
Ergod. Th. & Dynam. Sys., (2023), 43, 1471–1491 © The Author(s), 2022. Published by Cambridge
University Press. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use,
distribution and reproduction, provided the original article is properly cited.
doi:10.1017/etds.2022.5

1471

Hausdorff dimension of escaping sets
of meromorphic functions II

MAGNUS ASPENBERG and WEIWEI CUI

Centre for Mathematical Sciences, Lund University, Box 118, 22 100 Lund, Sweden
(e-mail: magnus.aspenberg@math.lth.se, weiwei.cui@math.lth.se)

(Received 3 August 2021 and accepted in revised form 11 January 2022)

Abstract. A function which is transcendental and meromorphic in the plane has at least
two singular values. On the one hand, if a meromorphic function has exactly two singular
values, it is known that the Hausdorff dimension of the escaping set can only be either 2
or 1/2. On the other hand, the Hausdorff dimension of escaping sets of Speiser functions
can attain every number in [0, 2] (cf. [M. Aspenberg and W. Cui. Hausdorff dimension
of escaping sets of meromorphic functions. Trans. Amer. Math. Soc. 374(9) (2021),
6145–6178]). In this paper, we show that number of singular values which is needed to
attain every Hausdorff dimension of escaping sets is not more than 4.
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1. Introduction and main results
In this paper we study the dynamics of transcendental meromorphic functions. It is well
known that many dynamical behaviours of the function depend, to certain extent, on the
iterative behaviours of its singular values. By definition, a ∈ Ĉ is a singular value of a
meromorphic function f if it is either a critical or asymptotic value of f.

Much recent attention in transcendental dynamics is directed to the so-called Speiser
class S, consisting of meromorphic functions with a finite number of singular values; see,
for instance, [Bis15, Bis17, EL92, GK86]. These functions are called Speiser functions.
Many familiar functions belong to this class, including, for example, the exponential
family, the cosine family and the tangent family. Speiser functions are studied in great
detail and provide dynamical behaviours similar to those of polynomial and rational maps.

We intend to study functions in the Speiser class with only few singular values.
Even with this restriction, the classes of functions are quite diverse; see discussion in
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the next section. One can thus reasonably expect that very rich and diverse dynamical
behaviours could occur in this case. Our main result will confirm this in a strong sense.
Recall that for a meromorphic function f, the escaping set I(f ) of f is the set of points
which tend to ∞ under iteration. This set plays a fundamental role in recent studies of
transcendental dynamics. Starting with McMullen [McM87], a wide range of research
focuses on estimating the Hausdorff dimensions of escaping sets; see, for instance, [Bar08,
BKS09, RS10, Sch07] for some entire functions and [BK12, Cui21b, GK18] for certain
meromorphic functions. Some of these papers also treat special Speiser functions. A
natural question arises: what are the possible values of the Hausdorff dimensions of
escaping sets for Speiser functions? This was resolved recently by the present authors
in [AC21]: any number in [0, 2] can be achieved. In a larger setting (that is, those
meromorphic functions with a bounded set of finite singular values), Bergweiler and Kotus
proved a similar result [BK12].

This paper is a natural continuation of [AC21] and focuses on exploring a relation
between the number of singular values and possible attainable Hausdorff dimensions for
escaping sets. For convenience, we will use Sq to denote Speiser functions with exactly q
singular values on Ĉ.

Our starting point is the following theorem, which brings together results of several
authors; see [GK18, McM87] (and also [Cui21b, Theorem 1]). By dim E we mean the
Hausdorff dimension of the set E.

THEOREM A.

{dim I(f ) : f ∈ S2} = {1/2, 2}.

Meromorphic functions in S2 have explicit formulas; see Theorem 2.1 in the next
section for a simple proof. As the number of singular values increases, the varieties of
functions are also increasing. Thus one can reasonably expect that a more flexible result
would hold. This is indeed the case, as shown by the following result.

THEOREM 1.1.

{dim I(f ) : f ∈ S4} = [0, 2].

The existing gap between Theorem A and Theorem 1.1 is the class S3. It is plausible
that the above theorem holds in S3. However, our construction will not give this.

Another point that we would like to address concerns a question for the invariance of
Hausdorff dimensions of escaping sets. To be more specific, it asks whether two quasi-
conformally equivalent functions will have escaping sets of equal Hausdorff dimension.
We say that two Speiser functions f and g are quasiconformally equivalent if there are
quasiconformal mappings ϕ, ψ : C → C such that ϕ ◦ f = g ◦ ψ ; see [EL92]. (We can
also define topological equivalence by requiring ϕ and ψ to be homeomorphisms.) The
above question was originally asked for entire functions which are not necessarily Speiser
functions. Counterexamples were recently given in the meromorphic setting in [AC21].
Here we provide another class of counterexamples.
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THEOREM 1.2. There exist quasiconformally equivalent meromorphic functions
f , g ∈ S4 for which dim I(f ) �= dim I(g).

We also remark that if two quasiconformally equivalent meromorphic functions belong
toS3, then they are actually conformally equivalent (see [BC21, Lemma 2.3]). This implies
immediately that two such functions have the same order of growth. It is plausible that two
such functions will have escaping sets of the same Hausdorff dimension. In this sense, the
above Theorem 1.2 may be optimal.

1.1. Structure of the paper. In §2 we briefly discuss transcendental meromorphic
functions with few singular values. In §3 we construct meromorphic functions with four
singular values of arbitrary order. Finally, in §4 we present an outline of the estimate for
the Hausdorff dimension of their escaping sets.

