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On the relevant domain of the Hilbert
function of a finite multiprojective scheme
Mario Maican

Abstract. Let X be a zero-dimensional reduced subscheme of a multiprojective spaceV. Let si be the
length of the projection ofX onto the i-th component ofV. A result of Van Tuyl states that theHilbert
function of X is completely determined by its restriction to the product of the intervals [0, si − 1].
We extend this result to arbitrary zero-dimensional subschemes ofV.

1 Introduction

Let q and n1, . . . , nq be positive integers. LetK be a field. Consider the multiprojective
spaceV = Pn1 × · · · × Pnq overK. The coordinate ring ofV is the Zq-graded algebra

S = K[xi j | 1 ≤ i ≤ q, 0 ≤ j ≤ ni].

We have deg(xi j) = ei , where ei ∈ Z
q is the i-th basis element. Let M be a finitely

generated Zq-graded S-module. The Hilbert functionHM : Zq → Z of M is defined by
HM (a) = dimK(Ma). Let X ⊂ V be a zero-dimensional subscheme and let I(X) ⊂ S
be the ideal generated by theZq-homogeneous forms in S that vanish on X . The Hilbert
functionHX of X is defined to be the Hilbert function of S/I(X).

The exploration of the Hilbert functions in the multiprojective setting is a natural
extension of the rich theory of Hilbert functions of zero-dimensional subschemes of Pn.
The simplest case, when V = P1 × P1, was first investigated by Giuffrida et al. in [11].
This exploration was then continued by many authors. The case of P1 × P1 remains the
most assiduously studied case, see [3], [4], [7], [12], [13], [14], [15], [16], [17], [21], [22], [26].
For other ambient spacesVwe refer to [1], [4], [8], [9], [25], [26]. The theory now follows
three broad directions of development: Hilbert functions of sets of points, as in [8], [16],
[17], [21], [22]; Hilbert functions of sets of fat points, as in [3], [4], [7], [13], [14], [15], [24];
and Hilbert functions of ACM schemes, as in [8], [9], [13], [14], [16], [17], [21], [22], [26].

In connection with the first and third directions of development, we mention two
fundamental results belonging to Van Tuyl. According to [25], if X is reduced and K is
algebraically closed, thenHX is uniquely determined by its restriction to a rectangular
region of the form R = [0, r1] × · · · × [0, rq] ⊂ Zq . More precisely, R is a relevant
domain forHX in the sense of Definition 2.1 and Lemma 2.2. Our first achievement is
the generalization of this result to the case of an arbitrary zero-dimensional subscheme
X ⊂ V over an arbitrary ground field K. See Theorem 4.4. If K is algebraically closed,
then, according to [26], the functionsHX , where X runs through the zero-dimensional
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2 Mario Maican

reduced ACM subschemes of V, are precisely the functionsH whose difference ∆H ,
defined at Equation (1), is the Hilbert function of an artinian Zq-graded quotient of
S/(x10, . . . , xq0). Our second achievement is the generalization of this result to the case
of an arbitrary zero-dimensional subscheme X ⊂ V over an arbitrary infinite ground
fieldK. See Theorem 6.6.

We give three proofs to Theorem 4.4. The first proof consists of comparing the coho-
mology of the twists of IX with the cohomology of the twists of the ideal sheaf of X in
a smaller ambient spaceWi ⊂ V. HereWi is obtained fromV by replacing Pni with the
projection of X onto Pni . See Lemma 4.1. The second proof, located in Section 7, applies
only in the case when K is algebraically closed, V = (P1)q and X is ACM or sub-ACM
(meaning depth(S/I(X)) = q − 1). The technique we use draws on the technique of
Giuffrida et al., who dealt with the case whenV = P1 ×P1. The key ingredients here are
the constraints satisfied by the Hilbert function of an ACM or sub-ACM scheme. See
Propositions 7.1 and 7.2. The third proof of Theorem 4.4, located in Section 9, applies
only in the case whenK is infinite andV = (P1)q . It is based onMacaulay’s theorem and
on a vanishing criterion for the difference∆HS/J of theHilbert function of the quotient
of S by a monomial ideal. See Proposition 8.4. We think that approaching Theorem 4.4
from three different angles provides a clearer picture of the subtleties that arise in the
study of multiprojective Hilbert functions.

An important consequence of Theorem 4.4 is an upper estimate on the regularity
index of S/I(X), regarded as a Z-graded S-module, in terms of the regularity indices of
the projections of X onto the components Pni ofV. See Corollary 4.7.

Van Tuyl’s method for proving his version of Theorem 6.6 consists of finding a
regular sequence {u1, . . . , uq} for S/I(X), as in Proposition 5.6. We adapt Van Tuyl’s
argument to the case when X ⊂ V is an arbitrary zero-dimensional subscheme and K
is an arbitrary infinite field.

In this paper we also consider quasi-rectangular domains, that is, finite unions of
rectangular domains, which are relevant toHX in the sense of Definition 2.1. The third
achievement of this paper is Proposition 9.5, which gives sufficient conditions for the
existence of quasi-rectangular relevant domanins that are strictly contained in R. The
problem of describing all quasi-rectangular domains Q ⊂ R that are relevant forHX

remains open. An important class of schemes X for which this problem has been settled
is the class of ACM subschemes of (P1)q . See Corollary 6.7.

We now present the outline of the paper. In Section 2 we gather a few elementary
facts about relevant domains. In Section 3 we examine complete intersections and we
collect a fewwell-known facts about Hilbert functions of finite subschemes of Pn. These
facts will be needed in the proof of our first main theorem, concerning the rectangular
relevant domain, to which Section 4 is devoted. In Section 5, whose role is to prepare
the ground for the next two sections, we construct regular sequences for S/I(X) and
for I(X) in the case when X is ACM or sub-ACM. Section 6 contains our second main
theorem, concerning ACM schemes. In Section 7 we combine the results of Section 5
with Lemma 3.5 in order to obtain inequalities involving the partial difference functions
of HX and H I (X). As an application, we obtain our second proof of Theorem 4.4. In
Section 8 we find a formula for ∆HS/J , where J is a monomial ideal. This leads us to
our vanishing criterion for ∆HS/J . Section 9 contains our third proof of Theorem 4.4
and our procedure for detecting quasi-rectangular relevant domains.
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On the relevant domain of the Hilbert function of a finite multiprojective scheme 3

2 Relevant domains

Let q be a positive integer. Given a = (a1, . . . , aq) and b = (b1, . . . , bq) in Z
q , we

write a ≤ b if ai ≤ bi for all indices i ∈ {1, . . . , q}. Let ei = (0, . . . , 1, . . . , 0) be the
element of Zq that has entry 1 on position i and entries 0 elsewhere. Let F : Zq → Z be
a function. We introduce the difference function ∆F : Zq → Z by the formula

∆F (a) = F (a) +
∑

1≤p≤q
(−1)p

∑
1≤i1< · · ·<ip ≤q

F (a − ei1 − · · · − eip ). (1)

In this paperweonly consider functionsF that vanish on the complement of the positive
quadrant Zq

+ = {a ∈ Z
q | a ≥ 0} because we are chiefly interested in Hilbert functions

of ideals in S. For such functions we can recover F from ∆F by means of the formula

F (a) =
∑

0≤b≤a
∆F (b) for all a ∈ Zq

+. (2)

Given r, s ∈ Zq such that r ≤ s, we write [r, s] = {a ∈ Zq | r ≤ a ≤ s}. A rectangular
domain in Zq has the form R = [0, r], for some r ∈ Z

q
+. A quasi-rectangular domain

Q ⊂ Zq is a finite union of rectangular domains. The boundary BQ of Q is defined to be
the boundary of Q inside Zq

+:

BQ = {a ∈ Q | a + ei1 + · · · + eip < Q for some indices 1 ≤ i1 < · · · < ip ≤ q}.

In particular, for R = [0, r], BR = {a ∈ R | ai = ri for some index 1 ≤ i ≤ q}.

Definition 2.1. Under the above notation, a quasi-rectangular domain Q is said to be
relevant to F if ∆F (a) = 0 for all a ∈ Zq \Q.

Lemma 2.2. A rectangular domain [0, r] ⊂ Zq is relevant to F if and only if for every i in
{1, . . . , q} and for every a ∈ Zq such that ai ≥ ri we have F (a) = F (a1, . . . , ri, . . . , aq).

Proof. Assume that R = [0, r] is relevant to F and choose a ∈ Zq
+ such that ai ≥ ri .

Equation (2) can be rewritten as

F (a) =
∑

0≤b1≤a1

· · ·
∑

0≤bi ≤ri

· · ·
∑

0≤bq ≤aq

∆F (b) +
∑

0≤b1≤a1

· · ·
∑

ri<bi ≤ai

· · ·
∑

0≤bq ≤aq

∆F (b).

The first summation equals F (a1, . . . , ri, . . . , aq), again by virtue of Equation (2). The
second summation vanishes because ∆F (b) = 0 if b lies outside R.

Conversely, assume that for every index i ∈ {1, . . . , q} and for every a ∈ Zq such
that ai ≥ ri we have the equation F (a) = F (a1, . . . , ri, . . . , aq). This is equivalent to
saying that for every index i ∈ {1, . . . , q} and for every a ∈ Zq such that ai > ri we
have the equation F (a) = F (a − ei). Choose a ∈ Zq

+ \ R. There is an index i such that
ai > ri . Equation (1) can be rewritten in the form

∆F (a) =
(
F (a) − F (a − ei)

)
+

∑
1≤p≤q−1

(−1)p
∑

1≤ j1< · · ·< jp ≤q
j1,..., jp,i

(
F (a − ej1 − · · · − ejp ) − F (a − ei − ej1 − · · · − ejp )

)
.

All terms in parentheses vanish, hence ∆F (a) = 0. Thus, R is relevant to F . �
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4 Mario Maican

Lemma 2.3. Assume that the rectangular domain [0, r] is relevant to F . Then F (a) = F (r)
for all a ∈ Zq such that a ≥ r .

Proof. Applying Lemma 2.2 repeatedly, we obtain the equations

F (a) = F (r1, a2, . . . , aq) = F (r1, r2, a3, . . . , aq) = · · · = F (r). �

Remark 2.4. The above lemmas show that, if R is relevant to F , then F |BR
determines

the functionF on the complement of R. The same is true for a relevant quasi-rectangular
domain Q. Take for instance Q = [0, s] \ [r, s] in Z2, where 0 < r1 < s1, 0 < r2 < s2,
and take a ∈ [r, s]. We have the equation

F (a) = F (a1, r2 − 1) + F (r1 − 1, a2) − F (r1 − 1, r2 − 1)

and (a1, r2 − 1), (r1 − 1, a2), respectively, (r1 − 1, r2 − 1) lie on BQ .

Given a ∈ Zq
+ we write |a| = a1 + · · ·+ aq . Let F : Zq → Z be a function that vanishes

on the complement of Zq
+. Let F : Z+ → Z be given by the formula

F (d) =
∑

a∈Z
q
+ , |a |=d

F (a).

Lemma 2.5. Let F : Zq → Z be a function that vanishes on the complement of Zq
+. Assume

that [0, r] is relevant to F . Then the restriction of F to [|r |,∞) is a polynomial function in
the variable d, with rational coefficients and with dominant term F (r)dq−1/(q − 1)!

Proof. Let us write R = [0, r] and r = (r1, . . . , rq). Given b ∈ BR there is an integer
p = p

b
∈ {1, . . . , q} and there are indices 1 ≤ i1 < · · · < ip ≤ q such that bi < ri for

i ∈ {1, . . . , q} \ {i1, . . . , ip} and bi1 = ri1 , . . . , bip = rip . We consider the set

A(b) = {a ∈ Zq
+ | ai1 ≥ ri1, . . . , aip ≥ rip , ai = bi for i ∈ {1, . . . , q} \ {i1, . . . , ip}}.

According to Lemma 2.2, F (a) = F (b) for all a ∈ A(b). For d ≥ |b| we consider the set

Ad(b) = {a ∈ A(b) | |a| = d}.

We now recall the fact that, for a fixed non-negative integer s, the number of integer
solutions to the equation c1 + · · · + cp = s, with unknowns ci ≥ 0, is

(s+p−1
p−1

)
. For

a ∈ A
d
(b) we have the equation (ai1 − ri1 ) + · · · + (aip − rip ) = d − |b|, hence

|Ad(b)| =
(
d − |b| + p − 1

p − 1

)
.

Assume now that d ≥ |r |. The decomposition {a ∈ Zq
+ | |a| = d} =

⊔
b∈BR

A
d
(b)

leads us to the following expression for F (d):∑
a∈Z

q
+

|a |=d

F (a) =
∑
b∈BR

∑
a∈Ad (b)

F (a) =
∑
b∈BR

F (b)|Ad(b)| =
∑
b∈BR

F (b)
(
d − |b| + p

b
− 1

p
b
− 1

)
.

