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A NON-UNIFORM VIEW OF CRAIG INTERPOLATION IN MODAL
LOGICS WITH LINEAR FRAMES

AGI KURUCZ"*', FRANK WOLTER"“*, AND MICHAEL ZAKHARYASCHEV

Abstract. Normal modal logics extending the logic K4.3 of linear transitive frames are known to
lack the Craig interpolation property (CIP). except some logics of bounded depth such as S5. We turn
this ‘negative’ fact into a research question and pursue a non-uniform approach to Craig interpolation by
investigating the following interpolant existence problem: decide whether there exists a Craig interpolant
between two given formulas in any fixed logic above K4.3. Using a bisimulation-based characterisation of
interpolant existence for descriptive frames, we show that this problem is decidable and coNP-complete
for all finitely axiomatisable normal modal logics containing K4.3. It is thus not harder than entailment in
these logics. which is in sharp contrast to other recent non-uniform interpolation results. We also extend
our approach to Priorean temporal logics (with both past and future modalities) over the standard time
flows—the integers, rationals, reals, and finite strict linear orders—none of which is blessed with the CIP.

§1. Introduction. Unlike classical and intuitionistic first-order and propositional
logics, numerous modal logics, L, do not enjoy the Craig interpolation property
(CIP): they contain valid implications ¢ — w without an interpolant in L—a
formula : in the shared signature of ¢ and y such that both ¢ — 1 and 1 —  are
also valid in L. Typical examples of such L are first-order modal logics with constant
domains between K and S5 [13] and propositional modal logics with linear transitive
Kripke frames of unbounded depth [14, 39]. There have been various attempts to
classify propositional modal logics with the CIP, successful for extensions of S4
[14, Section 8] and unsuccessful for extensions of K4 or GL, where the CIP turned
out to be undecidable [9, Sections 14 and 17].

While establishing the CIP of a logic L typically gives rise to further research
problems—develop proof systems that admit efficient/elegant interpolant compu-
tation [3, 29]. investigate the complexity of computing interpolants from proofs
[25. Sections 17 and 18], consider restrictions on the shape of interpolants such
as in, say, Lyndon’s interpolation [31], or employ the CIP to investigate related
properties such as Beth definability [10, 11]—a counterexample to the CIP has
usually terminated further research of Craig interpolants and their applications for
the unfortunate logic in question.

In this article, we take a different, non-uniform view of Craig interpolation and
aim to understand interpolants also for logics L without the CIP. We consider the
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2 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

following interpolant existence problem (IEP) for L: given formulas ¢ and v, decide
whether ¢ — w has an interpolant in L. For L without the CIP, the existence of an
interpolant for ¢ and y does not follow from the validity of ¢ — w in L, and so
the IEP does not reduce to validity checking (which is reducible to the IEP). A first
question then is whether the former problem is genuinely harder than the latter one.
In fact, when the IEP was introduced [1, 24], this was shown to be the case for modal
logics with nominals and for the two-variable and guarded fragments of first-order
logic. Since then, this has also been confirmed for the one-variable fragment of
first-order modal logic S5 and weak K4 [26, 27].

Here, we show that the opposite is true of propositional modal logics containing
K4.3, the logic of linear transitive frames: while none of these logics with frames of
unbounded depth has the CIP [14, 39]. interpolant existence is nevertheless decidable
in cONP for finitely axiomatisable logics, and so is as hard as validity [30]. This is the
first general result on Craig interpolant existence covering a large family of modal
logics and, potentially, a step towards a classification of modal logics according to
the complexity of the IEP.