2. Speiser functions with few singular values
Let f : C → Ĉ be transcendental and meromorphic. We say that c is a critical value of f
if c has a preimage with zero spherical derivative. With this definition, ∞ will be a critical
value if there are any multiple poles. a ∈ Ĉ is an asymptotic value of f if there exists a curve
γ tending to ∞ such that f (γ ) tends to a. As a simple example, 0 and ∞ are asymptotic
values of ez. A value s is called a singular value if it is either a critical or asymptotic value.
See [BE95] for a classification of singularities of the inverse of a meromorphic function.
Singular values play a vital role in the dynamics of meromorphic functions; we refer to
[Ber93] for more details and explanations.

Meromorphic functions with two singular values. The following simple fact concerning
meromorphic functions with two singular values is folklore and it is not easy to locate a
reference. Therefore, the outline of a proof is presented for completeness. Recall that Sq
denotes the class of Speiser functions with exactly q singular values.

THEOREM 2.1. Let f ∈ S2. Then f is of the form M ◦ exp ◦A, where M is Möbius and A
is linear.

Sketch of proof. Without loss of generality, we assume that the two singular values of f are
0 and ∞. Otherwise we consider M1 ◦ f , where M1 is a Möbius transformation sending
the two singular values of f to 0 and ∞. Then

f : C \{f−1(0), f−1(∞)} → Ĉ \{0, ∞}
is a covering map. Note that the fundamental group of Ĉ \{0, ∞} is isomorphic to Z. The
transcendence of f then implies that the fundamental group of C \{f−1(0), f−1(∞)}
is trivial and thus C \{f−1(0), f−1(∞)} is simply connected such that the above f is
a universal covering to Ĉ \{0, ∞}. Since meromorphic functions are discrete maps, we
have that C \{f−1(0), f−1(∞)} = C. This implies that both singular values are actually
omitted. Note that the exponential map exp is a holomorphic universal covering from C to
Ĉ \{0, ∞}. Now it follows from the essential uniqueness of the universal covering spaces
that there exists a holomorphic homeomorphism φ : C → C such that f = exp ◦φ. Since
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FIGURE 1. Producing meromorphic functions in S3 by using line complexes. Replacing the dashed line in the left
picture by any one of the finite graphs on the right or any finite combination of these graphs will give functions

with three singular values which are not topologically equivalent.

a holomorphic homeomorphism of the complex plane must be a linear map, we thus have

f (z) = eAz+B ,

where A(�= 0) and B are complex constants. This completes the proof.

It follows immediately that if f ∈ S2, then the singular values of f are both asymptotic
values. Moreover, if one of the asymptotic values is at ∞, then f is of the form λez; if both
of them are finite, then f can be written as M(ez) where M is Möbius, sending 0 and ∞ to
two finite points. This, together with the results obtained in [GK18, McM87], shows that
Theorem A holds; see also [Cui21a].

The next natural step would be to ask if a similar result stated in Theorem 2.1 will hold
if one has more singular values. This need not be true. In fact, even for meromorphic
functions with three singular values, one cannot expect a similar function-theoretic
rigidity to that of Theorem 2.1. Recent work of Bishop [Bis15] shows that there are
uncountably many essentially different entire functions with two critical values. More
precisely, the classes of topologically equivalent entire functions with two critical values
are uncountable. See also [Cui21a]. One can also use the so-called Maclane–Vinberg
method to construct entire functions with two singular values; see [BFRG15, Observation
5.2]. For general meromorphic functions with three singular values, one can resort to
the theory of line complexes to construct such functions; see [GO08, Ch. 7]. Without
giving a detailed account of line complexes, we mention that one can show that there exist
infinitely many non-equivalent meromorphic functions in S3 by modifying the left graph
in Figure 1: Replacing the dashed line by one of finite graphs shown on the right of Figure 1
will produce meromorphic functions with three singular values. It is clear that there are
infinitely many such functions, since one can consider any finite combination of these
finite graphs which are then used to replace the dashed line. The meromorphic functions
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FIGURE 2. Illustration of the construction. We have put η = αμ/(2π). The map 
 is quasiconformal, which
helps to remove the discontinuity arising on the logarithmic spiral �.

produced are those with rational Schwarzian derivatives. For a complete treatment of these
functions, we refer to [GO08, Ch. 7] and [Elf34].

3. The construction
For δ ∈ (0, 2π ], put

Cδ = {z = reiθ : r > 0, 0 < θ < δ}.
In particular, if δ = 2π , then Cδ is the slit plane C \R+. Choosing the natural branch of
the logarithm, for any α ∈ (0, 2π ], we set

h : C2π → Cα ,

z �→ zα/2π

which then defines a conformal map.
To construct meromorphic functions in S4, we will consider the restriction of some

carefully chosen Weierstraß elliptic function ℘ in the sector domain Cα . Then the function
defined as ℘ ◦ h will be meromorphic in C2π . We will then need to extend this function
across the positive real axis in order to have a meromorphic function in the plane. However,
the extension need not be continuous; in other words, for x ∈ R

+, ℘ ◦ h(x) need not
coincide when one approaches x respectively from the upper and lower half planes. This
will be resolved by introducing a spiral map and then using a quasiconformal surgery. See
Figure 2 for an illustration.

Remark 3.1. The spiral map we will introduce will help us to achieve every possible finite
order. In a recent paper [BE17], Bergweiler and Eremenko also used this idea to solve an
open problem in the theory of complex differential equations.