The r.h.s. is a polynomial function in d with rational coefficients. The assertion about
the dominant term follows from the fact that pr = q while p

b
< q for b ∈ BR \ {r}. �
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On the relevant domain of the Hilbert function of a finite multiprojective scheme 5

Definition 2.6. The polynomial P(d) ∈ Q[d] of Lemma 2.5, satisfying the relation
P(d) = F (d) for d ≥ |r |, will be called the Poincarè polynomial associated to F .

Lemma 2.7. Let F : Zq → Z be a function that vanishes on the complement of Zq
+. Assume

that the rectangular domain R = [0, r] is relevant to F . Assume, in addition, that there is an
integer 0 ≤ τ < |r | such that F is constant on the set T = {a ∈ R | |a| ≥ τ}. Then
F (d) = P(d) for d ≥ τ, where P is the Poincarè polynomial associated to F .

Proof. We adopt the notation from the proof of Lemma 2.5. For d ≥ τ we denote

Cd = {a ∈ Z
q
+ | |a| = d} \

⋃
b∈BR\T

Ad(b).

By hypothesis, F (a) = F (r) if a ∈ T . According to Lemma 2.2, F (a) = F (r) if a lies
in A(b) for some b ∈ BR ∩ T . Thus, F (a) = F (r) if a ∈ C

d
. For d ≥ τ we calculate:

F (d) =
∑

a∈Z
q
+ , |a |=d

F (a)

=
∑
a∈Cd

F (a) +
∑

b∈BR\T

∑
a∈Ad (b)

F (a)

= F (r)|Cd | +
∑

b∈BR\T

F (b)|Ad(b)|

= F (r)

(
d + q − 1

q − 1

)
−

∑
b∈BR\T

(
d − |b| + p

b
− 1

p
b
− 1

)
+

∑
b∈BR\T

F (b)
(
d − |b| + p

b
− 1

p
b
− 1

)
.

This is a polynomial expression in the variable d, which, in view of Lemma 2.5, must
coincide with P(d). �

3 Generalities concerning Hilbert functions

We letV = Pn1 × · · · × Pnq be a multiprojective space over a fieldK. We let X ⊂ V be a
zero-dimensional subschemewith ideal sheafIX and structure sheafOX . It is customary
to denote length(X) = dimK H0(OX ).We choose a ∈ Zq . From the short exact sequence

0 −→ IX −→ OV −→ OX −→ 0

we obtain the exact sequence in cohomology

0 −→ I(X)a −→ Sa −→ H0(OX ) −→ H1(IX (a)) −→ H1(OV(a)).

The group on the right vanishes if a lies in the positive quadrant. Thus,

HX (a) = length(X) − dimK H1(IX (a)) if a ∈ Zq
+. (3)

Lemma3.1. Assume that [0, r] is relevant forHX . ThenHX (a) = length(X) for all a ≥ r .
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6 Mario Maican

Proof. It is well-known that H1(IX (a)) vanishes if a1, . . . , aq are sufficiently large. See
[19, Theorem III.5.2]. Consequently, in view of Equation (3), HX (a) = length(X) if
a1, . . . , aq are sufficiently large. We saw in Lemma 2.3 thatHX is constant on [r,∞).
We conclude thatHX takes the value length(X) on [r,∞). �

It is well-known that HX has a relevant domain when V is a projective space. The
following proposition is a straightforward consequence of [10, Proposition 1.1].

Proposition 3.2. Let Z ⊂ Pn be a zero-dimensional subscheme. Then there is an integer
r ≥ 0 such that H Z increases on the interval [0, r] and is constant on the interval [r,∞).
Thus, [0, r] is the smallest relevant domain forHX .

Notation 3.3. The integer r = rin(Z) is known as the regularity index of Z .

Notation 3.4. Let S be a K-algebra and let M be an S-module. Consider elements
v1, . . . , vp ∈ S. We denote by {ε1, . . . , εp} the standard basis of the K-vector space
E = Kp . Consider the element v = ε1 ⊗ v1 + · · · + εp ⊗ vp ∈ E ⊗K S. The sequence

0→ M
·v
−→ E⊗M → · · ·∧k E⊗M

·v
−→ ∧k+1E⊗M → · · ·∧p−1 E⊗M

·v
−→ ∧pE⊗M

is the Koszul complex associated to v1, . . . , vp and M , denoted K(v1, . . . , vp) ⊗ M .

Lemma 3.5. Let M be a Zq-graded S-module. Assume that {u1, . . . , uq} is M-regular with
ui ∈ span{xi j | 0 ≤ j ≤ ni}. Then ∆HM is the Hilbert function of M/(u1, . . . , uq)M .

Proof. We denote by {ε1, . . . , εq} the standard basis of the K-vector space E = Kq .
For each k ∈ {1, . . . , q} we endow ∧kE ⊗K M with a Zq-grading as follows: if h ∈ M
is Zq-homogeneous and 1 ≤ i1 < · · · < i

k
≤ q, then

deg(εi1 ∧ · · · ∧ εik ⊗ h) = deg(h) +
∑

i∈{1,...,q }\{i1,...,ik }

ei .

The Koszul complex K(u1, . . . , uq) ⊗M introduced at Notation 3.4 becomes a complex
ofZq-gradedS-modules. According to [5, Corollary 17.5],K(u1, . . . , uq)⊗M is exact, by
virtue of the fact that {u1, . . . , uq} is M-regular. Note the isomorphism M ' ∧qE ⊗M
ofZq-graded S-modules given by h 7→ ε1∧· · ·∧ εq ⊗ h. The cokernel of the last map in
the Koszul complex is thus isomorphic to M/(u1, . . . , uq)M . The lemma follows from
the additivity of the Hilbert function on short exact sequences. �

We recall that the projection pri(X) onto P
ni of a subscheme X ⊂ V is the subscheme of

Pni defined by the ideal I(X) ∩ Si . Here Si = K[xi j | 0 ≤ j ≤ ni]. We recall that a
zero-dimensional subscheme X ⊂ V is called a complete intersection if I(X) is generated
by a regular sequence of length n1 + · · · + nq .

Proposition 3.6. A zero-dimensional subscheme X ⊂ V is a complete intersection if and
only if each Zi = pri(X) is a complete intersection in P

ni and X = Z1 × · · · × Zq .

Proof. Assume that X is a complete intersection, so I(X) is generated by a regular
sequence { f1, . . . , fn}, where n = n1 + · · · + nq . Write d

k
= (d1

k
, . . . , dq

k
) = deg( f

k
).

Arguing as in the proof of Lemma 3.5, we can show thatK( f1, . . . , fn)⊗S is a resolution
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On the relevant domain of the Hilbert function of a finite multiprojective scheme 7

of S/I(X), hence, by the additivity of the Hilbert function on short exact sequences,

HX (a) = HS(a) +
∑

1≤p≤n
(−1)p

∑
1≤k1< · · ·<kp ≤n

HS(a − dk1
− · · · − dkp ).

Assume now that a = (a1, 0, . . . , 0). We have the equation

H Z1
(a1) = HX (a) = HS1

(a1)+
∑

1≤p≤n
(−1)p

∑
1≤k1< · · ·<kp ≤n

HS(a−dk1
−· · ·−dkp ). (4)

Put {g1, . . . , gm} = { f1, . . . , fn} ∩ S1 and write e
k
= deg(g

k
) ∈ Z for 1 ≤ k ≤ m.

Notice that {g1, . . . , gm} is S1-regular, hence m ≤ n1. Let Z ⊂ Pn1 be the subscheme
defined by the ideal (g1, . . . , gm). If for some indices 1 ≤ µ ≤ p and 2 ≤ i ≤ q we have
di
kµ
> 0, thenHS(a − d

k1
− · · · − d

kp
) = 0. Discarding the superfluous terms, we can

rewrite Equation (4) in the form

H Z1
(a1) = HS1

(a1) +
∑

1≤p≤m
(−1)p

∑
1≤k1< · · ·<kp ≤m

HS1
(a1 − ek1

− · · · − ekp ).

The r.h.s. equals H Z (a1) because K(g1, . . . , gm) ⊗ S1 is exact. Thus H Z1
= H Z . By

construction, Z1 is a subschemeof Z , hence Z = Z1, and hencem = n1.Moreover, Z1 is a
complete intersection. The same argumentworks for all Zi , so each of them is a complete
intersection.We have proved that I(X) = I(Z1)+ · · ·+ I(Zq), so X = Z1×· · ·× Zq . �

Notation 3.7. We assume that the zero-dimensional subscheme Z ⊂ Pn is a complete
intersection. Say I(Z) = ( f1, . . . , fn). We write

δ(Z) =

{
deg( f1) − 1 if n = 1,
deg( f1) + · · · + deg( fn) − 2 if n ≥ 2.

We assume that the zero-dimensional subscheme X ⊂ V is a complete intersection. As
per Proposition 3.6, each Zi = pri(X) is a complete intersection, so we may write

δ(X) = (δ(Z1), . . . , δ(Zq)).

In the following proposition we collect several well-known properties of the regularity
index. For the convenience of the reader we include their proofs. Let us recall that the
Castelnuovo-Mumford regularity reg(S) of a coherent sheafS on a projective space is the
smallest integer ρ such that Hm(S(ρ−m)) = {0} if m ≥ 1. The Castelnuovo-Mumford
regularity reg(Z) of a subscheme Z of a projective space is reg(IZ ).

Proposition 3.8. Let Z ⊂ Pn be a zero-dimensional subscheme of length s and regularity
index rin(Z). Then the following statements hold true:

(i) H Z (a) = s for a ≥ rin(Z);
(ii) H1(IZ (a)) = {0} for a ≥ rin(Z);
(iii) Hm(IZ (a)) = {0} for m ≥ 2 and a ≥ −n;
(iv) rin(Z) ≤ s − 1;
(v) rin(Z) = s − 1 if n = 1;
(vi) rin(Z) + 1 = reg(Z);
(vii) rin(Z) ≤ δ(Z) if Z is a complete intersection. See Notation 3.7.
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Proof. Write r = rin(Z). To prove statement (i) we apply Proposition 3.2 and
Lemma 3.1. In light of Equation (3), we have dimK H1(IZ (a)) = s − H Z (a) = 0 for
a ≥ r . This proves (ii). To prove statement (iii) we employ the exact sequence

0 −→ IZ −→ OPn −→ OZ −→ 0.

Applying the long exact cohomology sequence we obtain the exact sequence

Hm−1(OZ ) −→ Hm(IZ (a)) −→ Hm(OPn (a)).

The group on the left vanishes because OZ has support of dimension zero. The group
on the right vanishes for a ≥ −n. Thus, the group in the middle also vanishes.

(iv) According to Proposition 3.2,H Z increases on the interval [0, r]. By definition,
H Z (0) = 1, henceH Z (r) ≥ r + 1, and hence, in view of statement (i), s ≥ r + 1.

(v) For 0 ≤ a ≤ s − 1 we haveH Z (a) = a + 1 because there are no forms of degree
a vanishing on a subscheme Z ⊂ P1 of length s. Thus, H Z increases on the interval
[0, s − 1] forcing the inequality s − 1 ≤ r . The reverse inequality was obtained at (iv).

(vi) From statements (ii) and (iii) we see that Hm(IZ (r + 1 − m)) = {0} if m ≥ 1.
From the definition of r and from Equation (3) it follows that H1(IZ (r − 1)) , {0}.

(vii) In the case when n = 1 we have r = s − 1 = δ(Z). Assume that n ≥ 2.
Write di = deg( fi). The hypothesis that { f1, . . . , fn} be a regular sequence implies that
K( f1, . . . , fn) ⊗ S is a resolution of S/I(Z). Consult the proof of Lemma 3.5. Thus,

H Z (a) = HS(a) +
∑

1≤p≤n
(−1)p

∑
1≤k1< · · ·<kp ≤n

HS(a − dk1
− · · · − dkp ).

Differentiating both sides, we obtain the equation

∆H Z (a) =
(
a + n − 1

n − 1

)
+

∑
1≤p≤n

(−1)p
∑

1≤k1< · · ·<kp ≤n

(
a − d

k1
− · · · − d

kp
+ n − 1

n − 1

)
.

