1 <i < p} constitutes an M-regular sequence.

Proof. If G is lower-triangular, then the lemma follows from the definition of an
M -regular sequence. According to [5, Corollary 17.5 and Theorem 17.6], a sequence
{w,...,w,} C § of homogeneous elements is M-regular if and only if the Koszul
complex K(wl, .. .,wp) ® M, introduced at Notation 3.4, is exact. Permutations
of {w,...,w,} yield isomorphic Koszul complexes. Thus, every permutation of
vy, vp} remains an M -regular sequence. The lemma follows from the fact that the
lower triangular matrices and the row permutations generate GL,, (K). |
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Proposition 5.9. Assume that K is algebraically closed. Assume that ¢ > 3. Let X ¢ 'V
be a zero-dimensional sub-ACM subscheme. For 1 < i < g choose u; € U?. Then there is

an index p € {2,...,q} and there are scalars k, € K fori € {2,...,q} \ {p} such that
{uy U{u; + ku, i €{2,...,q} \ {p}} is a regular sequence for S/1(X).

Proof. Write red(X) = {P,,..., P, }. According to Lemma 5.7, p, = (U,) + I(P,)
for 1 < k < m are the minimal prime ideals containing (u,) + I(X). We denote
U’ = span{u,, ..., u,}. Performing inductionon/ € {2,..., g — 1}, we will construct
a regular sequence {u, v, ..., v,} for S/I(X) with v, € U’. To start the induction, we
consider the set 2, of associated primes to (i, ) +I(X). We claim that U is not contained
inany p € U,. To prove this, we argue by contradiction. Assume that U’ C p and that
p € U,. This ideal must contain one of the minimal associated primes to () + I(X),
say p, C p. Thus, U, C p and U,cp for2 <i < g. It follows that

U=U+U,+ -+ U,
= U, + span{uy, Uy, } + - - - + span{u,, qu}
=Uj+ Uy +-+U, +U Cp,

hence m = (U) C p, so every element of m is a zerodivisor for S/((u,) + I(X)). On the
other hand, by Remark 5.2, u, is a non-zerodivisor for S/1(X), hence

depth(S/((u,) + I(X))) = depth(S/I(X)) =1 =g -2 > 1.

We have reached a contradiction, which proves the claim. We obtain a regular sequence
{u,, v, } relative to S/1(X) by choosing v, € U’ \ U, eq, (P N U").

We now perform the induction step. Assume that [ € {2,...,¢ — 2} and that
{ul, Voo vl} has already been constructed. We denote by ‘JII the set of associated
primes to the ideal (u,v,,...,v,) + I(X). Arguing as above, we can prove that U is
not contained in any p from ‘2[1. Indeed, P, CP for some k, so, if U’ C p,then U C p.
It would follow that every element of m is a zerodivisor for S/((u, v,, . .., ;) + I(X)).
On the other hand, this ring has depth ¢ — 1 — [ > 1. This would yield a contradiction.
Choosing v, € U’ \ Upey, (p N U’) we obtain a regular sequence {u;,v,,..., v, }
relative to S/I(X). This completes the induction step.

Thus far, we have constructed an S/I(X)-regular sequence {u;,v,, ..., qul} such
thatv,, .. -2V, are linearly independent vectors in U’. Write v, = 3, ;< 4,,u;. The
matrix A = (4;,), g1 2<i<q
that the minor obtained by deleting the last column of A is non-zero. We now apply
Lemma 5.8 to the Z-graded ring S, to the Z-graded module M = §/((u,) + I(X)) and
to the M -regular sequence {v,, ..., Vo1 }. We take G to be the inverse of (1

has maximal rank. To simplify notation, we assume

li)zgl, i<q-1°
We obtain an M -regular sequence of the form {u; + x;u, | 2 <i < g — 1}. In general,
if the minor obtained by deleting column p of A is non-zero, then we obtain a regular
sequence as in the proposition. ]

Proposition 5.10. Assume that K is algebraically closed. Let X C 'V be a zero-dimensional
ACM subscheme. For 1 < i < q choose u; € U?, Then {uy, ... u,} is S/I1(X)-regular.

Proof. Performing induction on i, we will show that {u,, ..., u;} is S/I(X)-regular. By
Remark 5.2, u, is a non-zerodivisor for S/I(X). Assume thati € {1,...,¢g — 1} and
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that {u,,...,u;} is S/I(X)-regular. By hypothesis, S/I(X) is Cohen-Macaulay, hence
S/((uys . .., u;) + I(X)) is also Cohen-Macaulay. Per [5, Corollary 18.14], this ring is
unmixed. Thus, the associated primes of (u,, ..., u,) + I(X) are precisely the minimal
primes. According to Lemma 5.7, they are of the form p, = (U,,...,U,) + I(P,).
By construction, u; lies outside all ideals Py hence u, ., is a non-zerodivisor of
S/((uy,...,u;) + 1(X)), and hence {u, ..., u,,,} is regular relative to S/I(X). [

Lemma 5.11. Let S be a commutative ring and let I C S be an ideal. Assume that the sequence
{uy, ... u,} € Sis S/I-regular. Then (uy, ..., u,)l = (u, ..., u,) N1

«, »

Proof. Theinclusion “C”is obvious, so we concentrate on proving the reverse inclusion.
We perform induction on p. Assume that p = 1. Take f € (u;) N [ and write f = u,g.
In §/1 we have the relations u,§ = i1, § = f = 0. By hypothesis, u, is a non-zerodivisor
for S/I, hence ¢ = O, thatis, g € I,and hence f € (ul)l. Assume that p > 1 and that the
lemma is true for the §//-regular sequence {u,. .., up_l}. Take f € (uy,...,u,) N1
and write f = u,; g, + -+ u,g,. In S/((u; +--- + up_l) + I) we have the relations
upgp = Up8, = f- 8, — - ap_lgp_l = 0. By hypothesis, u,, is a non-zerodivisor
for S/((u, +--- + up_l) + I), hence 8, =0.Writeg,, = uh; +--- + up_lhp_l + hy,
where /1, € 1. From the relation

f—uyh, = u (g, + uphl) +ee up_l(gp_1 + uphp_l)

we see that f — uphp € (up,..., up_l) N I. By the induction hypothesis, this ideal
coincides with (u,, . . ., up_1)I. We conclude that f € (u,,. .., up)l. ]

Lemma 5.12. Let S be a commutative ring and let I C S be an ideal. Assume that the sequence
{ug,..., ”p+1} C Sis regular and that {u,, ..., u,} is S/I-regular. Then {u, ..., ”p+1}
is also I-regular.