From now on we fix one α and use the corresponding function h as defined above. Then
in the sector Cα we consider a Weierstraß elliptic function ℘ with two periods 1 and τ ,
where τ will satisfy the following condition:

arg τ =
{
α if α < π ,

α − π if α > π .
(3.1)

https://doi.org/10.1017/etds.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.5


1476 M. Aspenberg and W. Cui

When α = π , the function defined as ℘ ◦ h extends continuously across the positive
real axis and thus gives a function meromorphic in the plane (which is actually ℘(

√
z)).

This is an easy case to deal with, so we will assume in what follows that α �= π . The
main point of condition (3.1) is to make sure that the two prime periods of the chosen
Weierstraß℘-function lie on two boundaries of Cα . Now we put

e1 = ℘

(
1
2

)
, e2 = ℘

(
1 + τ

2

)
, e3 = ℘

(
τ

2

)
,

which are finite critical values of ℘ (with another critical value at ∞).
One can then see immediately that

g1 := ℘ ◦ h : C2π → C

is well defined and meromorphic in the slit plane. However, g1 may not be able to extend
continuously across the positive real axis, as we mentioned above. One of the main
objectives in the construction we will make is to circumvent this problem.

By choosing the natural branch of the power map, let

p : C2π → C, z �→ z1/μ.

It can readily be seen that if μ has real part equal to 1 then the image of C \R+ is an open
set whose complement is a logarithmic spiral. Let us denote this spiral by �. Now note that
if {xn}∞n=0 and {yn}∞n=0 are two sequences of complex numbers approaching a point z ∈ R

+
from different sides of the real axis, the limits of p(xn) and p(yn) as n → ∞ may well be
different. So the map p may not have a continuous extension to R

+. For our purposes, we
put

μ = 1 − i
log |τ |
α

.

Denote by q the inverse of p; that is, q(z) = zμ. Then the function

g2 : C \� → C2π ,

z �→ g1(q(z))

is well defined and meromorphic in the complement of a logarithmic spiral �. It may not
extend continuously across �, but by the choice of μ and τ , with a simple computation, we
can extend g2 continuously to a discrete set of � whose points will be mapped by h ◦ q to
poles of ℘. We show below how to remove the discontinuities between this discrete set of
points on � by using a quasiconformal surgery. In short, we will construct a quasiconformal
self-map 
 of Cα such that the new defined function ℘ ◦
 ◦ h ◦ q extends continuously
across �.

Let P denote the parallelogram formed by four vertices 0, 1/2, (1 + τ)/2 and τ/2. It
follows from the basic properties of Weierstraß elliptic functions that δ := ℘(∂P ) is a
simple closed curve on Ĉ, which passes through ∞ on both sides such that Ĉ \δ consists
of two domains A and B. Suppose without loss of generality that A = ℘(P ). Note that
all critical values of ℘ lie on δ. Now we can choose an analytic closed curve γ in Ĉ such
that γ ∩ δ = {e2, ∞}. To achieve this, we first choose an analytic curve γ1 lying entirely
in A with two endpoints being e2 and ∞; similarly, an analytic curve γ2 is chosen to lie
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FIGURE 3. The curve γ is chosen such that it passes through the critical value e2 and ∞. Then we choose two
suitable preimages β1 and β2 of γ such that they are periodic and both start from c, which is a preimage of the

critical value e2.

completely in B with two endpoints e2 and ∞. Then γ is defined as the union of γ1 and γ2

together with their common endpoints. See Figure 3 for an illustration. Now we consider
suitable preimage of γ under the function ℘. More precisely, we have the following result;
compare this with Proposition 3.1 of [AC21]. Put

c = 1 + τ

2
.

PROPOSITION 3.1. Let γ be as above. Then there exist two piecewise analytic curves βi
with ℘(βi) = γ for all i, such that the following assertions hold.
• β1 ∩ β2 = {c}.
• β1 starts from the point c and is periodic with period 1, that is, z ∈ β1 implies that

z+ 1 ∈ β1. Moreover, β1 passes through poles at n of ℘ for all n ≥ 1.
• β2 starts from c and is periodic with period τ , that is, z ∈ β2 implies that z+ τ ∈ β2.

Moreover, β2 passes through poles nτ for all n ≥ 1.

Proof. For convenience, we put γ1 = γ ∩ A and γ2 = γ ∩ B. We will use W + c as the
translation by a complex number c for any set W ⊂ C; in other words, W + c = {z+ c :
z ∈ W }. Recall that P is the parallelogram formed by four points 0, 1/2, (1 + τ)/2 and
τ/2. Now by elementary properties of Weierstraß elliptic functions we know that ℘ : P +
1
2 → B is conformal. Therefore, γ2 has a preimage denoted by β1

1 in P + 1/2 which is an
analytic curve connecting (1 + τ)/2 and 1. The latter property follows easily since γ2 ⊂ B

connects e2 and ∞. Similarly, since ℘ : P + 1 → A is conformal we see immediately that
γ1 has a preimage β2

1 in P + 1 which is an analytic curve connecting 1 and (3 + τ)/2.
Now by periodicity of ℘, the curve β1

1 ∪ β2
1 and its translations by n ∈ N will be mapped

conformally onto β. Now we define

β1 =
⋃
n≥0

(β1
1 ∪ β2

1 + n).

It is clear that β1 satisfies all the required properties.
In the same way we can define β2 as claimed. We omit the details here.
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FIGURE 4. Sketch of the construction of the quasiconformal map 
. S′
1 and S′

2 are the restrictions of S1 and S2
to the sector Cα , while T ′

1 and T ′
2 are the corresponding images of S′

1 and S′
2 under the maps φ1,1 and φ1,2. The

same applies to Ŝ′
1, Ŝ′

2 and T̂ ′
1, T̂ ′

2.