We need to prove that ∆H Z (a) = 0 for a ≥ δ(Z) + 1, that is, we need to prove the
combinatorial equation(

a + n − 1
n − 1

)
=

∑
1≤p≤n

(−1)p+1
∑

1≤k1< · · ·<kp ≤n

(
a − d

k1
− · · · − d

kp
+ n − 1

n − 1

)
(5)

for a ≥ δ(Z) + 1. Put A = {1, 2, . . . , a + 1}. For 1 ≤ k ≤ n, consider mutually
disjoint subsets D

k
⊂ A with d

k
elements. Such subsets exist because, by hypothesis,

a + 1 ≥ d1 + · · ·+ dn. Let C be the set of repeat combinations of n− 1 elements chosen
in A. Let C

k
be the set of repeat combinations of n − 1 elements chosen in A \ D

k
. The

l.h.s. of Equation (5) equals |C| and(
a − d

k1
− · · · − d

kp
+ n − 1

n − 1

)
=

���Ck1
∩ · · · ∩ Ckp

��� .
Applying the inclusion-exclusion principle, we deduce that the r.h.s. of Equation (5)
equals

��C1 ∪ · · · ∪ Cn
��. Equation (5) reduces to proving that C = C1 ∪ · · · ∪ Cn. Take

(c1, . . . , cn−1) ∈ C. By construction, the sets D1, . . . ,Dn are mutually disjoint, hence
there is k such that ci < D

k
for all indices 1 ≤ i ≤ n− 1. Thus, (c1, . . . , cn−1) ∈ Ck . �
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On the relevant domain of the Hilbert function of a finite multiprojective scheme 9

4 The rectangular relevant domain

LetV = Pn1 × · · · × Pnq be a multiprojective space over a fieldK. Let pri : V→ Pni be
the projection onto the i-th component. Let X ⊂ V be a zero-dimensional subscheme
and let Zi = pri(X) be the zero-dimensional subscheme of Pni defined by the ideal
I(Zi) = I(X) ∩ K[xi j | 0 ≤ j ≤ ni]. Write si = length(Zi). As per Notation 3.3, write
ri = rin(Zi). LetWi = pr−1

i (Zi) be the pull-back scheme, i.e. the subscheme ofV defined
by the ideal of S generated by I(Zi). Note that X is a subscheme of Wi . We denote by
IX,Wi

the ideal sheaf of X in OWi
.

Our purpose in this section is to prove that the domain [0, r1]×· · ·×[0, rq] is relevant
forHX . As mentioned in the introduction, a similar result was proved by Van Tuyl. See
the comments below Corollary 4.6. Van Tuyl’s approach was based on his version of
Proposition 4.2. Our approach is to replace the ambient space V with Wi . Our main
technical tool is the following lemma.

Lemma 4.1. Let X ⊂ V be a zero-dimensional subscheme. Fix an arbitrary index i in
{1, . . . , q} and letWi and ri be as defined above. Let a ∈ Zq satisfy the conditions a ≥ 0 and
ai ≥ ri . Then H1(IX (a)) ' H1(IX,Wi

(a − aiei)).

Proof. By symmetry, we may assume that i = 1. By virtue of the Künneth formula,

Hm(IW1
(a)) '

⊕
m1+· · ·+mq=m

Hm1 (IZ1
(a1)) ⊗ Hm2 (OPn2 (a2)) ⊗ · · · ⊗ Hmq (OPnq (aq)).

By hypothesis, a1 ≥ r1, hence, in view of Proposition 3.8, Hm1 (IZ1
(a1)) = {0} for

m1 ≥ 1. By hypothesis, a2 ≥ 0, . . . , aq ≥ 0, hence the higher cohomology groups of
OPn2 (a2), . . . ,OPnq (aq) also vanish. We deduce that Hm(IW1

(a)) = {0} for m ≥ 1.
From the short exact sequence

0 −→ IW1
−→ IX −→ IX,W1

−→ 0

of sheaves onV we obtain the long exact sequence

{0} = H1(IW1
(a)) −→ H1(IX (a)) −→ H1(IX,W1

(a)) −→ H2(IW1
(a)) = {0}.

The middle arrow becomes an isomorphism. The line bundle OPn1 (a1) is trivial on Z1
because the latter is supported on finitely many points. We obtain the isomorphism
IX,W1

(a) ' IX,W1
(0, a2, . . . , aq), which leads us to the desired isomorphism

H1(IX (a)) ' H1(IX,W1
(0, a2, . . . , aq)). �

Proposition 4.2. Let X ⊂ V be a zero-dimensional subscheme. Assume that the ground field
K is algebraically closed. Fix an arbitrary index i ∈ {1, . . . , q} and assume that Zi is reduced,
say Zi = {P1, . . . , Pm}. For each index k ∈ {1, . . . ,m} consider the scheme

Wk = pr−1
i (Pk) ' P

n1 × · · · × P̂ni × · · · × Pnq .

SetY
k
= X∩W

k
. LetHYk

be the Hilbert function ofY
k
as a subscheme ofW

k
, the latter being

regarded as a multiprojective space. Let a ∈ Zq satisfy the conditions a ≥ 0 and ai ≥ ri . Then

HX (a) =
∑

1≤k≤m
HYk
(a1, . . . , âi, . . . , aq).
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10 Mario Maican

Proof. From the decompositionWi =W1 t · · · tWm we obtain the decomposition

H1(IX,Wi
(a − aiei)) '

⊕
1≤k≤m

H1(IYk,Wk
(a1, . . . , âi, . . . , aq)).

Applying Equation (3) and Lemma 4.1, we calculate:

HX (a) = length(X) − dimK H1(IX (a))

= length(X) − dimK H1(IX,Wi
(a − aiei))

=
∑

1≤k≤m
length(Yk) −

∑
1≤k≤m

dimK H1(IYk,Wk
(a1, . . . , âi, . . . , aq))

=
∑

1≤k≤m
HYk
(a1, . . . , âi, . . . , aq). �

The above result, in the particular case when X is reduced and ai ≥ si −1, was obtained
by Van Tuyl using different methods. Consult [25, Proposition 4.2].

Definition 4.3. Let X ⊂ V be a zero-dimensional subscheme. For each i ∈ {1, . . . , q},
let Zi be the projection of X onto Pni . Recall Notation 3.3. The tuple

rem(X) = (rin(Z1), . . . , rin(Zq))

will be called the regularity multi-index of X . We write R(X) = [0, rem(X)].

Theorem 4.4. Let X ⊂ Pn1 × · · · × Pnq be a zero-dimensional subscheme. We assert that
R(X) = [0, rem(X)] is the smallest rectangular relevant domain forHX .

Proof. Write rem(X) = (r1, . . . , rq). Consider a ∈ Zq
+ satisfying the condition ai ≥ ri

for some index i ∈ {1, . . . , q}. According to Lemma 4.1, the expression dimK H1(IX (b))
remains constant as bi varies in the interval [ri,∞) and bj are nonnegative fixed integers
for all indices j ∈ {1, . . . , q} \ {i}. Thus,

dimK H1(IX (a)) = dimK H1(IX (a1, . . . , ri, . . . , aq)).

Applying Equation (3), we calculate:

HX (a) = length(X) − dimK H1(IX (a))

= length(X) − dimK H1(IX (a1, . . . , ri, . . . , aq))

= HX (a1, . . . , ri, . . . , aq).

From Lemma 2.2 we deduce that R(X) is relevant to HX . We cannot shrink R(X) to
a smaller rectangular relevant domain because, as seen at Proposition 3.2, the function
HX (aiei) = H Zi

(ai) increases on the interval [0, ri]. �

The above result, in the particular case whenV = P1 × P1 andK is algebraically closed,
was obtained by Giuffrida et al. We refer to [11, Remark 2.8 and Theorem 2.11]. Guardo
and Van Tuyl gave a different proof to Giuffrida’s result in the particular case when X is
a union of fat points. Consult [14, Corollary 3.4].
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On the relevant domain of the Hilbert function of a finite multiprojective scheme 11

Proposition 4.5. Let X ⊂ Pn1 × · · · ×Pnq be a zero-dimensional subscheme of length s and
regularity multi-index rem(X). For each i ∈ {1, . . . , q}, let si be the length of the projection
of X onto Pni . Then the following statements hold true:

(i) HX (a) = s for a ≥ rem(X);
(ii) H1(IX (a)) = {0} for a ≥ rem(X);
(iii) Hm(IX (a)) = {0} for m ≥ 2 and a ≥ 0;
(iv) rem(X) ≤ (s1 − 1, . . . , sq − 1);
(v) rem(X) = (s1−1, . . . , sq−1) ifV = (P1)q . Thus, R(X) = [0, s1−1]×· · ·×[0, sq−1];
(vi) rem(X) ≤ δ(X) if X is a complete intersection. See Notation 3.7.

Proof. Statement (i) follows fromTheorem 4.4 and Lemma 3.1. To prove (ii) and (iii) we
argue precisely as in the proof of Proposition 3.8(ii and iii). Statements (iv) and (v) follow
from their counterparts at Proposition 3.8. Statement (vi) follows from Proposition 3.6
and Proposition 3.8(vii). �

Proposition 4.5(i), in the particular case when X is a union of fat points and K is
algebraically closed, was obtained by Sidman and Van Tuyl. See [24, Proposition 4.4].

Complete intersection schemes contained in a simplicial toric variety were studied
in [23]. Restricting [23, Theorem 3.16] to the case when the ambient space is a multi-
projective space we obtain the following result: “Let X be a zero-dimensional complete
intersection scheme contained in amultiprojective space of dimension n defined over an
algebraically closed field. Assume that I(X) = ( f1, . . . , fn). ThenHX (a) = length(X)
for a ≥ deg( f1) + · · · + deg( fn).” In Proposition 4.5 we proved that the equation
HX (a) = length(X) holds for the improved bound a ≥ δ(X),

Corollary 4.6. Let X ⊂ Pn1 × · · · × Pnq be a zero-dimensional subscheme. For each index
i ∈ {1, . . . , q}, let si be the length of the projection of X ontoPni . Then the rectangular domain
[0, s1 − 1] × · · · × [0, sq − 1] is relevant toHX .

The corollary follows from Theorem 4.4 and Proposition 4.5(iv). The above result, in
the particular case when X is reduced and K is algebraically closed, was obtained by
Van Tuyl. Consult [25, Proposition 4.6(ii) and Corollary 4.7].

Let M be a finitely generated Zq-graded S-module. The canonical Z-grading on S is
given by the degree of a polynomial. Given a ∈ Zq , write |a| = a1 + · · · + aq . We note
that M is also a Z-graded S-module by setting M

d
= ⊕

|a |=d
Ma . The Hilbert function

of this module is the functionHM : Z→ Z given by

HM (d) =
∑
|a |=d

HM (a).

There exists a polynomial PM in one variable, with rational coefficients, called the
Hilbert-Poincarè polynomial of M , such that HM (d) = PM (d) for d sufficiently large.
See [5, Theorem 1.11]. The regularity index rin(M) of M is the smallest integer with
the property that HM = PM on [rin(M),∞). Given a subscheme X ⊂ V, we put
HX = HS/I (X), PX = PS/I (X), and rin(X) = rin(S/I(X)). These concepts become
more familiar once we slightly change the point of view. Write n = n1 + · · ·+ nq + q− 1
and let Pn have the coordinate ring S, equipped with its Z-grading. Let X ⊂ Pn be the
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subscheme defined by the ideal I(X). As an aside, note that, if X is reduced, then X is
an arrangement of (q − 1)-dimensional planes in Pn. Clearly,HX is the usual Hilbert
function of X , PX is the usual Hilbert-Poincarè polynomial of X , and rin(X) = rin(X).

Corollary 4.7. Let X ⊂ V be a zero-dimensional subscheme. Recall from Definition 4.3 the
regularity multi-index rem(X). We assert that rin(X) ≤ | rem(X)|. We further assert that
PX (d) has dominant term length(X)dq−1/(q − 1)!

Proof. Clearly, the Poincarè polynomial associated toHX , introduced atDefinition 2.6,
coincides with PX . We apply Lemma 2.5 toHX and to its relevant domain [0, rem(X)].
We deduce that PX = HX on [| rem(X)|, ∞), and that PX has dominant term
HX (rem(X))dq−1/(q − 1)! It follows that rin(X) ≤ | rem(X)|. In accordance with
Proposition 4.5(i),HX (rem(X)) = length(X). This proves the second assertion. �

Lemma 4.8. Let X ⊂ V be a zero-dimensional subscheme of length s. Assume that there is
an integer 0 ≤ τ < | rem(X)| such that HX (a) = s if a ∈ R(X) and |a| ≥ τ. Then
rin(X) ≤ τ.

Proof. We apply Lemma 2.7 to the function F = HX . The hypothesis of Lemma 2.7 is
satisfied becauseHX takes the value s on the region {a ∈ R(X) | |a| ≥ τ}. We deduce
thatHX (d) = PX (d) for d ≥ τ, forcing the inequality rin(X) ≤ τ. �

Proposition 4.9. Let X ⊂ P1×P1 be a zero-dimensional subscheme of length s. Let X ⊂ P3

be the associated one-dimensional subscheme. Then rin(X) ≤ s−1, i.e. rin(X) ≤ deg(X)−1.

Proof. According to Corollary 4.7, deg(X) = s, hence the two inequalities above are
equivalent. Assume that | rem(X)| ≤ s−1. ApplyingCorollary 4.7we get the inequalities
rin(X) ≤ | rem(X)| ≤ s − 1. Assume now that s − 1 < | rem(X)|. According to [20,
Corollary 4.5], HX (a) = s if a ∈ R(X) and |a| ≥ s − 1. Applying Lemma 4.8 with
τ = s − 1 we obtain the inequality rin(X) ≤ s − 1. �

LetY be a projective scheme. The inequality rin(Y ) ≤ deg(Y ) − 1 is satisfied in the case
when Y is zero-dimensional, as per Proposition 3.8(iv). This inequality is also satisfied
in the case when Y = X , as in Proposition 4.9. The question whether the inequality is
satisfied for arbitraryY remains open.