We proceed as follows. To begin with, we give a ‘folklore’ characterisation of
interpolant existence via bisimulations between models based on descriptive frames:
¢ — w does not have an interpolant in L iff ¢ and =y can be satisfied in sig(¢) N
sig(w)-bisimilar models based on descriptive frames for L. If L had the CIP, we could
merge these two models into a single one satisfying ¢ A -y (using, say, bisimulation
products [32]) or amalgamate the induced modal algebras [14]. which is impossible
in our case. Instead, we aim to understand the fine-grained structure of the required
bisimilar models and use it to decide their existence. We show that, for some logics
(such as first-order definable cofinal subframe logics), any pair of bisimilar models
can be transformed into bisimilar models of polynomial size; in other words, such
logics enjoy the polysize bisimilar model property. However, for other logics like
GL.3, not even models based on infinite Kripke frames are enough despite GL.3
having the finite model property (fmp).

We prove, nevertheless, that every pair of bisimilar models satisfying ¢ and - and
based on descriptive frames for a finitely axiomatisable L O K4.3 can be converted
to a pair of such models with an understandable structure. In a nutshell, their
underlying frames look like a polynomial-size chain of polynomial-size clusters and
tadpole-like descriptive frames that comprise a non-degenerate cluster {ay, ..., ax_1}.
for some polynomial-size k > 0, followed by an infinite descending chain of points
b,. n < w, which are all irreflexive or all reflexive, with the internal sets (restricting
possible valuations) generated as a modal algebra by the singletons {b,} and the
k-many pairwise disjoint infinite sets X; = {@;} U {b, | n =i (mod k)}. The picture
below illustrates the underlying Kripke frame and the generators of the tadpole
descriptive frame with k = 2.
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 3

Because of this, we say that all finitely axiomatisable L O K4.3 have the
quasi-polysize bisimilar model property. We show that the existence of such quasi-
polysize bisimilar models can be checked in NP in the size of ¢ and y, for any
finitely axiomatisable L.

Finally. we extend the developed techniques to analyse the IEP for a few Priorean
temporal logics with past and future modal operators: the logic Lin of all linear
frames, the logic Lin., of all finite strict linear orders, and the logics Ling of the
rationals, Ling of the reals. and Linz of the integers. We prove that Lin, Ling, and
Ling have the polysize bisimilar model property, while Lin., and Linz have the
quasi-polysize one, with the IEP being coNP-complete. The proofs can be regarded
as applications of the general method, which works for all extensions of K4.3, to a
few concrete logics with transparent frames. In fact, one could read the Priorean
case in parallel with the full general proof, using the former as an illustration of the
latter.

The remainder of the article is organised as follows. The introduction is concluded
with a brief discussion of related work. Section 2 contains the necessary modal
logic preliminaries. Section 3 gives the bisimulation-based criterion of interpolant
existence and applies it to first-order definable cofinal subframe logics above K4.3.
It also provides illustrative examples explaining why the same method does not
work in general and what kind of descriptive frames might be needed. Section 4
establishes the quasi-finite bisimilar model property of all logics above K4.3 and
the quasi-polysize bisimilar model property of all finitely axiomatisable ones; for
the latter, it gives a cCONP-algorithm for deciding the IEP. Section 5 extends the
developed techniques to the Priorean temporal logics mentioned above.

1.1. Related work. The IEP for some logics of linear frames turns out to be
closely related to separability of regular languages by first-order definable languages.
Formally, the separability problem is to decide whether two input regular languages
L and L, can be separated by some language L in a given class £ in the sense that
Ly C Land LN L, = (). If L is the class of first-order definable languages over finite
words, the separability problem is equivalent to the IEP for the linear temporal logic
LTL extending modal logic with the operators ‘next’ and ‘until’ over finite strict linear
orders. For regular languages of infinite words, the separability problem is equivalent
to the IEP for LTL over the natural numbers (see [28] for details). It was shown in
[21, 22, 34] that both of these separability problems are decidable in 2ExpTime in
the size of NFAs defining L, and L,. It follows that the corresponding IEPs are
decidable in 3ExpTime in the size of LTL-formulas. (Separability by other language
classes £ are discussed in [33, 35].) These separability results have been obtained
using algebraic machinery from semigroup theory, which seems to be orthogonal to
our model-theoretic approach to the IEP developed to deal with all modal logics of
linear orders. However, for finite strict linear orders and the natural numbers, the
algebraic approach also provides an upper bound for the size of interpolants.