We denote by V the domain contained in Cα and bounded by β1 and β2. In what follows
we concentrate on the construction of a quasiconformal mapping


 : Cα → V

such that the function ℘ ◦
 ◦ h ◦ q extends continuously across the logarithmic spiral �
and thus gives a function continuous throughout the whole plane. See Figure 4 for the
construction of 
.

By periodicity of Weierstraß elliptic functions and the construction of β1, we can define
a periodic curve β̃1 which is the extension of β1 along the direction of the negative real
axis. Now choose a real number a > 0 such that a > maxz∈β̃1

Im(z). Define

T1 = {z : Imw∈β̃1, Re w=Re z(w) < Im(z) < a}.
Then by [AC21, Lemma 3.1], there is a real number a′ > 0 such that with

S1 = {z : 0 < Im(z) < a′}
there is a conformal map

φ1,1 : S1 → T1

which fixes three boundary points 0 and ±∞ and is periodic with period 1. In other words,

φ1,1(z+ 1) = φ1,1(z)+ 1

for any z ∈ S1. Moreover, φ1,1 extends to the boundary as a piecewise diffeomorphism.
Choose another real number b satisfying b > max{a, a′} and put

S2 = {z : a′ < Im(z) < b}
and

T2 = {z : a < Im(z) < b}.
We now want to define a quasiconformal map from S2 to T2 which interpolates between the
identity map on the upper boundary of S2 and the extension of φ1,1 on the lower boundary
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of S2. For convenience, we denote by �1 the horizontal curve {z : Im(z) = a} and by �̃1 the
curve {z : Im(z) = a′}. We also put �2 = {z : Im(z) = b}. Suppose that χ1 is the boundary
extension of φ1,1 to �̃1. Then it follows from the construction of φ1,1, and the Schwarz
reflection principle (and the fact that �̃1 and �1 are straight lines), that χ1 : �̃1 → �1 is
analytic. Moreover, χ1(z+ 1) = χ1(z)+ 1 for z ∈ R. By considering

χ̃1(z) = χ1(z+ ia′)− ia

we see that χ̃1 : R → R is increasing and analytic. We also define

χ̃2(z) = z+ i(a′ − a).

Note that χ̃1 is obtained from χ1 and the identity map by moving the lower boundaries of
S2 and T2 to the real axis. Suppose the new strips are S ′′

2 and T ′′
2 , respectively. Then

L(x + iy) =
(

1 − y

b − a′

)
χ̃1(x)+ y

b − a′ χ̃2(x)+ i
b − a

b − a′ y

is the linear interpolation between χ̃1 and χ̃2. This is actually a quasiconformal map, as
can be seen by checking the Jacobian of L, which is

b − a

b − a′

((
1 − y

b − a′

)
χ̃ ′

1(x)+ y

b − a′ χ̃
′
2(x)

)
.

It is strictly bigger than zero since both χ̃1 and χ̃2 are increasing. Together with the
periodicity, this implies that L is quasiconformal. Now we define

φ1,2 : S2 → T2,

z �→ L(z− ia′)+ ia.

This is a quasiconformal map.
Along the τ -direction, we use a similar idea to that above to obtain a quasiconformal

map. More precisely, we first consider a periodic curve β̃2 which is the natural extension
of β2. With

� = {z : arg(z) = arg(τ ) or arg(τ )− π},
we define, for some real numbers c′, c and d, where c = (1 + τ)/2 and c′, d will be
determined later, ˜̂�1 = �+ c′,

�̂1 = �+ c,

�̂2 = �+ d .

We also denote by Ŝ1 the strip between � and ˜̂�1, and by T̂1 the domain bounded by β̃2

and �̂1. Moreover, Ŝ2 will be the strip bounded by ˜̂�1 and �̂2, while T̂2 is bounded by �̂1

and �̂2.
Now c′ and c are chosen (similarly to a′ and a above) such that there exists a conformal

map

φ2,1 : Ŝ1 → T̂1
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which is periodic with period τ and fixes three boundary points 0 and ±∞ (here ±∞ are
understood as infinity along two directions of �). In the same way as the map φ1,2 was
defined, we can define a quasiconformal map

φ2,2 : Ŝ2 → T̂2.

We omit the details here. For later purposes, we put

S = S1 ∪ S2 ∩ Cα , T = T1 ∪ T2 ∩ V ,

and

Ŝ = Ŝ1 ∪ Ŝ2 ∩ Cα , T̂ = T̂1 ∪ T̂2 ∩ V .

Moreover,

Vα = Cα \(S ∪ Ŝ) = Cα \(T ∪ T̂ ).

We now consider restrictions of the maps constructed above on the domain Cα . More
precisely, we define

φ1 : S −→ T ; z �−→
{
φ1,1(z) if z ∈ S1,

φ1,2(z) if z ∈ S2.

In a similar way, we have

φ2 : Ŝ −→ T̂ ; z �−→
{
φ2,1(z) if z ∈ Ŝ1,

φ2,2(z) if z ∈ Ŝ2.

Finally, we define

φ3 : Vα −→ Vα ,

z �−→ z.