5 Regular sequences in the case of ACM and sub-ACM schemes

In this section we assume that the ground fieldK is infinite. Letm be the maximal ideal
of S generated by all the variables. The depth of aZq-graded S-module M is themaximal
length of an M-regular sequence contained in m. Let X ⊂ V be a zero-dimensional
subscheme. Since K is infinite, there exists a non-constant Zq-homogeneous form that
does not vanish at any point of red(X). This form is a non-zerodivisor of S/I(X). Thus,
we have the inequalities 1 ≤ depth(S/I(X)) ≤ dim(S/I(X)) = q. We recall that X is
said to be arithmetically Cohen-Macaulay (ACM) if depth(S/I(X)) = q. If q = 1, then X
must be ACM. We say that X is sub-ACM if q ≥ 2 and depth(S/I(X)) = q − 1.
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On the relevant domain of the Hilbert function of a finite multiprojective scheme 13

Notation 5.1. Throughout this section we shall employ the following notation:

U = span{xi j | 1 ≤ i ≤ q, 0 ≤ j ≤ ni},

Ui = span{xi j | 0 ≤ j ≤ ni},

U0
i = {ui ∈ Ui | ui does not vanish at any point of red(X)}.

Remark 5.2. The spaces U0
i are non-empty and each ui ∈ U0

i is a non-zerodivisor for
S/I(X). Indeed, for each closed point P ∈ V, I(P) ∩ Ui is a proper vector subspace of
Ui . A vector space over an infinite field cannot be a finite union of proper subspaces,
hence U0

i , ∅. The ideals I(P) with P ∈ red(X) are the associated primes of X , hence
ui is a non-zerodivisor of S/I(X).

Remark 5.3. If K is algebraically closed and red(X) = {P1, . . . , Pm}, then, for each
index k ∈ {1, . . . ,m}, there are vector subspaces U

ki
⊂ Ui of codimension one such

that I(P
k
) = (U

ki
| 1 ≤ i ≤ q). We haveU0

i = Ui \
⋃

1≤k≤m U
ki
.

In the case whenK is algebraically closed and X is reduced and ACM, Van Tuyl proved
that we can choose a regular sequence {u1, . . . , uq} for S/I(X) with ui ∈ Ui . Consult
[26, Proposition 3.2]. The aims of this section are, first, to generalize this result to the
case when X is an arbitrary zero-dimensional ACM subscheme and K is an arbitrary
infinite field (Proposition 5.6), second, to obtain a version of this result for sub-ACM
schemes (Proposition 5.9), and, third, to show that the ui above can be chosen generically
(Proposition 5.10). These results and their corollaries will be used in Sections 6 and 7.

Lemma5.4. We assume thatK is infinite. We write x = (x1, . . . , xm) and y = (y1, . . . , yn).
We let p ⊂ K[x, y] be a prime ideal. We assert that ht(p) ≥ ht(p ∩ K[x]) + ht(p ∩ K[y]).

Proof. Put k = dimK[x]/p ∩ K[x] and l = dimK[y]/p ∩ K[y]. The assertion is
equivalent to the inequality dimK[x, y]/p ≤ k + l , see [5, Corollary 13.4]. Applying
the Noether normalization theorem [5, Theorem 13.3] we deduce that there are linearly
independent one-forms u1, . . . , uk ∈ K[x], respectively, v1, . . . , vl ∈ K[y] such that the
algebra K[x]/p ∩ K[x] is integral over K[u] and the algebra K[y]/p ∩ K[y] is integral
over K[v]. We wrote u = (u1, . . . , uk) and v = (v1, . . . , vl). The extension of alge-
bras K[u, v]/p ∩ K[u, v] ⊂ K[x, y]/p is integral, hence the two algebras have the same
dimension, see [5, Theorem A, p. 286]. Thus, dimK[x, y]/p ≤ dimK[u, v] = k + l . �

Lemma 5.5. Let X ⊂ V be a zero-dimensional subscheme. Choose ui ∈ U0
i . Then (Ui) is

contained in rad((ui) + I(X)).

Proof. Recall that I(X)∩K[xi j | 0 ≤ j ≤ ni] defines a zero-dimensional subscheme Zi
inPni . By hypothesis,ui does not vanish at anypoint of red(Zi), hence (ui)+I(Zi)defines
the empty subscheme in Pni . Thus (Ui) ⊂ rad((ui) + I(Zi)) ⊂ rad((ui) + I(X)). �

Proposition 5.6. We assume that K is infinite. We let X ⊂ V be a zero-dimensional ACM
subscheme. Then there are ui ∈ Ui such that {u1, . . . , uq} is regular for S/I(X).

Proof. Set xi = (xi0, . . . , xini ). Performing induction on k , we will construct a regular
sequence {u1, . . . , uk} for S/I(X) with ui ∈ U0

i . To start the induction, choose u1 in
U0

1 and recall Remark 5.2. For the induction step, assume that k ∈ {1, . . . , q − 1} and
that {u1, . . . , uk} has already been constructed. Write J = (u1) + · · · + (uk) + I(X).
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Choose a prime idealp that is associated to J . By hypothesis,S/I(X) is Cohen-Macaulay
of dimension q, hence S/J is Cohen-Macaulay of dimension q − k . According to [5,
Corollary 18.14], J is unmixed, hence dim(p) = q − k and ht(p) = n1 + · · · + nq + k .
According to Lemma 5.5, (U1, . . . ,Uk

) lies in rad(J), so it is contained in p. We claim
that ht(p ∩ K[xi]) = ni for each index i ∈ {k + 1, . . . , q}. Indeed, the inequalities
ht(p∩K[xi]) ≥ ni follow from the fact thatp∩K[xi] contains the ideal of the projection
of X onto Pni . According to Lemma 5.4, we have the inequality

ht(p) ≥
∑

1≤i≤q
ht(p ∩ K[xi]) or, equivalently,

∑
k+1≤i≤q

ni ≥
∑

k+1≤i≤q
ht(p ∩ K[xi]).

This proves the claim. The claim implies that U
k+1 is not contained in p. The same is

true for all associated primes of J . Since K is infinite, we can choose u
k+1 ∈ U0

k+1 such
that u

k+1 does not lie in any associated prime of J . Thus, uk+1 is a non-zerodivisor for
S/J , hence {u1, . . . , uk+1} is regular relative to S/I(X). �

Lemma 5.7. We assume that K is algebraically closed. We let X ⊂ V be a zero-dimensional
subscheme. We write red(X) = {P1, . . . , Pm}. We choose p ∈ {1, . . . , q} and ui ∈ U0

i for
1 ≤ i ≤ p. Then the ideals p

k
= (U1, . . . ,Up) + I(P

k
) for 1 ≤ k ≤ m are the minimal

prime ideals containing (u1, . . . , up) + I(X).

Proof. In view of Remark 5.3, we have p
k
= (U1, . . . ,Up) + (Uk,p+1, . . . ,Uk,q

). This
is clearly a prime ideal. Some of these ideals may coincide, however, if p

k
, p

l
, then

p
k
* p

l
and p

l
* p

k
. The lemma reduces to proving that⋂

1≤k≤m
pk = rad((u1, . . . , up) + I(X)).

The inclusion “⊃” is obvious, so we focus on proving the reverse inclusion. We denote
by r the ideal on the r.h.s. Take f ∈

⋂
1≤k≤m pk and write f = g + h, where g lies in the

ideal (U1, . . . ,Up) and h is a polynomial in the variables xi j , p+ 1 ≤ i ≤ q, 0 ≤ j ≤ ni .
According to Lemma 5.5, (U1, . . . ,Up) ⊂ r, hence g ∈ r. By construction,

h ∈
⋂

1≤k≤m
(Uki | p + 1 ≤ i ≤ q) ⊂

⋂
1≤k≤m

I(Pk) = rad(I(X)) ⊂ r.

We conclude that f lies in r. �

Lemma 5.8. Let S be a Z-graded K-algebra and let M be a Z-graded S-module. Let
{v1, . . . , vp} ⊂ S be an M-regular sequence such that all vi are homogeneous of the
same degree. Consider a non-singular matrix G = (κi j)1≤i, j≤p with entries in K. Then
{κi1v1 + · · · + κipvp | 1 ≤ i ≤ p} constitutes an M-regular sequence.

Proof. If G is lower-triangular, then the lemma follows from the definition of an
M-regular sequence. According to [5, Corollary 17.5 and Theorem 17.6], a sequence
{w1, . . . ,wp} ⊂ S of homogeneous elements is M-regular if and only if the Koszul
complex K(w1, . . . ,wp) ⊗ M , introduced at Notation 3.4, is exact. Permutations
of {w1, . . . ,wp} yield isomorphic Koszul complexes. Thus, every permutation of
{v1, . . . , vp} remains an M-regular sequence. The lemma follows from the fact that the
lower triangular matrices and the row permutations generate GLp(K). �
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Proposition 5.9. Assume that K is algebraically closed. Assume that q ≥ 3. Let X ⊂ V
be a zero-dimensional sub-ACM subscheme. For 1 ≤ i ≤ q choose ui ∈ U0

i . Then there is
an index p ∈ {2, . . . , q} and there are scalars κi ∈ K for i ∈ {2, . . . , q} \ {p} such that
{u1} ∪ {ui + κiup | i ∈ {2, . . . , q} \ {p}} is a regular sequence for S/I(X).

Proof. Write red(X) = {P1, . . . , Pm}. According to Lemma 5.7, p
k
= (U1) + I(P

k
)

for 1 ≤ k ≤ m are the minimal prime ideals containing (u1) + I(X). We denote
U ′ = span{u2, . . . , uq}. Performing induction on l ∈ {2, . . . , q − 1}, we will construct
a regular sequence {u1, v2, . . . , vl} for S/I(X) with vi ∈ U ′. To start the induction, we
consider the setA1 of associated primes to (u1)+ I(X). We claim thatU ′ is not contained
in any p ∈ A1. To prove this, we argue by contradiction. Assume that U ′ ⊂ p and that
p ∈ A1. This ideal must contain one of the minimal associated primes to (u1) + I(X),
say p

k
⊂ p. Thus,U1 ⊂ p andU

ki
⊂ p for 2 ≤ i ≤ q. It follows that

U = U1 +U2 + · · · +Uq

= U1 + span{u2,Uk2} + · · · + span{uq,Ukq}

= U1 +Uk2 + · · · +Ukq +U ′ ⊂ p,

hencem = (U) ⊂ p, so every element ofm is a zerodivisor for S/((u1) + I(X)). On the
other hand, by Remark 5.2, u1 is a non-zerodivisor for S/I(X), hence

depth(S/((u1) + I(X))) = depth(S/I(X)) − 1 = q − 2 ≥ 1.

We have reached a contradiction, which proves the claim. We obtain a regular sequence
{u1, v2} relative to S/I(X) by choosing v2 ∈ U ′ \

⋃
p∈A1 (p ∩U ′).

We now perform the induction step. Assume that l ∈ {2, . . . , q − 2} and that
{u1, v2, . . . , vl} has already been constructed. We denote by A

l
the set of associated

primes to the ideal (u1, v2, . . . , vl) + I(X). Arguing as above, we can prove that U ′ is
not contained in any p from A

l
. Indeed, p

k
⊂ p for some k , so, if U ′ ⊂ p, then U ⊂ p.

It would follow that every element ofm is a zerodivisor for S/((u1, v2, . . . , vl) + I(X)).
On the other hand, this ring has depth q − 1 − l ≥ 1. This would yield a contradiction.
Choosing v

l+1 ∈ U ′ \
⋃
p∈Al
(p ∩ U ′) we obtain a regular sequence {u1, v2, . . . , vl+1}

relative to S/I(X). This completes the induction step.
Thus far, we have constructed an S/I(X)-regular sequence {u1, v2, . . . , vq−1} such

that v2, . . . , vq−1 are linearly independent vectors in U ′. Write v
l
=

∑
2≤i≤q λliui . The

matrix Λ = (λ
li
)2≤l≤q−1, 2≤i≤q has maximal rank. To simplify notation, we assume

that the minor obtained by deleting the last column of Λ is non-zero. We now apply
Lemma 5.8 to the Z-graded ring S, to the Z-graded module M = S/((u1) + I(X)) and
to the M-regular sequence {v2, . . . , vq−1}. We takeG to be the inverse of (λ

li
)2≤l, i≤q−1.

We obtain an M-regular sequence of the form {ui + κiuq | 2 ≤ i ≤ q − 1}. In general,
if the minor obtained by deleting column p of Λ is non-zero, then we obtain a regular
sequence as in the proposition. �

Proposition 5.10. Assume that K is algebraically closed. Let X ⊂ V be a zero-dimensional
ACM subscheme. For 1 ≤ i ≤ q choose ui ∈ U0

i . Then {u1, . . . , uq} is S/I(X)-regular.