It is also worth mentioning that, for these two frame classes, the smallest modal
logic with the CIP is LTL extended with fixed-point operators or, equivalently,
monadic second-order logic (under very mild conditions on the definition of what
a logic is) [15]. Thus, to ‘repair’ the CIP by extending the expressive power of the
logic, we require the addition of second-order features.
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4 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

§2. Preliminaries. This section provides the basic definitions and facts that will
be used later on in the article; consult [5, 6, 9, 16, 17] for more details.

2.1. Descriptive frames for normal modal logics. The formulas, ¢, of propositional
unimodal logics are built from propositional variables p; € V, for some countably-
infinitesetV = {p; | i < w}, and constants T, L using the Boolean connectives —, A,
and the unary possibility operator <. The other Booleans and the necessity operator
O dual to © are defined as standard abbreviations. We also use Ot = ¢ V Oy,
Ot =p AOp, and OT = {OCp | ¢ € T}, for a set T of formulas. By a signature
we mean any set ¢ C V, denoting by sig(¢) the (finite) set of variables in a formula ¢.
If sig(¢) C o, we call p a o-formula. We denote by sub(y) the set of subformulas of
 together with their negations, and let || = |sub(p)|.

A (normal) modal logic, L, is any set of formulas that contains all Boolean
tautologies, the modal axiom O(py — p;) — (Opoy — Opy), and is closed under
the rules of modus ponens, uniform substitution of formulas in place of variables,
and necessitation ¢/O¢p. The smallest such logic goes by the moniker K. Given a set
I' of formulas and a modal logic L, the smallest modal logic to contain L and I is
denoted by L @ I'. We write L @ ¢ for L @ {¢}. For example,

K4 = K@ Opy — OOpy,
K43 =Kaae OO py— p1) VOO pr — po).
GL.3=K4.39 O0(0py — po) — Opo.

Log{(N.<)} = K43 @ OT @ 0(0py — po) — (©Opy — Opy).

All logics considered in this article are extensions of K4.3.

We interpret formulas in (general) frames § = (W, R, P), where R is a binary
(accessibility) relation on a nonempty set W (of worlds or, more neutrally, points)
and P C 2% contains (), W and is closed under N, —, and the operator

OSX ={xec W |3yec XxRy}.

The structure = (P.N.—. 0, W, OF) is a Boolean algebra (P.N,—. 0. W) with
a normal and additive operator &% (BAO, for short). If §* is generated by a set
X C P asaBAO, we say that the frame § (or the set P) is generated by X . If | X| = n,
for some n < w, we call §n-generated or finitely generated. The elements of P are
called internal sets in §. If P = 2%, § is known as a Kripke frame; in this case, we
drop P and write § = (W, R). A frame § = (W, R, P) is descriptive if the following
conditions hold: for any x, y € W and any X C P,

(dif) x =y iff VX eP(xe X &y e X),

(tig) xRy iff YX € P(y € X — x € OFX),

(com) if X C P has the finite intersection property (fip, for short)—that s, [ X’ #
(0, for every finite X’ C X—then (X # 0.

(Frames with (dif) are called differentiated, with (tig) tight, and with (com)
compact.) Every BAO is isomorphic to § ', for some descriptive frame §. A finite
frame is descriptive iff it is a Kripke frame [9, Section 8].

Given a signature o, a o-model based on a frame § = (W, R, P) is a pair I =
(8, v) with a valuation v: ¢ — P. The atomic a-type of x € W in M is

atgy(x) = {pi | pi € 0. x € v(p))} U{=pi | pi € 0. x ¢ v(p;)}.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.184, on 18 Nov 2025 at 17:48:34, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10159


https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10159
https://www.cambridge.org/core

INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 5

We omit ¢ = V, saying simply model and writing atoy(x). The value of a formula
© in 9N is the set v(p) € P computed inductively in the obvious way starting from
v(p;). o(T) = W and v(L) = 0. A set X C W is definable in M if X = v(yp). for
some formula ¢. in which case X € P. If every internal set X' € P is definable in 901,
we say that § is 9-generated. Every § with countable P is clearly 9t-generated, for
some model 9.