Proof. By hypothesis, u; is a non-zerodivisor in S, hence u, is a non-zerodivisor
for I. Take i € {1,...,p}. We apply Lemma 5.11 to the S/[-regular sequence
{uy, ..., u;}. We deduce that I/(u,, . .., u,)I is isomorphic, as an S-module, to an ideal
of S/(uy, ..., ui). By hypothesis, u, , is a non-zerodivisor for S/(uy, ..., ui), henceu,_,
is a non-zerodivisor for I /(u, ..., u;)I. [

Proposition 5.13. Assume that K is algebraically closed. Let X C 'V be a zero-dimensional
sub-ACM subscheme. For 1 < i < g, choose u; € U?. Then {u, ..., ug}t is 1(X)-regular.

Proof. We assume that ¢ = 2. According to Remark 5.2, {u,} is regular for S/I(X).
Clearly, {u,, u,} is S-regular. From Lemma 5.12 we deduce that {u,, u, } is I(X)-regular.
We assume that g > 3. As in Proposition 5.9, we consider a S//(X)-regular sequence

{wl,...,wq,l} = {u, + KU lie{l,...,q} \ {p}}.

Here k, = 0. Wesetw, = U, Clearly, {wl, e, wq} is S-regular. From Lemma 5.12 we
deduce that {w,...,w,} is also /(X)-regular. Let us now consider the column vectors
u=(u,..., uq)T andw = (w,,..., Wq)T. By construction, we have w = Au for some
A € GL,(K). We apply Lemma 5.8 to the /(X)-regular sequence {w, ..., w, }. We take
G = A™'. We conclude that {u, .. ., U, } is regular relative to /(X). [ |
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Proposition 5.14. Assume that K is algebraically closed. Let X C V be a zero-dimensional
ACM subscheme. For 1 < i < g choose u; € U?. For 1 <i < g choosev; € U, \ Ku,. Then
{uy, sy, v} is 1(X)-regular for every index i.

Proof. According to Proposition 5.10, {u;,...,u,} is regular relative to S/I(X).
Clearly, {ul, s Ugs vl.} is S-regular. The proposition follows from Lemma 5.12. ]

Proposition 5.15. Assume that K is infinite. Assume that X C V is a zero-dimensional
ACM subscheme. Then there are u; € U, and v, € U, \ Ku, such that {u, ..., Ug, v, } is
1(X)-regular for every index i.

Proof. Proposition 5.6 provides an S//(X)-regular sequence {u,...,u,}. Clearly,
{uy, ..., ug, v;} is S-regular. The proposition follows from Lemma 5.12. [ ]

Proposition 5.16. Assume that K is infinite. Let X C 'V be a zero-dimensional subscheme.
For 1 < i < g, choose u; € U and v; € U, \ Ku,. Then, for all indices i and j, {u;, vj}, is
regular relative to 1(X).

Proof. According to Remark 5.2, u; is regular for S/1(X). Clearly, {u,, vj} is S-regular.
The proposition follows from Lemma 5.12. |

6 Finite ACM schemes

In this section we assume that the ground field K is infinite. We recall from Section 5 the
notion of an ACM zero-dimensional scheme. Lemma 6.3 provides a class of examples
of such schemes. We recall that all zero-dimensional subschemes X C P" are ACM. The
investigation of the next simplest case, when V = P! x P!, was begun by Giuffrida et al.
in [11]. For a summary of results in this case we refer to the monograph [18]. For later
use, we cite at Theorem 6.2 some of the results in [11, Section 4].

Notation 6.1. The characteristic function X.: Z¢ — {0, 1} ofasubset T C Z is given
by X, (a) = 1ifa € T and X .(a) = 0ifa € Z9 \ T.

Theorem 6.2 (Giuffrida et al.). Consider the biprojective space V.= P! x P! over C, with
Zz—graded coordinate ring C[xo, Xp5 Yo yl]. Let X C V be a zero-dimensional subscheme.
Recall the relevant domain R(X) = [0, s, — 1] X [0, s, — 1] from Proposition 4.5(v). Then the
following statements are equivalent:

(i) Xis ACM;
(ii) there is an integer m > O and there are mutually incomparable elements ClovrvsCpy it
R(X), such that the quasi-rectangular domain

o) =RX)\ | J lep(s, =15, - 1)] € 22

1<k<m

satisfies the condition AH y = XQ(X)' See Notation 6.1;

(i) there are homogeneous forms &,,...,¢, | € Clxy, x,]andv,,...,v, , € Cly, y,]
such that I(X) = (v; v, & & [0Sk <m+ 1)

Moreover, deg(v, -+~ v, &, +++&,.,1) = ¢, where ¢y = (s,0) and c,,, | = (0,5,).

2025/09/02  04:23

https://doi.org/10.4153/S0008414X25101764 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101764

18 Mario Maican

As per Definition 2.1, Q(X) is a relevant quasi-rectangular domain for H y, in fact, the
smallest possible quasi-rectangular relevant domain.

Other characterizations of the ACM property for zero-dimensional subschemes X in
P! x P! are known in the case when X is reduced, see [26, Theorem 4.8], 21, Corollary
7.5], [22, Theorem 6.7], [16, Theorem 4.3] and [17, Theorem 8], and in the case when X
is a union of fat points, see [13, Theorem 2.1] and [14, Theorem 4.8]. For other ambient
spaces the focus has been entirely on reduced ACM schemes, see [16, Theorem 4.5 and
Theorem 5.7], [8, Theorem 3.16], [9, Proposition 3.2 and Theorem 3.7].