Note that the half-strips S and Ŝ overlap on a parallelogram

Q = S ∩ Ŝ
which contains the origin on the boundary. Both φ1 and φ2 are defined on Q, but they
do not necessarily coincide there. Away from Q, in Cα \Q we have a well-defined quasi-
conformal map, which is φ1 in S \Q, φ2 in Ŝ \Q and the identity on Vα . However, this
quasiconformal map still does not satisfy our requirement to remove the aforementioned
discontinuity. To proceed, we need to change φ1 or φ2 further. We will change φ1 in what
follows.

To this end, we first define suitable inverse branches of ℘. Note that ℘(β̃i) = γ . Let ψi
denote an inverse branch of ℘ from γ into β̃i , for i = 1, 2. Recall that p : C2π �→ C \�,
where p(z) = z1/μ. Put p̃(z) = p(z2π/α), which maps Cα onto C \�. We can extend p̃
to its boundary continuously. Moreover, from the definition of μ, we have that x ∈ R

and τx ∈ � = {z : arg(z) = arg(τ )} are both mapped by p̃ onto the same point in �. So,
in a sense, the ‘transition function’ t (x) = τx, for x ∈ R, identifies points on the lines
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bounding Cα which correspond to the same origin in �. Now the desired ‘correction
function’ is defined as

κ : R −→ R,

x −→ φ−1
1 ◦ ψ1 ◦ ℘ ◦ φ2(τx).

Since τx ∈ �, the above function κ is well defined. Roughly speaking, the function κ fixes
the difference between φ1 and φ2. With this function, we can now remove the discontinuity
by considering a linear interpolation between κ on the real axis and the identity on the
horizontal line �2. More precisely, we define

ξ1(x + iy) =
(

1 − y

b

)
κ(x)+ y

b
x + iy for 0 ≤ y ≤ b.

This map is quasiconformal, as one can check that the Jacobian of ξ is non-zero almost
everywhere. Moreover, we define

ξ2(x + iy) = x + iy for y ≥ b.

In this way, we have just constructed a quasiconformal map of the upper half-plane by
setting

ξ : H+ −→ H
+, z �−→

{
ξ1(z) if 0 ≤ Im(z) ≤ b,

ξ2(z) if Im(z) ≥ b.

We still need to define a map on the parallelogram Q. Denote by I1 the side of Q on
the real axis (that is, I1 = [0, d]), and by I2 the side on the line � (that is, I2 = {reiα :
0 ≤ r ≤ b/ sin(α)}). The other two sides of Q are denoted by I3, which is parallel to I1,
and I4, which is parallel to I2. We put Î1 = ξ(I1), Î2 = I2, Î3 = I3 and Î4 = ξ(I4). Then
the Îi , i = 1, . . . , 4, form a quadrilateral, denoted by Q̂. We continue to define a new
quadrilateral Q̃ formed by the Ĩi , i = 1, . . . , 4, where

Ĩi = φ1(Îi ) for i = 1, 4,

and

Ĩi = φ2(Îi ) for i = 2, 3.

Now we can define a boundary map between Q and Q̃ by using φ1 ◦ ξ on I1 ∪ I4 and
φ2 ◦ ξ on I2 ∪ I3. The boundary map extends to the interior of Q quasiconformally; see
[BF14, Lemma 2.24]. So we have a quasiconformal map

h : Q → Q̃.

We can now define our promised map


 : Cα −→ V , z �−→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ1(ξ(z)) if z ∈ S \Q,

φ2(z) if z ∈ Ŝ \Q,

h(z) if z ∈ Q,

z if z ∈ Vα .
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One can then check that the map

G(z) := ℘ ◦
 ◦ h ◦ q(z) (3.2)

extends continuously across the logarithmic spiral � and thus gives us, by construction, a
quasimeromorphic function of the plane.

So by the measurable Riemann mapping theorem (cf. [Ahl06]) there exist a quasicon-
formal homeomorphism � and a meromorphic function f such that G = f ◦�. By our
construction, G is quasiconformal only in (h ◦ q)−1(W), where W = Cα \Vα .

It follows from our construction that f has exactly four critical values and no asymptotic
values. In other words, f ∈ S4. Moreover, f has only double poles.

To derive some asymptotic properties of f, we will need the well-known Teichmüller–
Wittich–Belinskii theorem concerning conformality of a quasiconformal mapping at a
point. We refer to [Ahl06, LV73] for background on quasiconformal mappings and also
for this result. For our purpose, a stronger result is required. We first recall some relevant
notions. Let ϕ : C → C be a quasiconformal mapping. Then the dilatation of ϕ at a point
z is

Kϕ(z) := |ϕz| + |ϕz̄|
|ϕz| − |ϕz̄| = 1 + |μϕ |

1 − |μϕ | ,

where μϕ := ϕz̄/ϕz is the complex dilatation of ϕ.
The above-mentioned result is stated as follows; see [AC21, Lemma 2.2].

PROPOSITION 3.2. Let ϕ : C → C be quasiconformal. Put A = {z ∈ C : μϕ �= 0}. If∫∫
A\D dx dy/(x

2 + y2) < ∞, then ϕ(z) ∼ z as z → ∞. Upon normalization, one has
ϕ(z) = z+ o(z) as z → ∞.

Note that W is the union of two half-strips, which means that the set W \ D has finite
logarithmic area, that is, the integration above holds. So � satisfies the conditions in
Proposition 3.2. So we have, up to normalization,

�(z) = z+ o(z) as z → ∞. (3.3)

3.1. Distribution of poles of G. Now fix R > 0 large. We will be interested in counting
the number of poles in the closed disk D(0, R). This will follow from the following
area formula for a domain bounded by two logarithmic spirals. More precisely, let σ
be a (non-zero) complex number and R > 0. Put ψ(z) = zσ for z ∈ C2π with chosen
principle branch. Let �β and �γ be the ψ-images of two radial lines of arguments β and
γ respectively, where 0 ≤ β < γ ≤ 2π . See Figure 5. Denote by A := Aγ−β the bounded
region bounded by �β , �γ and the circle {z : |z| = R}, and by B := Bγ−β the preimage of
A under ψ . Then we have the following formula for the (Euclidean) area of A and B.