A formula ¢ is true at x in O, written MM, x = ¢, if x € v(p). The a-type of x in
901 is the set 13, (x) of all o-formulas that are true at x in 9. For a set X of points in
M, we let 13, (X) = {15,(x) | x € X}. As before, we drop o = V.

A set T of formulas is finitely satisfiable in O if, for every finite subset I'' C T, there
isx’ € W suchthatI” C ton(x'); Tis satisfiable in Mif T’ C toy(x), forsome x € W.
Using these definitions and notations, we can equivalently reformulate conditions
(dif). (tig). and (com) for 9M-generated frames as follows: for any x, y € W and any
set I' of formulas,

(dif) x =y iff ton(x) = ton ().
(tig) xRy iff Oton(y) C tan(x) iff {¢ | Op € ton(x)} € ton(»).

(com) if T is finitely satisfiable in 90, then I is satisfiable in 1.

A frame § satisfies I if there is a model 9t based on § satisfying I'. Further, ¢
is valid in §, written § = ¢, if M, x = . for any model 9 based on §F and any
x € W. We call § a frame for a logic L and write § = L if § = ¢, for all ¢ € L.
Conversely, any class S of general frames determines the modal logic Log S = {¢p |
VF € ST E ¢} We write Log(F) for Log({F}).

A set T of formulas is L-consistent if (AT — L) ¢ L, for any finite " C T". We
require the following well-known fact (see, e.g., [9. Section 8.6]).

LEmMA 2.1, For any modal logic L and any finite signature o, if £ is an L-consistent
set of a-formulas, then X is satisfiable in a a-model O based on a finitely 9M-generated
descriptive frame for L.

By Lemma 2.1, every modal logic L is determined by the class of all descriptive
frames for L. A logic L is Kripke complete if L is determined by the class of all Kripke
frames for L. L is d-persistent (aka canonical) if (W, R, P) = L implies (W, R) |= L,
for any descriptive frame (W, R, P). L has the fmp if it is determined by its finite
(Kripke) frames.

The smallest logic K4.3 we are interested in is d-persistent; its descriptive and
Kripke frames § = (W, R. P) are transitive and weakly connected, that is,

Vx,y.z € W (xRy A yRz — xRz),
Vx,y,z€ W(xRy AxRz — y =zV yRzV zRy).

GL.3, on the contrary, is not d-persistent yet has the fmp. In fact, all extensions of
K4.3 are Kripke complete [12].

A frame §' = (W', R',P’) is a subframe of a frame § = (W,R.P) if W' C W,
R' =Ry, =RN (W' x W'),and P’ C P.Foreveryinternalset V € P, the frame
Fly=VRIy.Ply) with P, ={VNX|X P} is a subframe of §. For a
model MM = (F.v), we let M|, = (F[,.v[,), where v [, (p) =V No(p). Given
a frame § = (W, R.P) with transitive R and a point x € W, we define the frame
S = (W, R, Py,) by taking W, = {y € W | xRTy}, where R" is the reflexive
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6 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

closure of R (thatis, R" = RU{(y.y) |y € W}). R =Ry, .and Py =P [y .
We call § rooted if § = §, for some x € W, in which case x is called a root of §.
Note that §, is not necessarily a subframe of §, but we have:

if § is descriptive and transitive, then §, is descriptive as well. (1)

Indeed, suppose § = (W, R, P) is descriptive and x € W . Conditions (dif) and (tig)
for §, are straightforward and left to the reader. To establish (com), consider any
X, C P, with the fip. Then

X={VeP|VnW,eX,u{VeP|W,CV}

also has the fip, and so (X # 0. To prove that (X, # 0, it suffices to show
that ({V € P| W, C V} C W,. To this end, suppose on the contrary that y €
(WV €P| W, CV}and y ¢ W,. Then (dif) and (tig) give Z. Y € P such that
x€Z,y¢Z ye Y, and x € O-Y. It followsthat ZU—-Y e P, W, C ZU Y,
and so y € Z U Y, which is a contradiction.