We consider the algebra C[x,, x;, ¥, ¥;1/(Xo, ¥o) = C[x,, ¥, ] and we equip it with the
inherited Z?-grading: deg(x,) = ¢, and deg(y,) = e,. Condition (i) from Theorem 6.2
is equivalent to saying that A H y is the Hilbert function of an artinian quotient of
Cl[x,, y,] by a monomial ideal, i.e. an artinian Z*-graded quotient of Clx,, y,]. This
statement was partially generalized by Van Tuyl in [26]. We consider the algebra

SozS/(xlo,...,xqo)zK[xij [1<i<qg 1<j<n]

equipped with the induced Z7-grading: deg(xij) = e,. According to [26, Theorem 3.11],
if K is algebraically closed and if X C V is zero-dimensional reduced and ACM, then
AH y is the Hilbert function of an artinian Z9-graded quotient of S,. Conversely, for
any artinian Z9-graded quotient A of S, there exists a zero-dimensional reduced ACM
subscheme X C V such that A H 5 = H 4. The aim of this section is to provide a version
of this result that does not require X to be reduced or K to be algebraically closed.

Lemma 6.3. Assume that the subscheme X C V is concentrated at a point and that I1(X) is
a monomial ideal. Then X is ACM.

Proof. By hypothesis, red(X) = {P} for a closed point P € V. By the multiprojective
version of Hilbert’s Nullstellensatz, I(P) = rad(/(X)). As the radical of a monomial
ideal, I(P) itself is monomial. But /(P) is also a prime ideal, hence I(P) is generated by a
subset of the set of variables. We may assume that /(P) = (xl.]. |[1<i<qg 1<j<n).
If x;,¢ € I(X) for a monomial £, then, since x;, does not vanish at P, { must lie in /(X).
This shows that the minimal generators of /(X) are monomials in the same variables
that generate /(P). It has now become clear that {x,, | 1 <7 < g} constitutes a regular
sequence for S/I(X), hence depth(S/I1(X)) > g, and hence depth(S/I(X)) = q. |

In the sequel we will need Macaulay’s theorem, see [5, Theorem 15.3]. This theorem is
usually stated for homogeneous ideals of polynomial rings, but it can easily be extended
to the Z9-graded setting.

Notation 6.4. Let us fix a monomial well-ordering on S. This is a well-ordering “<”
on the set M of monic monomials of § which is compatible with multiplication: if £},
{,and { liein M and {; < {,, then {,{ < {,{. We say that a monomial { € M occurs
in a polynomial f € S if x{ is one of the monomials of f for some k € K\ {0}. For
f € S\ {0} we denote by lead(f) the largest monomial that occurs in f. For an ideal
I C S we introduce the leading ideal lead(1) = (lead(f) | f € I).

Theorem 6.5 (Macaulay). Let I C S be a Z-homogeneous ideal. We choose a monomial
well-ordering on S. Then lead(I) is Z49-homogeneous and has the same Hilbert function as I.
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Theorem 6.6. Assume that K is infinite. Let X C V be a zero-dimensional ACM subscheme.
We assert that AH y = H 4 for an artinian Z9-graded quotient A of S . Conversely, for
any artinian Z4-graded quotient A of S, we assert that there exists a zero-dimensional ACM
subscheme X C V such that AH y = H 4.

Proof. Assume that X is ACM. According to Proposition 5.6, there exists a regular
sequence {u, ..., u,} relative to S/I(X) with u; € U,. In view of Lemma 3.5, AHy
is the Hilbert function of A = S/((u, .. .,u,) + I(X)). Performing a linear change of
coordinates on each P/, we may assume that u; = Xy, therefore A can be regarded as a
Z4-graded quotient of S ). According to Theorem 4.4, H , vanishes outside a rectangular
domain, hence dimy, A is finite, and hence A is an artinian K-algebra.

Conversely, we assume we are given an artinian Z9-graded algebra A = §,/I,.
We recall Notation 6.4. We choose a monomial well-ordering on S, and we apply
Theorem 6.5 to the Z9-homogeneous ideal /,. We find a monomial ideal J, = lead(/,)
such that H , = Hs,,,. In particular, S/J, is an artinian algebra, hence rad(J,) =
(xl.j | 1 <i<gq 1<j<mn)LetJ C S be the ideal generated by J,. Since J is
generated by monomials that do not involve the variables x;0, 1 < i < g, it is obvious
that J is saturated. Thus, J = I(X) for a zero-dimensional subscheme X C V which
is concentrated on the point given by the ideal (xl.j |1 <i<gl1<j<n)n
view of Lemma 6.3, X is ACM. Since J is generated by monomials that do not involve
the variables x;o, 1 < i < g, it is obvious that {x,,, .. .,xqo} is S/J-regular. In view of
Lemma 3.5, A H y must be the Hilbert function of S/((x,q, . - ., xqo) +J)=8y,/J,. =

The first assertion, in the particular case when K = K and X is reduced, was obtained
by Van Tuyl in [26, Theorem 3.11]. The converse assertion, in the particular case when
K = K, already follows from op.cit. Indeed, Van Tuyl proved that for any A we can find
a zero-dimensional reduced ACM subscheme X C V such that AH 5, = H .

Corollary 6.7. Assume that K is infinite. Let X C (P')9 be a zero-dimensional ACM
subscheme. We assert that there exists a quasi-rectangular domain Q(X) C Z4 such that
AHy = XQ(X)' See Notation 6. 1. Conversely, for any quasi-rectangular domain Q C Z4, we
assert that there exists a zero-dimensional ACM subscheme X C (P')4 suchthat AH y = X o

Proof. Note that S) = K[x;, | 1 <i < g], where deg(x;,) = ¢, for alli. An ideal of S
is Z4-homogeneous if and only if it is monomial. If A = §,// is an artinian quotient
by a monomial ideal, then /; must contain minimal generators of the form xfi, o x;‘{ .