PROPOSITION 3.3.

area A = (γ − β)|σ |2
2 Re σ

R2;

area B = Re σ
4 Im σ

(e2γ (Im σ/Re σ) − e2β(Im σ/Re σ)) · R2/Re(σ ).
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FIGURE 5. The area of the domain A bounded by two logarithmic spirals can be computed by using a logarithmic
change of variable.

Proof. Let C be the shaded domain in Figure 5, which is mapped by the exponential map
to A. Then

area A =
∫ ∫

C

|(ez)′|2| dz|2

=
∫ log R

−∞
e2x

∫ (γ−x Im(1/σ))/Re(1/σ)

(β−x Im(1/σ))/Re(1/σ)
dy dx = (γ − β)|σ |2

2 Re σ
R2.

Similarly, by using the map ez/σ we can obtain the area formula for B. We omit the details
here.

We will also use in what follows some standard notions and notation from Nevanlinna
theory [GO08, Hay64, Nev70]. In particular, n(r , f ) denotes the number of poles of
f in the disk D(0, r), m(r , f ) the proximity function and T (r , f ) is the Nevanlinna
characteristic of f. The order of a meromorphic function f is defined by

ρ(f ) = lim sup
r→∞

log T (r , f )
log r

.

By using Proposition 3.3, we have the following estimate.

PROPOSITION 3.4.

n(r , f ) = O(r(α2+(log |τ |)2)/πα), (3.4a)

ρ(f ) = α2 + (log |τ |)2
πα

. (3.4b)
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Proof. To estimate the number of poles of f in a certain disk, by (3.3) it suffices to estimate
the poles for the map G for a sufficiently large disk. This can be obtained by comparing the
area of the disk and the area of a preimage of a parallelogram for the Weierstrass elliptic
function under the spiral function h ◦ q(z) = zη, where η = μα/2π . Then it follows from
Proposition 3.3 that

n(r , G) ∼ C rα
2+(log |τ |)2/πα ,

for large r and for some positive constant C. This gives (3.4a).
To obtain (3.4b), we need a result of Teichmüller [Tei37] which states that for a

meromorphic function f ∈ S, if ∞ is not an asymptotic value and the multiplicities
of poles are bounded, then m(r , f ) is bounded. This means that the order of f can
be estimated by using the integrated counting function N(r , f ) of f, where N(r , f ) =
T (r , f )−m(r , f ). Then classical results on the comparison on the growth scale of
N(r , f ) and n(r , f ) show that

ρ(f ) = lim sup
r→∞

log n(r , f )
log r

.

Now (3.4b) follows from our estimate of n(r , f ).

In the above constructions, we have from the beginning fixed the parameters α and τ . If
we now vary these parameters, we can achieve every finite order. To be more specific, we
have the following proposition.

PROPOSITION 3.5. For any given ρ ∈ (0, ∞), there exist α ∈ (0, 2π ] and τ satisfying
(3.1) such that

ρ = α2 + (log |τ |)2
πα

. (3.5)

Moreover, there is a meromorphic function f ∈ S4 such that ρ(f ) = ρ.

We now put

η = αμ

2π
= 1

2π
(α − i log |τ |). (3.6)

Later on we will also need to estimate |aη| in terms of the modulus of a. Note that η defined
above is a complex number. We first prove the following result. For simplicity, we also use
ρ as given in (3.5).

PROPOSITION 3.6. For a ∈ C, we have

|aη| = O(|a|ρ/2).
Proof. Let S be the standard strip S = {z = x + iy : 0 < y < 2π} and put P = (1/μ)S =
{z : μz ∈ S}. First, recall that exp maps the oblique strip P onto C \�. It has a continuous
extension to the boundary, by the definition of μ = 1 − iκ (whose real part is equal to 1).
Here κ = (log |τ |)/α. To make it injective, let us extend exp only to the lower boundary
of the strip P, so that, for instance, the preimage of z = 1 under exp has its preimage at
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the origin, that is, the argument of this preimage is 0. Then the argument of an arbitrary
complex number a ∈ C is the imaginary part of the ‘spiral branch’ logP (a) of a; that is,
logp is this particular inverse of exp mapping C \� onto P.

By definition aμ = eμ log a = e(1−iκ)(ln r+iθ(r)), where θ = θ(r) now depends on r :=
|a| in such a way that, if θ̃ ∈ [0, 2π) is the natural argument for a, then θ(r) = θ̃ + 2πk,
where k is the unique integer such that

θ̃ + 2πk ∈ [κ log r , κ log r + 2π).

Hence there is some δ ∈ [0, 2π) such that

k = κ log r − θ̃ + δ

2π
.

Replacing the expression for k in θ(r), and with κ = (log |τ |)/α, we have

|aη| = |aμα/2π | = rα/2πeθ(r) log |τ |/2π = r(α
2+(log |τ |)2)/2παeδ log |τ |/2π .

The strategy below follows in a similar way to [AC21, §3]. We first estimate asymptotic
behaviours of the constructed function f near its poles, which will be useful in estimating
the Hausdorff dimension of escaping sets later on. Then we show that by varying
parameters α and τ we obtain functions in S4 which are actually equivalent. This is crucial
for completing the proof of Theorem 1.2.