2.2. The structure of linear finitely-generated descriptive frames. From now on,
all frames § = (W, R, P) are assumed to be rooted frames for K4.3, so their relation
R is always transitive and connected:

Vx,y € W (xRy Vx =y V yRx). (2)

A cluster in § is any set of the form C(x) ={x}U{y € W | xRy A yRx} with
x € W.If xis irreflexive, i.e., xRx does not hold, C (x) is called a degenerate cluster
and depicted as o; a reflexive x (for which xRx) is depicted as o. A non-degenerate
cluster with k& > 1 (reflexive) points is depicted as (). The next example will be used
many times in what follows.

ExAMPLE 2.2. Consider the frame § = (W}, Rie. Pi). where 0 < k < w,

Wy :AkU{bn ‘ I’l<60}, Ay :{Clo,...,ak,l},
XRyey iff either x =a; orx =b,, y =b,,, andm < n,

and Py is generated by the sets X; = {a;} U{b, | n < w. n =i (mod k)}, fori < k,
and {b,}, for n < w. (For instance, P, consists of all finite subsets of {b, | n < w}
and their complements in ¥;.) The underlying Kripke frame (W}, Ry, ) is shown in
the picture below, where all x are e.

by by by by bo
It is not hard to see that

for any X € P. X is infinite iff 4, N X # 0, (3)

and so A; ¢ Pi. For every nonempty X € Py, the set OSX is cofinite in W.
Using these observations, it is readily checked that § is a descriptive frame; we
denote it by €(®, ). Clearly, €((). ») is IM-generated for M with v(p;) = X; if
i <k, and v(p;) = 0 otherwise. The descriptive frame (W}, Rio.Pr) with Ry, =
Rie U{(by,b,) | n < w} is denoted by €(®). o): (Wi, Rio) looks like in the picture
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 7

above, with all * = o. Note that €((®). ) = GL.3 but €(®). o) £ GL.3, cf. Example
2.10(a).

The next lemma, originating in [12], will play a key role in our subsequent
constructions. Let 90t be a model based on a rooted frame § = (W, R, P) for K4.3,
and let I" be a set of formulas. A point x € W is called I'-maximal in Mif M, x =T,
and whenever xRy and 9. y =T, then yRx. We denote by maxgy I the set of all
I'-maximal points in 1.

Lemma 2.3. Suppose T is a set of formulas and I is a model based on a rooted
descriptive frame § = (W, R, P) for K4.3. Then the following hold:

(modal saturation) if 9, x = O AT for every finite T' C T, then there is y with
XRy and M,y ET;

(maximal points) if there is x with 9, x = T, then maxgn T # .

Given a rooted frame § = (W, R, P) for K4.3, let R* = {(x,y) € R | (y.x) ¢ R}
be the strict R-accessibility in §. Sometimes it will be convenient to view (W, R) as
a strict linear order §. = (W,. <g) of clusters, where W, = {C(x) | x € W} and
C(x) <g C(y) iff xR®y. A cluster C is final in § if there is no cluster C’ with
C <r C'. A cluster C is a root cluster if there is no cluster C’ with C’ <z C, in
which case C < C' forevery C’ # C in §; the root cluster in § is unique. A cluster
C’ is an immediate successor of a cluster C in § if C <z C’ and there is no C” with
C <r C" <x C’',in which case C is an immediate predecessor of C’. A sequence C,,,
n < w, of clusters in §. is an infinite ascending chain if C,, <g C,1, for all n < w.
S is converse well-founded if it has no infinite ascending chain of clusters.

The next lemma follows from, e.g., the more general [9, Theorems 10.34 and
10.35].