Letcy, ..., c,, be the degrees of the remaining minimal generators of ,, if any. Write
0 =105, = 11x---x[0,5, =11\ [ [ep(sy=1,...,5, = D]
1<k<m

We have H , = X, Conversely, for any quasi-rectangular domain Q C Z4, we can find
an artinian Z9-graded quotient A = S /1, such that # , = XQ. [ ]

The first assertion, in the particular case when K = K and X is reduced, was obtained
by Van Tuyl in [26, Corollary 3.14]. The converse assertion, in the particular case when
K = K, already follows from op.cit. Indeed, Van Tuyl proved that for any Q we can find
a zero-dimensional reduced ACM subscheme X c (P')? such that A Hy =X o
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7 Further constraints on the Hilbert functions

In this section we assume that the ground field K is infinite. This section is devoted to a
better understanding of the problem of classification of the functions Z¢ — Z that arise
as Hilbert functions of zero-dimensional subschemes X C V. The classical theorem
[2, Theorem 4.2.10] of Macaulay provides a classification of the Hilbert functions of
Z-graded K-algebras. The recent theorem [6, Theorem 4.8] of Favacchio provides a
classification of the Hilbert functions of Z?-graded K-algebras. Invoking Theorem 6.6,
we obtain a characterization of the functions H y, for zero-dimensional subschemes
X C P", respectively, for zero-dimensional ACM subschemes X C P™ x P™. Yet the
problem of describing the functions H y in the case when X c P™ X P" is sub-ACM or
in the case when g > 3 remains open. In this section we make progress on this problem
by exhibiting certain conditions that the functions H y and H 1(x) must satisfy. These
constraints are formulated in terms of the partial difference functions, defined below.
The emphasis will be on ACM and sub-ACM schemes. All constraints will arise in the
manner of Theorem 6.6, by exploiting the regular sequences from Section 5, and then
by applying Lemma 3.5. At the end of the section we give a second proof to Theorem 4.4
in the particular case when V = (P') and X is ACM or sub-ACM. Let ¥ : Z9 — Zbe
a function. For 1 < i < g we consider the partial difference function

AF:Z7 —Z givenby A, F(a)=F(a)-F(a—-e,).

We will use the abbreviation Ail..,i F = Al.1 . Aip ¥ . Recalling Equation (1), we

P
noticethat AF = A, F andthatAA, F = A, i ¥ Differentiating the equation

.....

H(a) = 1—[ (ai;ni) yields the equation AH(a) = l_[ (ai T 1). (6)

. . n —1
1<i<q 1<i<q !

Assume that F vanishes on the complement of ZZ. Fix indices 1 < i < <i, <q.
By analogy with Equation (2), we have the formula

Ay o Flay= > AF(b) forall aeZi. @)
0<b<a
b. =a. ,...b. =a,
i i ip ip
Proposition 7.1. Assume that K is algebraically closed. Assume that the zero-dimensional
subscheme X C 'V is sub-ACM. Then the following statements hold true:

() AH ) > 0;
(i) AH (@) > 0if I(X), # {0}
(i) AHy < AHy
(iv) if AH y(a) = AH (a) for some a € Z2, then H y = H on [0,al;
W) Ail...i,, WI(X) > 0 for allindices 1 < i) <---<i, <gq;
i) A, . Hyxy(@) > 0if [(X), #{0}and 1 <ij <.+ <i, <q.

N

Proof. Recall Notation 5.1. As per Proposition 5.13, we can construct I(X)-regular
sequences {u,, ..., u,} with generic u; € U,. We write N = I1(X)/(u, ..., u )I(X).
By applying Lemma 3.5, we deduce that AH ;) = H . This function takes, of course,
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only non-negative values. We have proved statement (i). The same argument applies to
statement (v), except that this time we consider the /(X)-regular sequence {ul.1 el 1.

If I(X), # {0}, then we can choose u, such that the subvariety given by the
ideal (u;,...,u,) is not contained in the zero-set of /(X),. Thus, N, # {0}, hence
AH I(X)(a) > 0. This proves statement (ii). The same argument applies to statement (vi),
except that this time we consider the ideal (ul.l, oty ). Statement (iii) follows from the
equation AHy = AH — A WI(X) and from (i).

Assume that A H y(a) = AH(a) for some a € ZZ. Thus, A ‘H,(X)(a) = 0. From (ii)
we deduce that /(X), = {0}. A fortiori, /(X), = {0} for b € [0, a], hence W[(X) =0
on [0, a], and hence H y = H on [0, a]. This proves statement (iv). [ |

Proposition 7.2. Assume that K is algebraically closed.. Assume that the zero-dimensional
subscheme X C 'V is ACM. As provided in Theorem 6.6, let A be an artinian algebra such that
AH y = H 4. Then the following statements hold true:

(i) AA, WI(X) > O for allindicesi € {1,...,q};
(i) AA, H (@) > 0if I(X), # {0} and n; > 2;
(iii) A, H 4, < AA, H forall indicesi € {1,...,q};
(iv) ifn; > 2and A, H y(a) = AA, H(a) for some a € Z2, then H y = H on [0,al;
(V) Aq{](x) >0
Vi) AH (@) > 0if I(X), # {0},
(vi)) H, < AH;
(viii) if H 4(a) = AH(a) for some a € Z2, then Hy, = H on [0,al;
(ix) A WI(X) > 0 for allindices 1 < iy <--- <i, <g;

ip
(x) A . 'HI(X)(a) >0ifI(X), #{0and 1 <ij <---<i, <gq.

Statements (i), (iii), (v), (vii) and (ix) also hold true under the weaker hypothesis that K be infinite.

Proof. Consider the /(X)-regular sequence {u,,...,u,,v;} from Proposition 5.15.
Write N = I(X)/(uy, . . ., ug, v;)1(X). By analogy with Lemma 3.5, we can prove that
AA; H ) = H . This function takes only non-negative values, proving statement (i).
Assume that I(X), # {0} and n; > 2. According to Proposition 5.14, u,, ..., u, and
v; can be chosen generically. We choose them in such a way that the subvariety given
by the ideal (u,, . .., u,, v;) is not contained in the zero-set of /(X),,. Thus, N, # {0},
hence H p(a) > 0. This proves statement (ii). Statement (iii) follows from the equation
A, H,=A A, Hy—A A, WI(X) and from (j). To prove the remaining statements we can

argue as in the proof of Proposition 7.1. Note also that (v) follows from the formula
AHyy= > DA Hy (@ ke,)
0<k<a;

and from (i). In the case when n; > 2, statement (vi) follows from the above formula
and from (i) and (ii). Statement (ix) follows from Equation (7) and from (v). Statement (x)
follows from Equation (7) and from (v) and (vi). ]

Corollary 7.3. Assume that K is algebraically closed. Assume that the zero-dimensional
subscheme X C (P1)9 is ACM or sub-ACM. Then the following statements hold true:

() AHy(a) < 1foralla € Z2;
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(i) if AH x(a) = 1 for some a € Z1, then AHy =10n[0,a]

Proof. Substituting n, = 1 into Equation (6), we obtain AH(a) = 1fora € AR
Substituting this expression into Propositions 7.1(iii) and 7.2(vii) yields statement (i).
Substituting this expression into Propositions 7.1(iv) and 7.2(viii) yields (ii). [ ]

In the case when X is ACM, the above corollary also follows from Corollary 6.7. The
above result, in the particular case when V = P! x P!, was obtained by Giuffrida et al.
Consult [11, Proposition 2.7].