3.2. Local behaviours near poles. We first consider the local behaviours of the
quasimeromorphic map G near its poles. In the following, A ∼ B means that A and B
have comparable modulus. Let z0 be a pole of G. By (3.2), 
(h(q(z0))) is a pole of the
function ℘. Put ζ = 
(h(q(z))) and ζ0 = 
(h(q(z0))). Since ζ0 is a pole of ℘, we see
that there exists a constant C such that

℘(ζ ) ∼
(

C

ζ − ζ0

)2

as ζ → ζ0. (3.7)

By the construction of 
, we have that

ζ − ζ0 ∼ C′(h(q(z))− h(q(z0))) = C′(zαμ/(2π) − z
αμ/(2π)
0 ) as z → z0,

where C′ is some constant. This, together with (3.2) and (3.7), shows that

G(z) ∼
(

C′′

zαμ/(2π) − z
αμ/(2π)
0

)2

as z → z0, (3.8)

where C′′ depends only on C and C′. Note that z0 is a double pole of G. We may thus
assume that

G(z) ∼
(
a(z)

z− z0

)2

as z → z0 (3.9)
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for some function a which is holomorphic near in some neighbourhood of z0 and,
moreover, a(z0) �= 0. By comparing (3.8) and (3.9), we see that

a(z) ∼ C′′ z− z0

zαμ/(2π) − z
αμ/(2π)
0

as z → z0.

Recall that η is defined in (3.6). By taking limit and using L’Hospital’s rule, we obtain

a(z0) ∼ C′′′z1−αμ/(2π)
0 = C′′′z1−η

0 .

Denote w = 
(z) and w0 = 
(z0). Then w0 is a double pole of f. Assume that

f (w) ∼
(
b(w)

w − w0

)2

as w → w0.

Here b(w) is a function holomorphic in w0 and b(w0) �= 0. So with (3.9) we see that

b(w) ∼ a(z)
w − w0

z− z0

as z → z0. Note that (3.3) implies that w → w0 as z → z0. Again, (3.3) will also imply
that

b(w0) ∼ a(z0) lim
z→z0

w − w0

z− z0
= a(z0).

It follows that near a pole w0 of f, we have the following asymptotic relation:

f (w) =
(
C1w

1−η
0

w − w0

)2

as w → w0, (3.10)

where C1 is some constant.

3.3. Equivalence. By choosing distinct parameters (αi , τi) we may obtain that the ρi
as defined in (3.4b) are different for i = 1, 2. So by the construction we can have two
functions fi ∈ S4 whose orders are ρi . Following the idea of proof given in [AC21,
Theorem 3.2], we see that f1 is quasiconformally equivalent to f2. We omit this proof
here, merely stating the result below. We leave the details to the interested reader.

PROPOSITION 3.7. f1 is quasiconformally equivalent to f2.

One may notice that the above constructions only give meromorphic functions in S4 of
finite but non-zero order. To achieve zero or full Hausdorff dimension of escaping sets, we
may need functions of zero or infinite order. We mention several examples below which
will suffice for our purposes.

3.4. Zero order. To have a zero-order meromorphic function in S4, one can consider the
one used in [AC21, §4.1]. Roughly speaking, the function f is obtained by precomposing
a suitably chosen Weierstraß elliptic function with an inverse branch of the function cosh.
The obtained function is meromorphic in a certain slit plane. One can then use some basic
properties of these two functions to show that it can be extended continuously across the
slit and thus gives a meromorphic function in the plane. That this function belongs to S4
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is clear since all singular values are just critical values of the Weierstraß elliptic function.
It is also clear that f has zero order by checking the counting function of poles, which can
be computed explicitly. We omit the details here.

3.5. Infinite order. As for infinite-order functions in S4, consider the function

f (z) = ℘(2π cosh(z)),

where ℘ is a Weierstrass elliptic function with two periods 2π and τ such that τ is not
a real multiple of 2π . It follows by construction that f has four critical values which are
exactly the critical values of ℘ and has no asymptotic values. That ρ(f ) = ∞ follows
directly from [EF64, Corollary 1.2]. This can also be obtained by checking the counting
functions of poles.

4. Estimate of the dimension
We will need to estimate the Hausdorff dimension of the escaping sets for the Speiser
functions in S4 constructed in the previous section, which then finishes the proof of
Theorem 1.1. This will follow from the following estimate.

PROPOSITION 4.1. Let ρ ∈ [0, ∞). Then there exists a meromorphic function f ∈ S4 such
that dim I(f ) = (2ρ/(1 + ρ).

Before we prove this, we state the following direct consequence.

COROLLARY 4.1. For any d ∈ [0, 2), there exists f ∈ S4 such that dim I(f ) = d .

Therefore, Theorem 1.1 is proved except for the case where d = 2, which will be
discussed in the final part of this section. By combining this with Proposition 3.7, Theorem
1.2 follows.

The rest of the proof will be devoted to the proof of the above Proposition 4.1. We only
give a sketch of the proof, as the estimate of the Hausdorff dimension for escaping sets for
our constructed functions will use the same idea as in [AC21]: the upper bound follows
from a result of Bergweiler and Kotus [BK12], while the lower bound uses the spherical
version of a well-known result of McMullen [McM87].

Proof of Proposition 4.1. For any given ρ ∈ [0, ∞), there exist α and μ satisfying

ρ = α2 + (log |τ |)2
πα

.