Proof. Performing induction on i, we will show that {u1, . . . , ui} is S/I(X)-regular. By
Remark 5.2, u1 is a non-zerodivisor for S/I(X). Assume that i ∈ {1, . . . , q − 1} and
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that {u1, . . . , ui} is S/I(X)-regular. By hypothesis, S/I(X) is Cohen-Macaulay, hence
S/((u1, . . . , ui) + I(X)) is also Cohen-Macaulay. Per [5, Corollary 18.14], this ring is
unmixed. Thus, the associated primes of (u1, . . . , ui) + I(X) are precisely the minimal
primes. According to Lemma 5.7, they are of the form p

k
= (U1, . . . ,Ui) + I(P

k
).

By construction, ui+1 lies outside all ideals p
k
, hence ui+1 is a non-zerodivisor of

S/((u1, . . . , ui) + I(X)), and hence {u1, . . . , ui+1} is regular relative to S/I(X). �

Lemma5.11. Let S be a commutative ring and let I ⊂ S be an ideal. Assume that the sequence
{u1, . . . , up} ⊂ S is S/I-regular. Then (u1, . . . , up)I = (u1, . . . , up) ∩ I .

Proof. The inclusion “⊂” is obvious, sowe concentrate onproving the reverse inclusion.
We perform induction on p. Assume that p = 1. Take f ∈ (u1) ∩ I and write f = u1g.
In S/I we have the relations u1ĝ = û1ĝ = f̂ = 0. By hypothesis, u1 is a non-zerodivisor
for S/I , hence ĝ = 0, that is, g ∈ I , and hence f ∈ (u1)I . Assume that p > 1 and that the
lemma is true for the S/I-regular sequence {u1, . . . , up−1}. Take f ∈ (u1, . . . , up) ∩ I
and write f = u1g1 + · · · + upgp . In S/((u1 + · · · + up−1) + I) we have the relations
up ĝp = ûp ĝp = f̂ − û1ĝ1 − · · · − ûp−1ĝp−1 = 0. By hypothesis, up is a non-zerodivisor
for S/((u1 + · · · + up−1) + I), hence ĝp = 0. Write gp = u1h1 + · · · + up−1hp−1 + hp ,
where hp ∈ I . From the relation

f − uphp = u1(g1 + uph1) + · · · + up−1(gp−1 + uphp−1)

we see that f − uphp ∈ (u1, . . . , up−1) ∩ I . By the induction hypothesis, this ideal
coincides with (u1, . . . , up−1)I . We conclude that f ∈ (u1, . . . , up)I . �

Lemma5.12. Let S be a commutative ring and let I ⊂ S be an ideal. Assume that the sequence
{u1, . . . , up+1} ⊂ S is regular and that {u1, . . . , up} is S/I-regular. Then {u1, . . . , up+1}

is also I-regular.

Proof. By hypothesis, u1 is a non-zerodivisor in S, hence u1 is a non-zerodivisor
for I . Take i ∈ {1, . . . , p}. We apply Lemma 5.11 to the S/I-regular sequence
{u1, . . . , ui}. We deduce that I/(u1, . . . , ui)I is isomorphic, as an S-module, to an ideal
of S/(u1, . . . , ui). By hypothesis, ui+1 is a non-zerodivisor for S/(u1, . . . , ui), hence ui+1
is a non-zerodivisor for I/(u1, . . . , ui)I . �

Proposition 5.13. Assume that K is algebraically closed. Let X ⊂ V be a zero-dimensional
sub-ACM subscheme. For 1 ≤ i ≤ q, choose ui ∈ U0

i . Then {u1, . . . , uq} is I(X)-regular.

Proof. We assume that q = 2. According to Remark 5.2, {u1} is regular for S/I(X).
Clearly, {u1, u2} isS-regular. FromLemma 5.12we deduce that {u1, u2} is I(X)-regular.
We assume that q ≥ 3. As in Proposition 5.9, we consider a S/I(X)-regular sequence

{w1, . . . ,wq−1} = {ui + κiup | i ∈ {1, . . . , q} \ {p}}.

Here κ1 = 0. We set wq = up . Clearly, {w1, . . . ,wq} is S-regular. From Lemma 5.12 we
deduce that {w1, . . . ,wq} is also I(X)-regular. Let us now consider the column vectors
u = (u1, . . . , uq)

T andw = (w1, . . . ,wq)
T. By construction, we havew = Λu for some

Λ ∈ GLq(K). We apply Lemma 5.8 to the I(X)-regular sequence {w1, . . . ,wq}. We take
G = Λ−1. We conclude that {u1, . . . , uq} is regular relative to I(X). �
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Proposition 5.14. Assume that K is algebraically closed. Let X ⊂ V be a zero-dimensional
ACM subscheme. For 1 ≤ i ≤ q choose ui ∈ U0

i . For 1 ≤ i ≤ q choose vi ∈ Ui \ Kui . Then
{u1, . . . , uq, vi} is I(X)-regular for every index i.

Proof. According to Proposition 5.10, {u1, . . . , uq} is regular relative to S/I(X).
Clearly, {u1, . . . , uq, vi} is S-regular. The proposition follows from Lemma 5.12. �

Proposition 5.15. Assume that K is infinite. Assume that X ⊂ V is a zero-dimensional
ACM subscheme. Then there are ui ∈ Ui and vi ∈ Ui \ Kui such that {u1, . . . , uq, vi} is
I(X)-regular for every index i.

Proof. Proposition 5.6 provides an S/I(X)-regular sequence {u1, . . . , uq}. Clearly,
{u1, . . . , uq, vi} is S-regular. The proposition follows from Lemma 5.12. �

Proposition 5.16. Assume that K is infinite. Let X ⊂ V be a zero-dimensional subscheme.
For 1 ≤ i ≤ q, choose ui ∈ U0

i and vi ∈ Ui \ Kui . Then, for all indices i and j , {ui, vj}, is
regular relative to I(X).

Proof. According to Remark 5.2, ui is regular for S/I(X). Clearly, {ui, vj} is S-regular.
The proposition follows from Lemma 5.12. �

6 Finite ACM schemes

In this sectionwe assume that the ground fieldK is infinite.We recall from Section 5 the
notion of an ACM zero-dimensional scheme. Lemma 6.3 provides a class of examples
of such schemes.We recall that all zero-dimensional subschemes X ⊂ Pn are ACM. The
investigation of the next simplest case, whenV = P1 × P1, was begun by Giuffrida et al.
in [11]. For a summary of results in this case we refer to the monograph [18]. For later
use, we cite at Theorem 6.2 some of the results in [11, Section 4].

Notation 6.1. The characteristic functionXT : Zq → {0, 1} of a subsetT ⊂ Zq is given
byXT (a) = 1 if a ∈ T andXT (a) = 0 if a ∈ Zq \ T .

Theorem 6.2 (Giuffrida et al.). Consider the biprojective space V = P1 × P1 over C, with
Z2-graded coordinate ring C[x0, x1, y0, y1]. Let X ⊂ V be a zero-dimensional subscheme.
Recall the relevant domain R(X) = [0, s1 − 1] × [0, s2 − 1] from Proposition 4.5(v). Then the
following statements are equivalent:

(i) X is ACM;
(ii) there is an integer m ≥ 0 and there are mutually incomparable elements c1, . . . , cm in

R(X), such that the quasi-rectangular domain

Q(X) = R(X) \
⋃

1≤k≤m
[ck, (s1 − 1, s2 − 1)] ⊂ Z2

satisfies the condition ∆HX = XQ(X). See Notation 6.1;
(iii) there are homogeneous forms ξ1, . . . , ξm+1 ∈ C[x0, x1] and υ1, . . . , υm+1 ∈ C[y0, y1]

such that I(X) = (υ1 · · · υkξk+1 · · · ξm+1 | 0 ≤ k ≤ m + 1).

Moreover, deg(υ1 · · · υkξk+1 · · · ξm+1) = c
k
, where c0 = (s1, 0) and cm+1 = (0, s2).
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As per Definition 2.1, Q(X) is a relevant quasi-rectangular domain forHX , in fact, the
smallest possible quasi-rectangular relevant domain.

Other characterizations of the ACMproperty for zero-dimensional subschemes X in
P1 × P1 are known in the case when X is reduced, see [26, Theorem 4.8], [21, Corollary
7.5], [22, Theorem 6.7], [16, Theorem 4.3] and [17, Theorem 8], and in the case when X
is a union of fat points, see [13, Theorem 2.1] and [14, Theorem 4.8]. For other ambient
spaces the focus has been entirely on reduced ACM schemes, see [16, Theorem 4.5 and
Theorem 5.7], [8, Theorem 3.16], [9, Proposition 3.2 and Theorem 3.7].

We consider the algebraC[x0, x1, y0, y1]/(x0, y0) = C[x1, y1] andwe equip itwith the
inherited Z2-grading: deg(x1) = e1 and deg(y1) = e2. Condition (ii) from Theorem 6.2
is equivalent to saying that ∆HX is the Hilbert function of an artinian quotient of
C[x1, y1] by a monomial ideal, i.e. an artinian Z2-graded quotient of C[x1, y1]. This
statement was partially generalized by Van Tuyl in [26]. We consider the algebra

S0 = S/(x10, . . . , xq0) = K[xi j | 1 ≤ i ≤ q, 1 ≤ j ≤ ni]

equipped with the induced Zq-grading: deg(xi j) = ei . According to [26, Theorem 3.11],
if K is algebraically closed and if X ⊂ V is zero-dimensional reduced and ACM, then
∆HX is the Hilbert function of an artinian Zq-graded quotient of S0. Conversely, for
any artinian Zq-graded quotient A of S0, there exists a zero-dimensional reduced ACM
subscheme X ⊂ V such that ∆HX = H A. The aim of this section is to provide a version
of this result that does not require X to be reduced orK to be algebraically closed.

Lemma 6.3. Assume that the subscheme X ⊂ V is concentrated at a point and that I(X) is
a monomial ideal. Then X is ACM.

Proof. By hypothesis, red(X) = {P} for a closed point P ∈ V. By the multiprojective
version of Hilbert’s Nullstellensatz, I(P) = rad(I(X)). As the radical of a monomial
ideal, I(P) itself is monomial. But I(P) is also a prime ideal, hence I(P) is generated by a
subset of the set of variables. We may assume that I(P) = (xi j | 1 ≤ i ≤ q, 1 ≤ j ≤ ni).
If xi0ζ ∈ I(X) for a monomial ζ , then, since xi0 does not vanish at P, ζ must lie in I(X).
This shows that the minimal generators of I(X) are monomials in the same variables
that generate I(P). It has now become clear that {xi0 | 1 ≤ i ≤ q} constitutes a regular
sequence for S/I(X), hence depth(S/I(X)) ≥ q, and hence depth(S/I(X)) = q. �

In the sequel we will need Macaulay’s theorem, see [5, Theorem 15.3]. This theorem is
usually stated for homogeneous ideals of polynomial rings, but it can easily be extended
to the Zq-graded setting.

Notation 6.4. Let us fix a monomial well-ordering on S. This is a well-ordering “≤”
on the setM of monic monomials of S which is compatible with multiplication: if ζ1,
ζ2 and ζ lie inM and ζ1 < ζ2, then ζ1ζ < ζ2ζ . We say that a monomial ζ ∈ M occurs
in a polynomial f ∈ S if κζ is one of the monomials of f for some κ ∈ K \ {0}. For
f ∈ S \ {0} we denote by lead( f ) the largest monomial that occurs in f . For an ideal
I ⊂ S we introduce the leading ideal lead(I) = (lead( f ) | f ∈ I).

Theorem 6.5 (Macaulay). Let I ⊂ S be a Zq-homogeneous ideal. We choose a monomial
well-ordering on S. Then lead(I) is Zq-homogeneous and has the same Hilbert function as I .
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Theorem 6.6. Assume thatK is infinite. Let X ⊂ V be a zero-dimensional ACM subscheme.
We assert that ∆HX = H A for an artinian Zq-graded quotient A of S0. Conversely, for
any artinian Zq-graded quotient A of S0, we assert that there exists a zero-dimensional ACM
subscheme X ⊂ V such that ∆HX = H A.

Proof. Assume that X is ACM. According to Proposition 5.6, there exists a regular
sequence {u1, . . . , uq} relative to S/I(X) with ui ∈ Ui . In view of Lemma 3.5, ∆HX

is the Hilbert function of A = S/((u1, . . . , uq) + I(X)). Performing a linear change of
coordinates on each Pni , we may assume that ui = xi0, therefore A can be regarded as a
Zq-graded quotient ofS0. According toTheorem4.4,H A vanishes outside a rectangular
domain, hence dimK A is finite, and hence A is an artinianK-algebra.