Proposition 7.4. Assume that K is algebraically closed. Let X C 'V be a zero-dimensional
subscheme. Then the following statements hold true:

@) A 7’{,()() > O forallindices 1 <i < j < ¢;

(ii) Al.'j Hyx)@) > 0if I(X), # {0}and 1 <i<j<g;
(i) A, 'HI(X)(a) > 0if I(X), # {0} and n;, > 2;

(iv) A Hy < A H forall indices 1 <i < j < g;

v) if A Hy(a) = A H(a) for some a € Z7 and indices | < i < j < g, then

Hy =Hg on [0, al;

(vi) ifn; > 2and A;; Hy(a) = A;; H(a) for some a € Z2, then H y, = Hg on [0, al;
(vii) A; Hy = 0 for all indicesi € {1,...,q}.

Statements (i), (iv) and (vii) also hold true under the weaker hypothesis that K be infinite.

Proof. We use the /(X)-regular sequence {u;, vj} provided by Proposition 5.16 and we
repeat the arguments from the proof of Proposition 7.1. Statement (vii) follows from the
fact that {u, } is regular for S/I(X), see Remark 5.2. [ ]

As an application of the above results, we will give a second proof to a particular case of
Theorem 4.4. We formulate this as a separate proposition.

Proposition 7.5. Assume that K is algebraically closed. Assume that the zero-dimensional
subscheme X < (PY)4 is ACM or sub-ACM. For each index i € {1,...,q}, let s; be the
length of the projection of X onto the i-th copy of P'. Then [0, s, — 1] x - -- X [0, 5q— 1]is
the smallest rectangular relevant domain for H y.

Proof. In view of Lemma 2.2, we must show that Hy(a) = Hy(a — (a; — s; + 1)e;)
if a; > 5, — 1. Equivalently, we must show that A, H y(a) = 0if a, > s,. By symmetry,
it is enough to prove that A, Hy(a) = 0ifa € Z? anda, > s,. Givena € ZZ, put
o(a) = a, + -+ + a,. We perform induction on o(a). To begin the induction, assume
that o-(a) = 0. Write Z, = pr,(X). According to Proposition 3.8(i and v), we have the
equation Hy(b,,0,...,0) = H, (b,) = s, for b, > s, — 1. This leads to the desired
outcome A; H y(a) = 0. We now perform the induction step. We assume that o-(a) > 0.
To simplify notation, we assume that Qy, ..., d, are positive and Ay, - -, Ay Are ZEro
for some p € {2,...,q}. From the definition of the partial difference functions we
obtain the equation

AHy(@) =b, ,Hy@+ > A Hyla—e,).

1<k<p-1
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Since o(a — e, ,,) < o(a), A, , Hx(a - e,,)is afinite sum of expressions of the
form + A, H (), with o(b) < o(a) and with b; = a,. By the induction hypothesis
these expressions vanish. We obtain the equations

A Hx(a) =4, Hx(a)
@+ 1) ay + 1= 8y Hy (@)
=1- Al,...,p WI(X)(a)

We know that I(Z, ), # {0}. It follows that /(X), # {0}. Since we are assuming that X
is ACM or sub-ACM, we may apply Proposition 7.1(vi) and Proposition 7.2(x) in order
to obtain the inequality A, 'HI(X)(a) > 0. A fortiori, A; H y(a) < 0. According to
Proposition 7.4(vii), the reverse inequality A| H y(a) > 01is also satisfied. We obtain the
desired outcome A; H y(a) = 0. This concludes the induction step. [ ]

The above line of argument, in the particular case when V = P! x P!, is due to Giuffrida
et al. Consult [11, Remark 2.8 and Theorem 2.11]. We have adapted their proof to the
case of arbitrary g. In the case when g = 2 there is no restriction on X because every
zero-dimensional subscheme X c P! x P! is ACM or sub-ACM.

8 A vanishing result for A H

In this section we assume that V = (P')? with coordinate ring S = K[x, y,, ..., Xgs Vgl
where deg(x;) = deg(y;) = e;. We saw in Theorem 6.2 and in Corollary 6.7 that
zero-dimensional ACM subschemes X C V that are not complete intersections have
a quasi-rectangular relevant domain Q(X) which is strictly contained in the rectangular
relevant domain R(X) introduced in Theorem 4.4. This section and the next are devoted
to finding a procedure (Proposition 9.5) for constructing a quasi-rectangular relevant
domain D(X) C R(X) that applies to schemes X which are not necessarily ACM.
We restrict our attention only to schemes X for which 7(X) is a monomial ideal. The
domain D(X) may coincide with R(X) or may be strictly contained in R(X), depending
on the scheme. At the end of Section 9 we shall give examples in which D(X) is strictly
contained in R(X).

In this section we do some preparatory work. We obtain a vanishing criterion for
A WS e where J C S is a monomial ideal. In order to achieve this, we need to take two
preliminary steps. First, in Equation (9) we obtain a combinatorial formula for A ¢ e
This formula actually holds for any Z9-graded polynomial ring, i.e. for arbitrary values
ofng,..., ng. The second step, Lemma 8.3, is also combinatorial and breaks down if
there are more than two variables of degree e;. This is the technical reason why our
ambient space needs to be a product of projective lines.