LEmMMA 2.4, If§ is a rooted n-generated descriptive frame for K4.3, for somen < w,
then:

(a) T. is converse well-founded, and so the strict linear order F.' = (W,,>g) is
isomorphic to some ordinal;
(b) every cluster in § has at most 2" points.

PrOOF. Let § = (W, R, P), let <r be the reflexive closure of <, and let G be
a finite set generating P with |G| = n. For x,y € W, we write x ~g y in case
x e G iff y € G, for all G € G, and denote by [x]g the ~g-class of x. Clearly,
{ixlg | x € W} <29 =2m.

(a) Suppose on the contrary that C(x;), i < w, is an infinite ascending chain
in §.. Call x € W a middle-point if C(x¢) <z C(x) <g C(x;), for some i < w.
Let V, = {[y]g | » a middle-point with xRy}. Since V', O V, whenever xRy and
each V, is finite, there is m < w such that V,, = V,, . for every middle-point y with
C(x,,) <g C(y). By induction on the construction of X € P from the generators
in G, it is readily seen that

if y, z are middle-points, C(x,,) <z C(¥).C(x,) <z C(z), and y ~g z. (4)
theny € X iffz € X, forall X € P.

(Indeed. the only non-trivial case is when X = O%Y, yRz and y € ©SY. Then
there is x € Y with yRx. If zRx, we are done. Otherwise, x is a middle-point.
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As V), = V-, there is a middle-point x” with zRx’ and x ~g x’. By IH, x’ € Y.) As
there are finitely many ~g-classes, there exist k # ¢ > m such that x; ~g x,, and
so x; € X iff x, € X, forall X € P, by (4). But this contradicts (dif).

(b) It is straightforward to show thatif C(x) = C(y) and x ~g y. then x € X iff
y € X. forall X € P. So by (dif), every cluster in § has < 2!9! points. -

Note that the existence of maximal points (Lemma 2.3) in models based on rooted
finitely generated descriptive frames for K4.3 also follows from Lemma 2.4. Another
consequence is that such a frame § contains a unique final cluster, and any non-root
cluster in § has an immediate predecessor. If §.' = (W,, >z) is isomorphic to an
ordinal y and a < y. we denote by CJ3 the cluster that is the image of o under this
isomorphism. If « is a non-zero limit ordinal, we call Cf a limit cluster. A non-final
cluster is a limit cluster iff it does not have an immediate successor. By (dif) and
Lemma 2.4(b), we also have the following.

LemMA 2.5. If § = (W, R.P) is a rooted finitely generated descriptive frame for
K4.3 and C € P, for some cluster C, then {x} € P, for every x € C.

Now, suppose 9t is a model based on a rooted finitely 9t-generated descriptive
frame § = (W, R.P) for L D K4.3. Given a formula u, a cluster C is called u-
maximal in 9 if there is a point in C that is {u}-maximal in 9. Further, C is
maximal in 9 if it is y-maximal in 9, for some u«, and C is g-maximal in N, for
a signature g, if there is such a g-formula u. Every definable in 9t cluster is clearly
maximal in 9%. The next lemma says that the converse is also true.

LemmaA 2.6. Suppose M is a model based on a rooted finitely 9M-generated
descriptive frame § = (W, R, P) for K4.3. Then

(a) every degenerate cluster in § is maximal in O

(b) a cluster is maximal in M iff either it is final or has an immediate successor:

(¢) a cluster is definable in M iff it is maximal in IN.
So limit clusters are not definable and not degenerate, while every other cluster is
definable in .

PrOOF. (a) If C(x) is degenerate, then Oton(x) € top(x) by (tig). So there is a
formula g with 9, x |= u but M, x £ Ou.

(b, =) Let C(x) be maximal in 9t with 9, x = wand 9, y %= u whenever xR®y.
Suppose C(x) is a limit cluster. Let S = {C € W, | C(x) <g C} with yc € C, for
C € S. Consider

I'= U Oton(ye) Uy | Oy € ton(x)} U {O-p}.
ces

Clearly, I is finitely satisfiable in 901, and so, by (com), I' C t9x(y). for some y. Thus,
by (tig), xRyRyc forall C € S, and so yR*yc forall C € S and yRx. But we also
have 9, y = O-u, contrary to I, x = u.