Conversely, we assume we are given an artinian Zq-graded algebra A = S0/I0.
We recall Notation 6.4. We choose a monomial well-ordering on S0 and we apply
Theorem 6.5 to the Zq-homogeneous ideal I0. We find a monomial ideal J0 = lead(I0)

such that H A = HS0/J0 . In particular, S0/J0 is an artinian algebra, hence rad(J0) =

(xi j | 1 ≤ i ≤ q, 1 ≤ j ≤ ni). Let J ⊂ S be the ideal generated by J0. Since J is
generated by monomials that do not involve the variables xi0, 1 ≤ i ≤ q, it is obvious
that J is saturated. Thus, J = I(X) for a zero-dimensional subscheme X ⊂ V which
is concentrated on the point given by the ideal (xi j | 1 ≤ i ≤ q, 1 ≤ j ≤ ni). In
view of Lemma 6.3, X is ACM. Since J is generated by monomials that do not involve
the variables xi0, 1 ≤ i ≤ q, it is obvious that {x10, . . . , xq0} is S/J-regular. In view of
Lemma 3.5, ∆HX must be the Hilbert function of S/((x10, . . . , xq0) + J) = S0/J0. �

The first assertion, in the particular case when K = K and X is reduced, was obtained
by Van Tuyl in [26, Theorem 3.11]. The converse assertion, in the particular case when
K = K, already follows from op.cit. Indeed, Van Tuyl proved that for any A we can find
a zero-dimensional reduced ACM subscheme X ⊂ V such that ∆HX = H A.

Corollary 6.7. Assume that K is infinite. Let X ⊂ (P1)q be a zero-dimensional ACM
subscheme. We assert that there exists a quasi-rectangular domain Q(X) ⊂ Zq such that
∆HX = XQ(X). See Notation 6.1. Conversely, for any quasi-rectangular domainQ ⊂ Zq , we
assert that there exists a zero-dimensional ACMsubscheme X ⊂ (P1)q such that∆HX = XQ .

Proof. Note that S0 = K[xi1 | 1 ≤ i ≤ q], where deg(xi1) = ei for all i. An ideal of S0
is Zq-homogeneous if and only if it is monomial. If A = S0/I0 is an artinian quotient
by a monomial ideal, then I0 must contain minimal generators of the form xs1

11, . . . , xsqq1 .
Let c1, . . . , cm be the degrees of the remaining minimal generators of I0, if any. Write

Q = [0, s1 − 1] × · · · × [0, sq − 1] \
⋃

1≤k≤m
[ck, (s1 − 1, . . . , sq − 1)].

We haveH A = XQ Conversely, for any quasi-rectangular domain Q ⊂ Zq , we can find
an artinian Zq-graded quotient A = S0/I0 such thatH A = XQ . �

The first assertion, in the particular case when K = K and X is reduced, was obtained
by Van Tuyl in [26, Corollary 3.14]. The converse assertion, in the particular case when
K = K, already follows from op.cit. Indeed, Van Tuyl proved that for any Q we can find
a zero-dimensional reduced ACM subscheme X ⊂ (P1)q such that ∆HX = XQ .
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7 Further constraints on the Hilbert functions

In this section we assume that the ground fieldK is infinite. This section is devoted to a
better understanding of the problem of classification of the functionsZq → Z that arise
as Hilbert functions of zero-dimensional subschemes X ⊂ V. The classical theorem
[2, Theorem 4.2.10] of Macaulay provides a classification of the Hilbert functions of
Z-graded K-algebras. The recent theorem [6, Theorem 4.8] of Favacchio provides a
classification of the Hilbert functions of Z2-graded K-algebras. Invoking Theorem 6.6,
we obtain a characterization of the functions HX , for zero-dimensional subschemes
X ⊂ Pn, respectively, for zero-dimensional ACM subschemes X ⊂ Pn1 × Pn2 . Yet the
problem of describing the functionsHX in the case when X ⊂ Pn1 ×Pn2 is sub-ACMor
in the case when q ≥ 3 remains open. In this section we make progress on this problem
by exhibiting certain conditions that the functionsHX andH I (X) must satisfy. These
constraints are formulated in terms of the partial difference functions, defined below.
The emphasis will be on ACM and sub-ACM schemes. All constraints will arise in the
manner of Theorem 6.6, by exploiting the regular sequences from Section 5, and then
by applying Lemma 3.5. At the end of the section we give a second proof to Theorem 4.4
in the particular case when V = (P1)q and X is ACM or sub-ACM. Let F : Zq → Z be
a function. For 1 ≤ i ≤ q we consider the partial difference function

∆i F : Zq −→ Z given by ∆i F (a) = F (a) − F (a − ei).

We will use the abbreviation ∆i1...ip
F = ∆i1

. . . ∆ip
F . Recalling Equation (1), we

notice that ∆F = ∆1,...,q F and that ∆ ∆i F = ∆1,...,q,i F . Differentiating the equation

HS(a) =
∏

1≤i≤q

(
ai + ni

ni

)
yields the equation ∆HS(a) =

∏
1≤i≤q

(
ai + ni − 1

ni − 1

)
. (6)

Assume that F vanishes on the complement of Zq
+. Fix indices 1 ≤ i1 < · · · < ip ≤ q.

By analogy with Equation (2), we have the formula

∆i1,...,ip
F (a) =

∑
0≤b≤a

bi1
=ai1

,...,bip
=aip

∆F (b) for all a ∈ Zq
+. (7)

Proposition 7.1. Assume that K is algebraically closed. Assume that the zero-dimensional
subscheme X ⊂ V is sub-ACM. Then the following statements hold true:

(i) ∆H I (X) ≥ 0;
(ii) ∆H I (X)(a) > 0 if I(X)a , {0};
(iii) ∆HX ≤ ∆HS;
(iv) if ∆HX (a) = ∆HS(a) for some a ∈ Zq

+, thenHX = HS on [0, a];
(v) ∆i1...ip

H I (X) ≥ 0 for all indices 1 ≤ i1 < · · · < ip ≤ q;
(vi) ∆i1...ip

H I (X)(a) > 0 if I(X)a , {0} and 1 ≤ i1 < · · · < ip ≤ q.

Proof. Recall Notation 5.1. As per Proposition 5.13, we can construct I(X)-regular
sequences {u1, . . . , uq} with generic ui ∈ Ui . We write N = I(X)/(u1, . . . , uq)I(X).
By applying Lemma 3.5, we deduce that ∆H I (X) = HN . This function takes, of course,
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only non-negative values. We have proved statement (i). The same argument applies to
statement (v), except that this timewe consider the I(X)-regular sequence {ui1, . . . , uip }.

If I(X)a , {0}, then we can choose ui such that the subvariety given by the
ideal (u1, . . . , uq) is not contained in the zero-set of I(X)a . Thus, Na , {0}, hence
∆H I (X)(a) > 0. This proves statement (ii). The same argument applies to statement (vi),
except that this timewe consider the ideal (ui1, . . . , uip ). Statement (iii) follows from the
equation ∆HX = ∆HS −∆H I (X) and from (i).

Assume that ∆HX (a) = ∆HS(a) for some a ∈ Zq
+. Thus, ∆H I (X)(a) = 0. From (ii)

we deduce that I(X)a = {0}. A fortiori, I(X)
b
= {0} for b ∈ [0, a], henceH I (X) = 0

on [0, a], and henceHX = HS on [0, a]. This proves statement (iv). �

Proposition 7.2. Assume that K is algebraically closed.. Assume that the zero-dimensional
subscheme X ⊂ V is ACM. As provided in Theorem 6.6, let A be an artinian algebra such that
∆HX = H A. Then the following statements hold true:

(i) ∆ ∆iH I (X) ≥ 0 for all indices i ∈ {1, . . . , q};
(ii) ∆ ∆iH I (X)(a) > 0 if I(X)a , {0} and ni ≥ 2;
(iii) ∆iH A ≤ ∆ ∆iHS for all indices i ∈ {1, . . . , q};
(iv) if ni ≥ 2 and ∆iH A(a) = ∆ ∆iHS(a) for some a ∈ Zq

+, thenHX = HS on [0, a];
(v) ∆H I (X) ≥ 0;
(vi) ∆H I (X)(a) > 0 if I(X)a , {0};
(vii) H A ≤ ∆HS;
(viii) ifH A(a) = ∆HS(a) for some a ∈ Zq

+, thenHX = HS on [0, a];
(ix) ∆i1...ip

H I (X) ≥ 0 for all indices 1 ≤ i1 < · · · < ip ≤ q;
(x) ∆i1...ip

H I (X)(a) > 0 if I(X)a , {0} and 1 ≤ i1 < · · · < ip ≤ q.

Statements (i), (iii), (v), (vii) and (ix) also hold true under the weaker hypothesis thatK be infinite.

Proof. Consider the I(X)-regular sequence {u1, . . . , uq, vi} from Proposition 5.15.
Write N = I(X)/(u1, . . . , uq, vi)I(X). By analogy with Lemma 3.5, we can prove that
∆ ∆iH I (X) = HN . This function takes only non-negative values, proving statement (i).
Assume that I(X)a , {0} and ni ≥ 2. According to Proposition 5.14, u1, . . . , uq and
vi can be chosen generically. We choose them in such a way that the subvariety given
by the ideal (u1, . . . , uq, vi) is not contained in the zero-set of I(X)a . Thus, Na , {0},
henceHN (a) > 0. This proves statement (ii). Statement (iii) follows from the equation
∆iH A = ∆ ∆iHS −∆ ∆iH I (X) and from (i). To prove the remaining statementswe can
argue as in the proof of Proposition 7.1. Note also that (v) follows from the formula

∆H I (X) =
∑

0≤k≤ai

∆ ∆iH I (X)(a − kei)

and from (i). In the case when ni ≥ 2, statement (vi) follows from the above formula
and from (i) and (ii). Statement (ix) follows from Equation (7) and from (v). Statement (x)
follows from Equation (7) and from (v) and (vi). �

Corollary 7.3. Assume that K is algebraically closed. Assume that the zero-dimensional
subscheme X ⊂ (P1)q is ACM or sub-ACM. Then the following statements hold true:

(i) ∆HX (a) ≤ 1 for all a ∈ Zq
+;
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(ii) if ∆HX (a) = 1 for some a ∈ Zq
+, then ∆HX = 1 on [0, a].

Proof. Substituting ni = 1 into Equation (6), we obtain ∆HS(a) = 1 for a ∈ Z
q
+.

Substituting this expression into Propositions 7.1(iii) and 7.2(vii) yields statement (i).
Substituting this expression into Propositions 7.1(iv) and 7.2(viii) yields (ii). �

In the case when X is ACM, the above corollary also follows from Corollary 6.7. The
above result, in the particular case when V = P1 × P1, was obtained by Giuffrida et al.
Consult [11, Proposition 2.7].

Proposition 7.4. Assume that K is algebraically closed. Let X ⊂ V be a zero-dimensional
subscheme. Then the following statements hold true:

(i) ∆i j H I (X) ≥ 0 for all indices 1 ≤ i ≤ j ≤ q;
(ii) ∆i j H I (X)(a) > 0 if I(X)a , {0} and 1 ≤ i < j ≤ q;
(iii) ∆iiH I (X)(a) > 0 if I(X)a , {0} and ni ≥ 2;
(iv) ∆i j HX ≤ ∆i j HS for all indices 1 ≤ i < j ≤ q;
(v) if ∆i j HX (a) = ∆i j HS(a) for some a ∈ Z

q
+ and indices 1 ≤ i < j ≤ q, then

HX = HS on [0, a];
(vi) if ni ≥ 2 and ∆iiHX (a) = ∆iiHS(a) for some a ∈ Zq

+, thenHX = HS on [0, a];
(vii) ∆iHX ≥ 0 for all indices i ∈ {1, . . . , q}.

Statements (i), (iv) and (vii) also hold true under the weaker hypothesis that K be infinite.

Proof. We use the I(X)-regular sequence {ui, vj} provided by Proposition 5.16 and we
repeat the arguments from the proof of Proposition 7.1. Statement (vii) follows from the
fact that {ui} is regular for S/I(X), see Remark 5.2. �

As an application of the above results, we will give a second proof to a particular case of
Theorem 4.4. We formulate this as a separate proposition.

Proposition 7.5. Assume that K is algebraically closed. Assume that the zero-dimensional
subscheme X ⊂ (P1)q is ACM or sub-ACM. For each index i ∈ {1, . . . , q}, let si be the
length of the projection of X onto the i-th copy of P1. Then [0, s1 − 1] × · · · × [0, sq − 1] is
the smallest rectangular relevant domain forHX .