We find it convenient to work with the function ;. Substituting n, = 1 into
Equation (6) we get AHg(a) = 1 for a € Z. A fortiori,

AHg (@) =1~AH (a) for ae?zd. (8)

Notation 8.1. Let J C S be a monomial ideal. Let M be the set of monic monomials of
S.LetI'(J) = {f;, ..., fiu} C M be the set of minimal generators of J. Fix a € Z4. For
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all integers p € {1,...,m} we write
2 = O .,fkp) | 1<k <-- <k, <m, deg(lcm(fkl,...,fkp)) < a}.
Lemma 8.2. We consider a € Z?. We adopt the above notation. We assert that
AH () =1+ Z(—l)” Ir2()|. )
p=l

Proof. Write dkl...k,, = (dlll...k,,’ cee, dltcll...k,,) = deg(lcm(fkl, . fk,, ). By definition,

H,(b) = | U {Z e M| £, divides £, deg({) = b}

1<k<m
for b € Z4. Applying the inclusion-exclusion principle, we obtain the formula

H ,(b) = Z (—-1)P*! Z (S € M| fivo., f, divide £, deg(¢) = Y.

1<p<m 1<k <---<k,<m

Ignoring the empty sets on the r.h.s., we calculate:

H,(b) = Z (=1)P*! Z (b, - d}ll._.k,, 1) (by = dlzl..lk,, +1).

1<p<m 1sk1<~~~<kpsm
dkl---kp <b

Assume now that b = a + ¢, where ¢; € {~1,0} for all indicesi € {I,...,q}. If

d € 74 satisfies the conditions d < a and d £ b, then there is an index i such that

d; = a; = b; + 1, forcing the equation (b, — d, + 1)---(b, — d, + 1) = 0. Thus,

on the r.h.s. of the above formula we can add all the terms for which dk1 . Sa but
ok

dk1 ki £ b, i.e. we can replace b by a under the summation sign:

H,(b) = Z (~1)P*! Z (by=dj, 4, + Dby =df  +1).
1<p<m 1<k <<k, <m
diy..kp <a

This equation holds for b = a + ¢ for all possible ¢ € {—1,0}9, hence we may apply the
A operator calculated at a to both sides:

AH ,(a) = Z (-1)P*! Z A((by - d,il_”kp + 1)+ (b, — le_"kp + 1)) |p=a

1<p<m 15k1<---<kpsm
dk] ...kp Sa
= >t Y = ko).
1<p<m Isk1<---<kp <m 1<p<m
diy..kp Sa
To conclude the proof of the lemma we employ Equation (8). [ ]

Lemma 8.3. We assume that 2 < p < m. We recall Notation 8. 1. We assert that

PO = {(fy - fi ) 1S hy < ooo <k < (f o fi) € T2()

forallindices 1 < u<v < p}.
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Proof. Assume that (fkl’ -5 Ji ) liesin I'2(J). Then, for all indices 1 < p < v < p,
4

deg(lcm(fku, fi,)) < deg(lem(fy ... ., fk,,)) <a.

« __»

This proves the inclusion “C”. Conversely, assume that ( fk], . » J. ) belongs to the set
P

on the rh.s. For each index € {1,..., p} write f, = x;t”ly/f’” .- ~xZ"q ys’“’. For all
i
indicesi € {1,...,q} put @, = max;<,<p @, and B, = max;<;<p ,8/”.. Thus,

lem(fis o fi,) = X9 gy
For a fixed index i € {1,...,q} choose indices u,v € {1,..., p} such that @, = @,

and B, = B, fu = v, thene; + B, = a, + B, = deg(fk”)i < a. If u # v, then

@ +B =, +pB, = deg(lcm(fk”, fkv))i < a,. Since i was chosen arbitrarily, we get

deg(lcm(fkl, .. .,fkp)) =( + By +By) < a.

Thus, ( fkl’ . fkp) must lie in 'Y (J). This proves the reverse inclusion “2”. [ ]

Proposition8.4. Let J C K[x,y,,.. o Xgs yq] be a monomial ideal. Consider a € ZZ and
let{g,,...,&n} betheset of minimal generators of J whose degree s less or equal to a. If n = 1,
then A?‘(S/J(a) =0.Ifn > 2and deg(lem(g,, g,)) < a for all indices | € {2,...,n}, then,
again, A?‘(S/](a) =0.

Proof. We recall Notation 8.1. By hypothesis, (g;, g,) lies in [2(J) for all indices [ in
{2,...,n}.Inview of Lemma 8.3, for 2 < p < nwe can write I'; (J) = ®” LI'PP, where

P = {(81’812""’&,,) | 2< 12 << lp <n, (glz""’glp) EFg_l(J)}
and
pP ={(gl],...,glp)el"§(1) | 2 <l <--- <lp < n}.

We notice that |®P| = |‘I”’_1 |, where, by convention, ¥' = {g,, ..., g, }. We also notice
that " = 0. Applying Equation (9), we calculate:

AHg @) =1+ Y (=17 [50))

1<p=<n
= 1=+ D) CDP(OP] + 7))
2<p<n
=l—n+ Y (DPP e Y (0P [wr]
2<p<n 2<p<n-1
=tT-n+ [P+ Y (PP Y (DP9
2<p<n-1 2<p<n-1
=l-nt(-D+ 3 (P + (D)7
2<p<n-1

=0.

In the case whenn = 1, we can notice directly that |l"cll (J)l = land |1"5(J)| =0forp > 2.
Substituting these values into Equation (9) yields the equation A Hq /7 (a) =0. [
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9 Finite subschemes of a product of projective lines

In this section we assume that K is infinite and that V = (P')4, where ¢ > 2. We write
S = Klx;, ¥, %5 ¥, where deg(x;) = e, and deg(y;) = ¢;. Let X C Vbea
zero-dimensional subscheme. We recall from Section 4 that s, denotes the length of the
projection Z, of X onto the i-th component of V. Our first goal is to give a different proof
for the fact that the domain [0, s, — 1] X - - - X [0, 5, — 1] is relevant to H y. Our second
goal is to give a procedure for detecting quasi-rectangular domains that are relevant to
H . All results of this section are applications of Theorem 6.5 and of Proposition 8.4.