The constructions in §3 then gives us a Speiser function f in S4 whose order is ρ. This
function f has only critical values and no asymptotic values. Moreover, all poles have the
multiplicity 2.

Upper bound. It is clear that the above function f satisfies the conditions of [BK12,
Theorem 1.1]. So we have

dim I(f ) ≤ 2ρ
1 + ρ

.
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Lower bound. Suppose that aj are the poles of f, where · · · ≤ |aj | ≤ |aj+1| ≤ · · · .
Then it follows from (3.10) and Proposition 3.6 that

f (z) ∼
(

bj

z− aj

)2

as z → zj ,

where

|bj | ∼ |a1−η
j | ∼ |aj |1−ρ/2.

Since f is Speiser, we may take a large R0 > 0 such that D(0, R0) contains all singular
values of f. Now with B(R) = Ĉ \D(0, R) and R > R0, each component of f−1(B(R)) is
bounded, simply connected and contains one pole of f. LetUj be the component containing
the pole aj . By using Koebe’s distortion and one-quarter theorem, we may obtain

D

(
aj ,

|bj |
4
√
R

)
⊂ Uj ⊂ D

(
aj ,

2|bj |√
R

)
. (4.1)

See [AC21, §4] for more details. Moreover, if gj is an inverse branch of f from some
domain � to Uj , where � ⊂ B(R), then

|g′
j (z)| ≤ B1

|bj |
|z|3/2 for z ∈ �. (4.2)

Here B1 > 0 is some constant.
We denote by diam(E) the diameter of the set E in the plane and by diamχ (E) the

spherical diameter of E. The above estimates (4.1) and (4.2) will give us good control over
the sizes of the pullbacks of Uk under f for large k. More precisely, for sufficiently large k,
we have

diam gj (Uk) ≤ sup
z∈Uk

|g′
j (z)| diam Uk ≤ B1

|bj |
|ak|3/2

|bk|√
R

,

and if the indices j1, . . . , j� are chosen such that Ujk is contained in B(R), where k =
1, . . . , �, we obtain, in terms of the spherical metric,

diamχ (gj1 ◦ gj2 ◦ · · · ◦ gj�−1)(Uj�) ≤ B�−1
1

32√
R

�∏
k=1

|bjk |
|ajk |3/2

. (4.3)

We now consider the set

IR(f ) = {z ∈ I(f ) : f n(z) ∈ B(R) for all n ∈ N}.
In other words, we are considering those escaping points whose iterates always stay in
B(R). Apparently, this is a subset of I(f ). Let El be the collection of all components
V of f−l(B(R)) for which f k(V ) ⊂ B(R) holds for 0 ≤ k ≤ l − 1. We will estimate the
sizes of components of El by using (4.3). For such a component V, by definition there exist
j1, . . . , jl−1 such that

f k(V ) ⊂ Ujk+1 for k = 0, 1, . . . , l − 1.
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So, using (4.3), one can have, for some constants B2 and B3,

diamχ (V ) ≤ B�−1
1

32√
R

�∏
k=1

|bjk |
|ajk |3/2

= B�−1
1

32√
R

�∏
k=1

|B2|�
|ajk |1/2+ρ/2 ≤

(
B3

|R|1/2+ρ/2

)�
.

Put

d� =
( |B3|

|R|1/2+ρ/2

)�
. (4.4)

In addition to the term d� defined above, McMullen’s lower-bound estimate for the
Hausdorff dimension also involves a lower-bound estimate for the density of El+1 in V.
Here E� represents the union of all elements of E�. We will also define E = ∩�E�.
For this purpose, we consider an annulus A(s) := {z : s < |z| < 2s} which is contained
in B(R), that is, s > R. Then the number of Uj contained in A(s) is B4(n(2s, f )−
n(s, f )) = B5s

ρ , where B4 and B5 are positive numbers. So we have

diam Uj ≥ |bj |
2
√
R

= B6
|aj |1−ρ/2

2
√
R

≥ B7

sρ/2−1/2 .

where B6, B7 are constants. Therefore,

dens(E1, A(s)) = area(E1 ∩ A(s))
area A(s)

≥ B5s
ρ π(B7/s

ρ/2−1/2)2

3πs2 = B8 s,

where B8 > 0 is a constant. By repeating the argument used in [AC21, §4], which we do
not repeat here, we have the following estimate, for some constant B9 > 0:

densχ (E�+1, V ) ≥ B9

R
=: ��. (4.5)

Now we can apply McMullen’s result by using (4.4) and (4.5) to obtain

dim E ≥ 2 − lim sup
�→∞

∑�+1
j=1 | log �j |
| log d�| ≥ 2 − log B9 − log R

log B3 − ((1/2)+ (ρ/2)) log R
.

With R → ∞, we have dim E ≥ 2ρ/(1 + ρ). The next step is to use this estimate to give
the estimate for the Hausdorff dimension of the escaping set by taking a sequence (Rk)
which tends to infinity increasingly and consider those points whose k-iterate lies inB(Rk).
This goes in the same way as in the aforementioned reference and so we omit the details.
We conclude directly that

dim I(f ) ≥ 2ρ
1 + ρ

.

Combined with the upper bound discussed above, we have thus finished the proof.

To complete the proof of Theorem 1.1, we still need to find a function in S4 with a
full-dimensional escaping set. For this purpose, we put

f1(z) = ℘1(2π cosh(z))

This function belongs to S4, as mentioned before.
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PROPOSITION 4.2.

dim I(f1) = 2.

The proof of this result is obtained in the same manner as in [AC21, §4.3]. We leave the
details to the interested reader.
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