(b, <=) The (unique) final cluster is maximal in 9t for T. Suppose C(y) is an
immediate successor of C(x). If C(y) is degenerate, then C(y) is maximal in 9t by
(@), and so there is u with M, y = u A =Opu. It follows that C(x) is O(u A ~Ou)-
maximal in 9. If C(y) is non-degenerate and C(x) is not maximal in 9, then
Otogn(x) C tan(y), and so yRx by (tig). contrary to xR*y.

(c. <) Let C(x) be u-maximal in 9. If C(x) is degenerate, it is defined by u A
-Ou. If C(x) is the non-degenerate root cluster, then Ou defines C (x). Otherwise,
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 9

take the immediate predecessor C(y) of C(x). By (). C(y) is T-maximal in 9, for
some 7, so 0% =7 A Ou defines C(x). (¢, =) is obvious. 4

We require a few important consequences of Lemmas 2.4 and 2.6.

LemMa 2.7. If § = (W, R.P) is a rooted finitely generated descriptive frame for
K4.3, then W is countable.

PrOOF. By Lemma 2.4, it suffices to show that the ordinal y isomorphic to F.' =
(W.,>g) is countable. Let Z = {a + 1 | o <y, a + 1 # 7} be the set of successor
ordinals < y. Then |Z| = |y| and Cg € P, for any f € Z. by Lemma 2.6. As § is

finitely generated, P is countable, and so are Z and W. -
Given a rooted finitely 9-generated descriptive frame § = (W, R, P) for K4.3,

let mz be the largest ordinal < w with degenerate C5 for all n < mz. We call
the (possibly empty) interval Z = [ J C? the tail of §. We may assume that

Z ={z, | n < mg}, where all z, are irreflexive and z,Rz, 1. 0 <n <mgz. If Z is
infinite, then Z # W (as § is rooted). If Z # W, we call C,f? the head of Z. In

particular, if Z = (), its head is the final (non-degenerate) cluster COS :if Z # W and
Z # () is finite, its head is the immediate predecessor of Crfg—l = {zms,l}; and if Z

n<ﬂ13

1s infinite, its head is the limit cluster Cf . Thus, by Lemma 2.6,

the head of a tail is always non-degenerate. (5)

2.3. Building linear models from pieces.

DEFINITION 2.8. The ordered sum Fo < - <\ §u1 = (W, R, P) of rooted frames
i = (Wi R;,P;).i < n, for K4.3 with pairwise disjoint W; is defined by

w=Jw. R={JR U | Wixw)). P={XoU-UX, ]| X, €P}.

i<n i<n i<j<n

It is not hard to see that if the §; are descriptive, then Fy < --- < F, 1 is also
descriptive. If 9%; = (F;.v;), then MM =My < --- < M,,_; is the model based on
To <0 -+ <4 §yp1 with the valuation v(p) = J,_, vi(p). for any p € V. We call the
M, <1-components of M.

Now, let § = (W, R, P) be a rooted frame for K4.3. An interval in § is any subset
I C W suchthat xRyRzand x,z € [ imply y € I, forallx,y.z € W.IfI N C # 0,
for a cluster C. then clearly C C I. An interval [ is closed if there are clusters C, C’
suchthat/ = CUC'U|J{D | C <g D <x C'}.inwhichcase wewrite I = [C, C'].
Given two closed intervals 7,7’ in §, we write I <z I’ if I and I’ are disjoint and
xRx' forall x € I, x’ € I'. Notice that if I is a closed internal interval in §, then
$ I 1s also a rooted frame for K4.3. Also, if § is descriptive, then F [; is descriptive
as well. And if § is finitely 9i-generated, for some model 201, then § [; is finitely
M [,-generated. We clearly have the following.