Proof. In view of Lemma 2.2, we must show thatHX (a) = HX (a − (ai − si + 1)ei)
if ai ≥ si − 1. Equivalently, we must show that ∆iHX (a) = 0 if ai ≥ si . By symmetry,
it is enough to prove that ∆1HX (a) = 0 if a ∈ Zq

+ and a1 ≥ s1. Given a ∈ Zq
+, put

σ(a) = a2 + · · · + aq . We perform induction on σ(a). To begin the induction, assume
that σ(a) = 0. Write Z1 = pr1(X). According to Proposition 3.8(i and v), we have the
equationHX (b1, 0, . . . , 0) = H Z1

(b1) = s1 for b1 ≥ s1 − 1. This leads to the desired
outcome ∆1HX (a) = 0.We now perform the induction step.We assume thatσ(a) > 0.
To simplify notation, we assume that a2, . . . , ap are positive and ap+1, . . . , aq are zero
for some p ∈ {2, . . . , q}. From the definition of the partial difference functions we
obtain the equation

∆1HX (a) = ∆1,...,pHX (a) +
∑

1≤k≤p−1
∆1,...,k HX (a − ek+1).
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Since σ(a − e
k+1) < σ(a), ∆1,...,k HX (a − e

k+1) is a finite sum of expressions of the
form ±∆1HX (b), with σ(b) < σ(a) and with b1 = a1. By the induction hypothesis
these expressions vanish. We obtain the equations

∆1HX (a) = ∆1,...,pHX (a)

= (ap+1 + 1) · · · (aq + 1) − ∆1,...,pH I (X)(a)

= 1 − ∆1,...,pH I (X)(a).

We know that I(Z1)s1
, {0}. It follows that I(X)a , {0}. Since we are assuming that X

is ACM or sub-ACM, we may apply Proposition 7.1(vi) and Proposition 7.2(x) in order
to obtain the inequality ∆1,...,pH I (X)(a) > 0. A fortiori, ∆1HX (a) ≤ 0. According to
Proposition 7.4(vii), the reverse inequality ∆1HX (a) ≥ 0 is also satisfied.We obtain the
desired outcome ∆1HX (a) = 0. This concludes the induction step. �

The above line of argument, in the particular case whenV = P1×P1, is due to Giuffrida
et al. Consult [11, Remark 2.8 and Theorem 2.11]. We have adapted their proof to the
case of arbitrary q. In the case when q = 2 there is no restriction on X because every
zero-dimensional subscheme X ⊂ P1 × P1 is ACM or sub-ACM.

8 A vanishing result for ∆H

In this sectionwe assume thatV = (P1)q with coordinate ringS = K[x1, y1, . . . , xq, yq],
where deg(xi) = deg(yi) = ei . We saw in Theorem 6.2 and in Corollary 6.7 that
zero-dimensional ACM subschemes X ⊂ V that are not complete intersections have
a quasi-rectangular relevant domainQ(X)which is strictly contained in the rectangular
relevant domain R(X) introduced in Theorem 4.4. This section and the next are devoted
to finding a procedure (Proposition 9.5) for constructing a quasi-rectangular relevant
domain D(X) ⊂ R(X) that applies to schemes X which are not necessarily ACM.
We restrict our attention only to schemes X for which I(X) is a monomial ideal. The
domain D(X)may coincide with R(X) or may be strictly contained in R(X), depending
on the scheme. At the end of Section 9 we shall give examples in which D(X) is strictly
contained in R(X).

In this section we do some preparatory work. We obtain a vanishing criterion for
∆HS/J , where J ⊂ S is a monomial ideal. In order to achieve this, we need to take two
preliminary steps. First, in Equation (9) we obtain a combinatorial formula for ∆HS/J .
This formula actually holds for any Zq-graded polynomial ring, i.e. for arbitrary values
of n1, . . . , nq . The second step, Lemma 8.3, is also combinatorial and breaks down if
there are more than two variables of degree ei . This is the technical reason why our
ambient space needs to be a product of projective lines.

We find it convenient to work with the function H J . Substituting ni = 1 into
Equation (6) we get ∆HS(a) = 1 for a ∈ Zq

+. A fortiori,

∆HS/J (a) = 1 − ∆H J (a) for a ∈ Zq
+. (8)

Notation 8.1. Let J ⊂ S be a monomial ideal. LetM be the set of monic monomials of
S. Let Γ(J) = { f1, . . . , fm} ⊂ M be the set of minimal generators of J . Fix a ∈ Zq . For
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all integers p ∈ {1, . . . ,m} we write

Γ
p
a (J) = {( fk1

, . . . , fkp ) | 1 ≤ k1 < · · · < kp ≤ m, deg(lcm( fk1
, . . . , fkp )) ≤ a}.

Lemma 8.2. We consider a ∈ Zq
+. We adopt the above notation. We assert that

∆HS/J (a) = 1 +
∑
p≥1
(−1)p

��Γpa (J)�� . (9)

Proof. Write d
k1...kp

= (d1
k1...kp

, . . . , dq
k1...kp

) = deg(lcm( f
k1
, . . . , f

kp
)). By definition,

H J (b) =
�� ⋃

1≤k≤m
{ζ ∈ M | fk divides ζ, deg(ζ) = b}

��
for b ∈ Zq . Applying the inclusion-exclusion principle, we obtain the formula

H J (b) =
∑

1≤p≤m
(−1)p+1

∑
1≤k1< · · ·<kp ≤m

��{ζ ∈ M | fk1
, . . . , fkp divide ζ, deg(ζ) = b}

��.
Ignoring the empty sets on the r.h.s., we calculate:

H J (b) =
∑

1≤p≤m
(−1)p+1

∑
1≤k1< · · ·<kp ≤m

dk1 . . .kp ≤b

(b1 − d1
k1...kp

+ 1) · · · (bq − dq
k1...kp

+ 1).

Assume now that b = a + c, where ci ∈ {−1, 0} for all indices i ∈ {1, . . . , q}. If
d ∈ Zq satisfies the conditions d ≤ a and d � b, then there is an index i such that
di = ai = bi + 1, forcing the equation (b1 − d1 + 1) · · · (bq − dq + 1) = 0. Thus,
on the r.h.s. of the above formula we can add all the terms for which d

k1...kp
≤ a but

d
k1...kp

� b, i.e. we can replace b by a under the summation sign:

H J (b) =
∑

1≤p≤m
(−1)p+1

∑
1≤k1< · · ·<kp ≤m

dk1 . . .kp ≤a

(b1 − d1
k1...kp

+ 1) · · · (bq − dq
k1...kp

+ 1).

This equation holds for b = a + c for all possible c ∈ {−1, 0}q , hence we may apply the
∆ operator calculated at a to both sides:

∆H J (a) =
∑

1≤p≤m
(−1)p+1

∑
1≤k1< · · ·<kp ≤m

dk1 . . .kp ≤a

∆
(
(b1 − d1

k1...kp
+ 1) · · · (bq − dq

k1...kp
+ 1)

)
|b=a

=
∑

1≤p≤m
(−1)p+1

∑
1≤k1< · · ·<kp ≤m

dk1 . . .kp ≤a

1 =
∑

1≤p≤m
(−1)p+1 ��Γpa (J)�� .

To conclude the proof of the lemma we employ Equation (8). �

Lemma 8.3. We assume that 2 ≤ p ≤ m. We recall Notation 8.1. We assert that

Γ
p
a (J) =

{
( fk1

, . . . , fkp ) | 1 ≤ k1 < · · · < kp ≤ m, ( fkµ, fkν ) ∈ Γ
2
a(J)

for all indices 1 ≤ µ < ν ≤ p
}
.
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Proof. Assume that ( f
k1
, . . . , f

kp
) lies in Γpa (J). Then, for all indices 1 ≤ µ < ν ≤ p,

deg(lcm( fkµ, fkν )) ≤ deg(lcm( fk1
, . . . , fkp )) ≤ a.

This proves the inclusion “⊂”. Conversely, assume that ( f
k1
, . . . , f

kp
) belongs to the set

on the r.h.s. For each index µ ∈ {1, . . . , p} write f
kµ
= xαµ1

1 y
βµ1
1 · · · xαµqq y

βµq
q . For all

indices i ∈ {1, . . . , q} put αi = max1≤µ≤p αµi and βi = max1≤µ≤p βµi . Thus,

lcm( fk1
, . . . , fkp ) = xα1

1 y
β1
1 · · · x

αq
q y

βq
q .

For a fixed index i ∈ {1, . . . , q} choose indices µ, ν ∈ {1, . . . , p} such that αi = αµi
and βi = βνi . If µ = ν, then αi + βi = αµi + βµi = deg( f

kµ
)i ≤ ai . If µ , ν, then

αi + βi = αµi + βνi = deg(lcm( f
kµ
, f

kν
))i ≤ ai . Since i was chosen arbitrarily, we get

deg(lcm( fk1
, . . . , fkp )) = (α1 + β1, . . . , αq + βq) ≤ a.

Thus, ( f
k1
, . . . , f

kp
)must lie in Γpa (J). This proves the reverse inclusion “⊃”. �

Proposition 8.4. Let J ⊂ K[x1, y1, . . . , xq, yq] be a monomial ideal. Consider a ∈ Zq
+ and

let {g1, . . . , gn} be the set of minimal generators of J whose degree is less or equal to a. If n = 1,
then ∆HS/J (a) = 0. If n ≥ 2 and deg(lcm(g1, gl)) ≤ a for all indices l ∈ {2, . . . , n}, then,
again, ∆HS/J (a) = 0.

Proof. We recall Notation 8.1. By hypothesis, (g1, gl) lies in Γ
2
a(J) for all indices l in

{2, . . . , n}. In view of Lemma 8.3, for 2 ≤ p ≤ n we can write Γpa (J) = Φp tΨp , where

Φ
p = {(g1, gl2, . . . , glp ) | 2 ≤ l2 < · · · < lp ≤ n, (gl2, . . . , glp ) ∈ Γ

p−1
a (J)}

and
Ψ

p = {(gl1, . . . , glp ) ∈ Γ
p
a (J) | 2 ≤ l1 < · · · < lp ≤ n}.

We notice that |Φp | =
��Ψp−1

��, where, by convention,Ψ1 = {g2, . . . , gn}. We also notice
that Ψn = ∅. Applying Equation (9), we calculate:

∆HS/J (a) = 1 +
∑

1≤p≤n
(−1)p

��Γpa (J)��
= 1 −

��Γ1
a(J)

�� + ∑
2≤p≤n

(−1)p(|Φp | + |Ψp |)

= 1 − n +
∑

2≤p≤n
(−1)p

��Ψp−1�� + ∑
2≤p≤n−1

(−1)p |Ψp |

= 1 − n +
��Ψ1�� + ∑

2≤p≤n−1
(−1)p+1 |Ψp | +

∑
2≤p≤n−1

(−1)p |Ψp |

= 1 − n + (n − 1) +
∑

2≤p≤n−1
((−1)p+1 + (−1)p) |Ψp |

= 0.

In the casewhenn = 1,we cannotice directly that
��Γ1

a(J)
�� = 1 and

��Γpa (J)�� = 0 for p ≥ 2.
Substituting these values into Equation (9) yields the equation ∆HS/J (a) = 0. �
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9 Finite subschemes of a product of projective lines

In this section we assume that K is infinite and that V = (P1)q , where q ≥ 2. We write
S = K[x1, y1, . . . , xq, yq], where deg(xi) = ei and deg(yi) = ei . Let X ⊂ V be a
zero-dimensional subscheme. We recall from Section 4 that si denotes the length of the
projection Zi of X onto the i-th component ofV. Our first goal is to give a different proof
for the fact that the domain [0, s1 − 1] × · · · × [0, sq − 1] is relevant toHX . Our second
goal is to give a procedure for detecting quasi-rectangular domains that are relevant to
HX . All results of this section are applications of Theorem 6.5 and of Proposition 8.4.

Lemma 9.1. We adopt the above notation. We consider the lexicographic monomial ordering
on S such that x1 > y1 > · · · > xq > yq . We assume that y1 does not vanish at any point of
red(X). We assert that xs1

1 is a minimal generator of lead(I(X)). See Notation 6.4. We further
assert that every other minimal generator of lead(I(X)) has the form xα1

1 xα2
2 y

β2
2 · · · x

αq
q y

βq
q

with 0 ≤ α1 ≤ s1 − 1.

Proof. We set J = lead(I(X)). We claim that y1 does not divide any minimal gen-
erator of J . To prove this claim we argue by contradiction. Assume that there existed
a minimal generator g of J of the form g = xα1

1 y
β1
1 · · · x

αq
q y

βq
q with β1 > 0. Write

g = lead( f ) for some Zq-homogeneous polynomial f ∈ I(X). For any other monomial
ζ = xγ1

1 yδ1
1 · · · x

γq
q y

δq
q occurring in f wehave the inequalityα1 ≥ γ1 because g > ζ and

we have the equationα1+β1 = γ1+δ1 because deg(g) = deg(ζ). It follows that β1 ≤ δ1.
Since ζ was chosen arbitrarily, it follows that f is divisible by yβ1

1 . Since y1 does not van-
ish at any point of red(X), it follows that f /yβ1

1 lies in I(X). Thus, g/yβ1
1 = lead( f /yβ1

1 )

belongs to J . This contradicts the fact that g is a minimal generator of J and concludes
the proof of the claim. The ideal J1 = J ∩ K[x1, y1] is a Z-homogeneous ideal of the
Z-graded ring S1 = K[x1, y1]. According to Theorem 6.5,HS/J = HX hence

HS1/J1
(a1) = HS/J (a1, 0, . . . , 0) = HX (a1, 0, . . . , 0)

= H Z1
(a1) =

{
a1 + 1 if 0 ≤ a1 ≤ s1 − 1,
s1 if a1 ≥ s1.