Lemma 9.1. We adopt the above notation. We consider the lexicographic monomial ordering
on S such that x, >y, i oo > Xy >y, Weassume that y, does not vanish at any point of
red(X). We assert that x|" is a minimal generator of lead(1(X)). See Notation 6.4. We further

assert that every other minimal generator of lead(I1(X)) has the form x{" x3? y’fz e x:q qu?q
with0 <a; <s, -1

Proof. We set J = lead(/(X)). We claim that y, does not divide any minimal gen-
erator of J. To prove this claim we argue by contradiction. Assume that there existed
a minimal generator g of J of the form g = x{" y1131 e xgq )/;q with 8, > 0. Write
g = lead(f) for some Z9-homogeneous polynomial f € I(X). For any other monomial
(= xl71 y?l e xzq ygq occurringin f we have the inequality @, > ¥, because g > {'and
we have the equation a, + 8, = y, +6, because deg(g) = deg({). It follows that 8, < §,.
Since ¢ was chosen arbitrarily, it follows that f is divisible by yf '. Since y, does not van-

ish at any point of red(X), it follows that f/yf] lies in /(X). Thus, g/ylﬁl = lead(f/ylﬁ' )
belongs to J. This contradicts the fact that g is a minimal generator of J and concludes
the proof of the claim. The ideal J; = J N K[x,, y,] is a Z-homogeneous ideal of the
Z-graded ring S, = K[x,, y,]. According to Theorem 6.5, WSU = H y hence

Hy, (@) = Hy)y(a,0,...,0) = Hy(a,,0,...,0)

a,+1 if 0<a, <s -1,

5, if a; >s,.

= (}{zl (ar) = {
It follows that J, is generated by a single monomial of degree s,, which, according to the
above claim, is not divisible by y,. We deduce that J, is generated by x;". This monomial
must be a minimal generator of J. Every other minimal generator of J is not divisible
by y, or by xf‘, so it has the form given in the lemma. u

As an application of our methods we obtain a third proof for a particular case of
Theorem 4.4. We formulate this as a separate proposition.

Proposition 9.2. Assume that K is infinite. Let X C (P')4 be a zero-dimensional subscheme.
Foreachi € {1,...,q}, lets, be the length of the projection of X onto the i-th copy of P'. Then
R(X) =1[0,5, = 1] X --- X [0, 5, — 1] is the smallest rectangular relevant domain for H y.

Proof. We must show that A H y vanishes on the complement of R(X), i.e., we must
show that AH y(a) = Oif a; > s, for some indexi € {1,...,q}. By symmetry, it is

enough to consider only the case when i = 1. Performing, if necessary, a linear change
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of coordinates on the first copy of P!, we may assume that ¥, does not vanish at any
point of red(X). We choose a monomial ordering on S as in Lemma 9.1 and we consider
the ideal J = lead(I(X)). See Notation 6.4. According to Theorem 6.5, H 5, = WS/J’ )
the theorem reduces to showing that A WS/](a) = 0ifa, > s, and a > 0. This will
follow from Proposition 8.4.

We now verify the hypotheses of Proposition 8.4. Consider the set {g,,...,g,} of
minimal generators of J whose degree is less or equal to a. According to Lemma 9.1,
x}" is a minimal generator of J. By hypothesis deg(x;') = (5,0, ...,0) < a, so we may

1
S1

take g, = x|'. Applying again Lemma 9.1, we see that for each index / € {2,...,n}

ap @y

we may write g, = x| X, yfz . --xgqyg" with0 < @, < s, — 1. Thus, lem(g,, g,) =
xlslx;’zyfz e xf;")gq.We have deg(lem(g,, g;)) < abecause s, < a,and; +B; < a;
forallindices j € {2, ..., ¢}, by virtue of the fact that deg(g,) < a. Thus, the hypotheses
of Proposition 8.4 are satisfied and we conclude that A H g 1 (a)=0. [

Remark 9.3. Let I C S be a Z7-homogeneous ideal. Let F' and G be two finite sets of
generators of / consisting of Z¢-homogeneous non-zero polynomials. We assume that
F is minimal, i.e. no proper subset of F' can generate /. We assert that for every f € F
thereis g € G such that deg(f) = deg(g). Indeed, write f = 3, 1,8 Foreachg € G
write g = Yper Gghh. We may assume that all 77, and Ggh are Z4-homogeneous. We
claim that there is ¢ € G such thatn, # 0and Gg ;7 0. If this were not the case, then f
would be a combination of elements in F'\ { f}, which would contradict the minimality
of F. We have the relations deg(f) = deg(n,) + deg(g) and deg(g) = deg(0gr) + deg(f),
hence deg(f) > deg(g) > deg(f).

Lemma 9.4. Let X C (P') be a zero-dimensional subscheme. We assume that I1(X)
is a monomial ideal. We assert that the set of minimal generators of 1(X) is of the form
{fis- o S 8o 2 &n ) wheren > 0, f; = xMyX ™ for all indices i € {1,...,q}, and
deg(g) < (s, — 1,..., 5, — 1) forallindices | € {1,...,n}.

Proof. We let f; be the sole generator of I(X) N K[x,, y;]and welet g, ..., g, be the
minimal generators of /(X) that do not lie in any K[x,, y;]. We concentrate on proving
the inequalities deg(g,) < (s; — 1,...,s5, — 1), the rest of the lemma being obvious.
Since K is infinite, we can find x; € K\ {0} such that z; = k,x; + y, does not vanish
at any point of red(X). Regarding S as a polynomial ring in X1y 2 X Vs oo o5 Xgy Vgy WE
consider thelexicographic orderingon S suchthat x; > z; > x, >y, > -+ > x, > y,.
Put J = lead(I(X)), as in Notation 6.4. According to Lemma 9.1, xlsl = lead(f})isa
minimal generator of J and every other minimal generator /4 of J satisfies the condition
deg(h); < s; — 1. Let G be a Grébner basis of I(X) containing f; and consisting of Z4-
homogeneous polynomials, such that lead(G) is the set of minimal generators of J. For
every g € G\ {f} we have the relations deg(g), = deg(lead(g)), < s, — 1. We apply
Remark 9.3 to the set F' of minimal generators of /(X) and to G. For each g, there is
g € G such that deg(g,) = deg(g). Since g, ¢ K[x,, y,], it follows that g # f;, hence

deg(g,), = deg(g), < s, - 1.

In the same manner, for all indices ! € {1,...,n} andi € {1,..., g}, by replacing
the variable y; with a suitable variable z; = k,x; + y;, chosen so as not to vanish at any
point of red(X), we can prove the inequality deg(g,); < s, — 1. [
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Let X be as above. We recall, from Proposition 4.5(v), the rectangular relevant domain
R(X) =[0,s; = 1] x---x[0,5, = 1] = [0, rem(X)] C Z7.

If n =1, we put R; = [deg(g,), rem(X)].If n > 1, for each index/ € {1,...,n}, we put

Ri= () [degllem(g, g) rem(X)].
kefl,...n}\{1}

Proposition 9.5. Assume that K is infinite. Let X C (P')4 be a zero-dimensional subscheme.
Assume that 1(X) is a monomial ideal and that X is not a complete intersection. Then the
quasi-rectangular domain

D(X) = R(X) \ U R, c 79

1<l<n
is a relevant domain for H .. If I(X) has g + 1 minimal generators, then D(X) # R(X).

Proof. We adopt the notation of Lemma 9.4. We have the inequality n > 1 because X
is not a complete intersection. We must show that A H y(a) = O for alla € Z7 \ D(X).
We already know from Theorem 4.4 that R(X) is a relevant domain for Hx , hence we
may assume that a € R(X), thatis, a € R, for some index / € {1,...,n}. Relabeling
{8, -8}, if necessary, we may take [ = 1. We desire to apply Proposition 8.4 to
J = I(X). We now verify the hypotheses of Proposition 8.4. By the construction of R;,
a > deg(lem(gy, g,)) > deg(g, ) for all indices k € {2,...,n} and a > deg(g,). Since a
belongs to R(X), a # deg(f;) for all indicesi € {1,.. ., q}. From Lemma 9.4 we deduce
that {g,,...,g,} is the set of minimal generators of /(X) whose degree is less or equal
to a. The inequality from Proposition 8.4 is satisfied by the definition of R,. Thus, the
hypotheses of Proposition 8.4 are satisfied and we conclude that A H y(a) = 0.

If I(X) has ¢ + 1 minimal generators, that is, if n = 1, then, in view of Lemma 9.4,
R, # 0, forcing D(X) to be strictly contained in R(X). [ |

If n > 1, then R, may be empty for all indices /, i.e. D(X) may coincide with R(X). We
finish this section with two examples in whichn > 1, X isnon-ACM and D(X) # R(X).

Example 9.6. Take X c P!(C) x P!(C) to be the union of two multiple points with
ideals (x}", x,x,, x37), respectively, O?, ViV yfz) Here a;, a,, 8, 8, = 2. We have

IX) = (Y X096 ),
where
81 = x?)’lhs 8 = x?lyfz’ 83 = xlyf‘xz, 84 = X1V1X2Y2s
85 = xlxzyﬁz’ 86 = yf'lxgz’ g = Y1557

We have the equations s; = @, + 8, and 5, = @, + ,. We have the equations

lem(g,, g5) = X2 x, deg(lem(g,, g3)) = (@) + B, 2),
lem(gy, g6) = x yP X022, deg(lem(gy, g6)) = (@) + B @, + B,),
lem(gs, &) = %, 3, %5252, deg(lem(gs, ) = (2, @, + 3,).
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None of the expressions on the r.hs. is less or equal to (s, — 1, s, — 1). We deduce that
R,, R;, R, R, R, and R, are empty. We have the equations
lem(gy, 81) = x?l)ﬁxz)’za lem(gy, g,) = xill)ﬁxzyﬁz’ lem(gy, 83) = xlylfl X2¥2
lem(g,, 85) = X,y 6,050 lem(gy, 86) = X3 657y, lem(gy, 87) = x,7, %3,
From these we obtain the relations

deg(l R =1+ a;, <s -1,
k:f%ﬁ,m eg( cm(g4 gk))1 max{ 1 51} 1

max deg(lem(g,, =1+ max{a,, <s,—1.
k=12 55,67 g( (84 gk))z { 2 ﬁz} 2

We deduce that R, is not empty. In fact,
R, =[1 + max{a,, B}, a; + B; — 1] X [1 + max{a,,5,}, @, + 5, — 1].
We conclude that
D(X)=[0, a; + 8, —1]x[0, &, + 5, — 1] \ R,.

If X were ACM, then, in view of Theorem 6.2(iii), the degrees of g ---»&; would be
incomparable. However, deg(g,) = (2,2) < deg(g,) = (a;, 3,). Thus, X is not ACM.

Example 9.7. Take X C P!(C) x P!(C) to be the union of three multiple points with
ideals (x{", x3?), (x, yf), respectively, (yBI, y‘;z) We assume that @; < @ and 8 < j3,.
We have

I(X) = (77, X5755%, 810 250 83,
where g, = xf‘ylﬁlyf, 8 = x;”ygz and g, = yflx;”yf. Note that s, = a + 8, and
s, = @, + f3,. We have the relations
lem(g;. 8,) = "Y' Y5% degllem(gr.8,)) = (ay +B1. By) < (51— Ls, = 1),
lem(gy, g3) = X?lyf]x;” 5 deg(lem(gy, 83)) = (@) + B, ay + B) < (s; — 1,5, — 1),
lem(g,, g;) = xi"yflx;”yfz, deg(lem(g,, 83)) = (@) + B ay + B,) £ (s, — Ls, — 1).
We deduce that R, and R, are empty and that
Ry =[a; + B, @+ By — 1] X [max{B,, @, + B}, @, + B, — 1].
We conclude that
D(X)=[0, @+ B, — 1] X[0, &y + B, = 1] \ R;.

Assume that X were ACM. Then, as mentioned at Theorem 6.2(iii), there would exist
homogeneous polynomials &, &,, &5, &, € C[x;, y,] and v,, v,, v;, v, € C[x,, y,] such
that

1(X) = (£16,65€4 116,68, V654 1100364 v10,030,).
We choose k and A in C* such that Ul.(K, A) # Ofori = 1,2, 3,4. We reduce the above

equality of ideals modulo (x, — k, y, — A). It follows that C[x,, y,] is generated by the
polynomials &, &,&,6,, &,&,6,, &,€,and &,. This is absurd. Thus, X is not ACM.
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