It follows that J1 is generated by a single monomial of degree s1, which, according to the
above claim, is not divisible by y1. We deduce that J1 is generated by xs1

1 . This monomial
must be a minimal generator of J . Every other minimal generator of J is not divisible
by y1 or by xs1

1 , so it has the form given in the lemma. �

As an application of our methods we obtain a third proof for a particular case of
Theorem 4.4. We formulate this as a separate proposition.

Proposition 9.2. Assume thatK is infinite. Let X ⊂ (P1)q be a zero-dimensional subscheme.
For each i ∈ {1, . . . , q}, let si be the length of the projection of X onto the i-th copy of P1. Then
R(X) = [0, s1 − 1] × · · · × [0, sq − 1] is the smallest rectangular relevant domain forHX .

Proof. We must show that ∆HX vanishes on the complement of R(X), i.e., we must
show that ∆HX (a) = 0 if ai ≥ si for some index i ∈ {1, . . . , q}. By symmetry, it is
enough to consider only the case when i = 1. Performing, if necessary, a linear change
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of coordinates on the first copy of P1, we may assume that y1 does not vanish at any
point of red(X). We choose a monomial ordering on S as in Lemma 9.1 and we consider
the ideal J = lead(I(X)). See Notation 6.4. According to Theorem 6.5,HX = HS/J , so
the theorem reduces to showing that ∆HS/J (a) = 0 if a1 ≥ s1 and a ≥ 0. This will
follow from Proposition 8.4.

We now verify the hypotheses of Proposition 8.4. Consider the set {g1, . . . , gn} of
minimal generators of J whose degree is less or equal to a. According to Lemma 9.1,
xs1

1 is a minimal generator of J . By hypothesis deg(xs1
1 ) = (s1, 0, . . . , 0) ≤ a, so we may

take g1 = xs1
1 . Applying again Lemma 9.1, we see that for each index l ∈ {2, . . . , n}

we may write g
l
= xα1

1 xα2
2 y

β2
2 · · · x

αq
q y

βq
q with 0 ≤ α1 ≤ s1 − 1. Thus, lcm(g1, gl) =

xs1
1 xα2

2 y
β2
2 · · · x

αq
q y

βq
q . We have deg(lcm(g1, gl)) ≤ a because s1 ≤ a1 and αj + βj ≤ aj

for all indices j ∈ {2, . . . , q}, by virtue of the fact that deg(g
l
) ≤ a. Thus, the hypotheses

of Proposition 8.4 are satisfied and we conclude that ∆HS/J (a) = 0. �

Remark 9.3. Let I ⊂ S be a Zq-homogeneous ideal. Let F and G be two finite sets of
generators of I consisting of Zq-homogeneous non-zero polynomials. We assume that
F is minimal, i.e. no proper subset of F can generate I . We assert that for every f ∈ F
there is g ∈ G such that deg( f ) = deg(g). Indeed, write f =

∑
g∈G ηgg. For each g ∈ G

write g =
∑

h∈F θghh. We may assume that all ηg and θ
gh

are Zq-homogeneous. We
claim that there is g ∈ G such that ηg , 0 and θgf , 0. If this were not the case, then f
would be a combination of elements in F \ { f }, which would contradict the minimality
of F . We have the relations deg( f ) = deg(ηg)+deg(g) and deg(g) = deg(θgf )+deg( f ),
hence deg( f ) ≥ deg(g) ≥ deg( f ).

Lemma 9.4. Let X ⊂ (P1)q be a zero-dimensional subscheme. We assume that I(X)
is a monomial ideal. We assert that the set of minimal generators of I(X) is of the form
{ f1, . . . , fq, g1, . . . , gn}, where n ≥ 0, fi = xαi

i ysi−αi

i for all indices i ∈ {1, . . . , q}, and
deg(g

l
) ≤ (s1 − 1, . . . , sq − 1) for all indices l ∈ {1, . . . , n}.

Proof. We let fi be the sole generator of I(X) ∩ K[xi, yi] and we let g1, . . . , gn be the
minimal generators of I(X) that do not lie in any K[xi, yi]. We concentrate on proving
the inequalities deg(g

l
) ≤ (s1 − 1, . . . , sq − 1), the rest of the lemma being obvious.

Since K is infinite, we can find κ1 ∈ K \ {0} such that z1 = κ1 x1 + y1 does not vanish
at any point of red(X). Regarding S as a polynomial ring in x1, z1, x2, y2, . . . , xq , yq , we
consider the lexicographic ordering onS such that x1 > z1 > x2 > y2 > · · · > xq > yq .
Put J = lead(I(X)), as in Notation 6.4. According to Lemma 9.1, xs1

1 = lead( f1) is a
minimal generator of J and every other minimal generator h of J satisfies the condition
deg(h)1 ≤ s1 − 1. Let G be a Gröbner basis of I(X) containing f1 and consisting of Z

q-
homogeneous polynomials, such that lead(G) is the set of minimal generators of J . For
every g ∈ G \ { f1} we have the relations deg(g)1 = deg(lead(g))1 ≤ s1 − 1. We apply
Remark 9.3 to the set F of minimal generators of I(X) and to G. For each g

l
there is

g ∈ G such that deg(g
l
) = deg(g). Since g

l
< K[x1, y1], it follows that g , f1, hence

deg(g
l
)1 = deg(g)1 ≤ s1 − 1.

In the same manner, for all indices l ∈ {1, . . . , n} and i ∈ {1, . . . , q}, by replacing
the variable yi with a suitable variable zi = κi xi + yi , chosen so as not to vanish at any
point of red(X), we can prove the inequality deg(g

l
)i ≤ si − 1. �
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Let X be as above. We recall, from Proposition 4.5(v), the rectangular relevant domain

R(X) = [0, s1 − 1] × · · · × [0, sq − 1] = [0, rem(X)] ⊂ Zq .

If n = 1, we put R1 = [deg(g1), rem(X)]. If n > 1, for each index l ∈ {1, . . . , n}, we put

Rl =
⋂

k∈{1,...,n}\{l }

[deg(lcm(gk, gl)), rem(X)].

Proposition 9.5. Assume thatK is infinite. Let X ⊂ (P1)q be a zero-dimensional subscheme.
Assume that I(X) is a monomial ideal and that X is not a complete intersection. Then the
quasi-rectangular domain

D(X) = R(X) \
⋃

1≤l≤n
Rl ⊂ Z

q

is a relevant domain forHX . If I(X) has q + 1 minimal generators, then D(X) , R(X).

Proof. We adopt the notation of Lemma 9.4. We have the inequality n ≥ 1 because X
is not a complete intersection. We must show that ∆HX (a) = 0 for all a ∈ Zq \ D(X).
We already know from Theorem 4.4 that R(X) is a relevant domain forHX , hence we
may assume that a ∈ R(X), that is, a ∈ R

l
for some index l ∈ {1, . . . , n}. Relabeling

{g1, . . . , gn}, if necessary, we may take l = 1. We desire to apply Proposition 8.4 to
J = I(X). We now verify the hypotheses of Proposition 8.4. By the construction of R1,
a ≥ deg(lcm(g1, gk)) ≥ deg(g

k
) for all indices k ∈ {2, . . . , n} and a ≥ deg(g1). Since a

belongs to R(X), a � deg( fi) for all indices i ∈ {1, . . . , q}. From Lemma 9.4 we deduce
that {g1, . . . , gn} is the set of minimal generators of I(X) whose degree is less or equal
to a. The inequality from Proposition 8.4 is satisfied by the definition of R1. Thus, the
hypotheses of Proposition 8.4 are satisfied and we conclude that ∆HX (a) = 0.

If I(X) has q + 1 minimal generators, that is, if n = 1, then, in view of Lemma 9.4,
R1 , ∅, forcing D(X) to be strictly contained in R(X). �

If n > 1, then R
l
may be empty for all indices l , i.e. D(X)may coincide with R(X). We

finish this sectionwith two examples in which n > 1, X is non-ACMand D(X) , R(X).

Example 9.6. Take X ⊂ P1(C) × P1(C) to be the union of two multiple points with
ideals (xα1

1 , x1 x2, xα2
2 ), respectively, (y

β1
1 , y1y2, y

β2
2 ). Here α1, α2, β1, β2 ≥ 2. We have

I(X) = (xα1
1 y

β1
1 , xα2

2 y
β2
2 , g1, . . . , g7),

where

g1 = xα1
1 y1y2, g2 = xα1

1 y
β2
2 , g3 = x1y

β1
1 x2, g4 = x1y1 x2y2,

g5 = x1 x2y
β2
2 , g6 = y

β1
1 xα2

2 , g7 = y1 xα2
2 y2.

We have the equations s1 = α1 + β1 and s2 = α2 + β2. We have the equations

lcm(g1, g3) = xα1
1 y

β1
1 x2y2, deg(lcm(g1, g3)) = (α1 + β1, 2),

lcm(g2, g6) = xα1
1 y

β1
1 xα2

2 y
β2
2 , deg(lcm(g2, g6)) = (α1 + β1, α2 + β2),

lcm(g5, g7) = x1y1 xα2
2 y

β2
2 , deg(lcm(g5, g7)) = (2, α2 + β2).
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None of the expressions on the r.h.s. is less or equal to (s1 − 1, s2 − 1). We deduce that
R1, R3, R2, R6, R5 and R7 are empty. We have the equations

lcm(g4, g1) = xα1
1 y1 x2y2, lcm(g4, g2) = xα1

1 y1 x2y
β2
2 , lcm(g4, g3) = x1y

β1
1 x2y2,

lcm(g4, g5) = x1y1 x2y
β2
2 , lcm(g4, g6) = x1y

β1
1 xα2

2 y2, lcm(g4, g7) = x1y1 xα2
2 y2.

From these we obtain the relations

max
k=1,2,3,5,6,7

deg(lcm(g4, gk))1 = 1 +max{α1, β1} ≤ s1 − 1,

max
k=1,2,3,5,6,7

deg(lcm(g4, gk))2 = 1 +max{α2, β2} ≤ s2 − 1.

We deduce that R4 is not empty. In fact,

R4 = [1 +max{α1, β1}, α1 + β1 − 1] × [1 +max{α2, β2}, α2 + β2 − 1].

We conclude that

D(X) = [0, α1 + β1 − 1] × [0, α2 + β2 − 1] \ R4.

If X were ACM, then, in view of Theorem 6.2(iii), the degrees of g1, . . . , g7 would be
incomparable. However, deg(g4) = (2, 2) ≤ deg(g2) = (α1, β2). Thus, X is not ACM.

Example 9.7. Take X ⊂ P1(C) × P1(C) to be the union of three multiple points with
ideals (xα1

1 , xα2
2 ), (x

α
1 , y

β
2 ), respectively, (y

β1
1 , y

β2
2 ). We assume that α1 < α and β < β2.

We have

I(X) = (xα1 y
β1
1 , xα2

2 y
β2
2 , g1, g2, g3),

where g1 = xα1
1 y

β1
1 y

β
2 , g2 = xα1

1 y
β2
2 and g3 = y

β1
1 xα2

2 y
β
2 . Note that s1 = α + β1 and

s2 = α2 + β2. We have the relations

lcm(g1, g2) = xα1
1 y

β1
1 y

β2
2 , deg(lcm(g1, g2)) = (α1 + β1, β2) ≤ (s1 − 1, s2 − 1),

lcm(g1, g3) = xα1
1 y

β1
1 xα2

2 y
β
2 , deg(lcm(g1, g3)) = (α1 + β1, α2 + β) ≤ (s1 − 1, s2 − 1),

lcm(g2, g3) = xα1
1 y

β1
1 xα2

2 y
β2
2 , deg(lcm(g2, g3)) = (α1 + β1, α2 + β2) � (s1 − 1, s2 − 1).

We deduce that R2 and R3 are empty and that

R1 = [α1 + β1, α + β1 − 1] × [max{β2, α2 + β}, α2 + β2 − 1].

We conclude that

D(X) = [0, α + β1 − 1] × [0, α2 + β2 − 1] \ R1.

Assume that X were ACM. Then, as mentioned at Theorem 6.2(iii), there would exist
homogeneous polynomials ξ1, ξ2, ξ3, ξ4 ∈ C[x1, y1] and υ1, υ2, υ3, υ4 ∈ C[x2, y2] such
that

I(X) = (ξ1ξ2ξ3ξ4, υ1ξ2ξ3ξ4, υ1υ2ξ3ξ4, υ1υ2υ3ξ4, υ1υ2υ3υ4).

We choose κ and λ in C∗ such that υi(κ, λ) , 0 for i = 1, 2, 3, 4. We reduce the above
equality of ideals modulo (x2 − κ, y2 − λ). It follows that C[x1, y1] is generated by the
polynomials ξ1ξ2ξ3ξ4, ξ2ξ3ξ4, ξ3ξ4 and ξ4. This is absurd. Thus, X is not ACM.
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