LEMMA 2.9. Suppose § = (W, R, P) is a rooted frame for K4.3 and W is partitioned
as {I; | j < n}.n < . with closed intervals I; € P and I; <z I iff j < k. Then

(@) §=F ;< <F10y,
(b) if M is a model based on §. then M =M [} <1 <M, .
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10 AGI KURUCZ, FRANK WOLTER., AND MICHAEL ZAKHARYASCHEV

2.4. Canonical formulas. To check whether a frame validates a given finitely
axiomatisable logic, we use the canonical formulas of [4, 9, 38, 43] whose basic
properties are summarised below in the context of K4.3; for more details consult
[9, Section 16.3]. Every logic L O K4.3 can be represented in the form

L=K43a{a(®; ;. 1)|jeJ.}. forsomeindexsetJ,, (6)

where each a(&;.D;. 1) is a canonical formula based on a finite rooted Kripke
frame &; = (V;.S;) for K4.3 and a (possibly empty) set ©; C V; of irreflexive
non-root points in & ;. If L is finitely axiomatisable, its canonical axiomatisation (6)
with finite J; can be constructed effectively, given any finite set of axioms.

Let § = (W, R.P) be any rooted finitely generated descriptive frame for K4.3.
By Theorem 2.4, § contains a unique final cluster, and any non-root cluster in §
has an immediate predecessor. The formulas o/(® D, 1) are defined so that § p~
a(6;,9;, 1)iff there is an injection f: V; — W such that the following conditions
hold: forall x,y € V;,

(cfy) xS;yiff f(x)Rf(y) (so xis irreflexive iff /(x) is);

(cfy) if C(x) is the final cluster in &, then C(f (x)) is the final cluster in F:

(cf3) if x € D; and C(y) is the immediate predecessor of C(x) = {x} in &,
then C(f (y)) is the immediate predecessor of C(f(x)) = {f(x)} in §;

(efy) {f(x)} €P.

Intuitively, every frame § with § [~ «(®;.D;. L) can be obtained by inserting
certain chains of clusters immediately before some clusters C(x) in &;, provided
that x ¢ ©;, and by enlarging some non-degenerate clusters in &;.

Canomcal formulas of the form o (&, (), L) axiomatise exactly the cofinal subframe
logics whose frames are closed under taking cofinal subframes. We remind the reader
[9] that a subframe §' = (W', R',P’) of a frame § = (W, R, P) is called cofinal if
W' is cofinal in § in the sense that, for any x € W' and y € W, whenever xRy then
either y € W' or there is z € W' with yRz. Cofinal subframe logics enjoy the fmp,
and so are decidable if finitely axiomatisable [42]. Example 2.10 shows the canonical
axioms of some extensions of K4.3.

ExampLE 2.10. (a) We prove that
GL3=K439O(0Opy — po) — Opy =Ké3® alo.0. L) ®alo<e. B, L).

Let §= (W, R.P) be a rooted finitely generated descriptive frame for K4.3. By
Lemma 2.7, W is countable, and so § is 9-generated, for some model 9t = (3. v).
We claim that the following are equivalent:

1. 9 B~ GL.3;
2. there is a formula y with a non-degenerate y-maximal cluster in 97;
3. there is a non-degenerate non-limit cluster in §;

4, FHalo.0. L) Aalo<e, B, L).

1. = 2. Suppose M, x £ O(Op — ) — Oy, for some formula . Then the
—(0(0¢ — ¢) — Op)-maximal cluster C in 9 is non-degenerate.

2. < 3. by Lemma 2.6.

2. = 4. Suppose the y-maximal cluster C,, in 9 is non-degenerate, for some
w. If C, is the final cluster of §. then the injection f mapping o to a point in Cj,
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 11

satisfies (cfy)—(cfy). and so § [~ a(o,0, L). If C, is not the final cluster, then the
—w-maximal cluster C-,, is the final cluster in §. If C-, is non-degenerate, then
again § [~ a(o, (), 1); otherwise § |~ a(o < e, (), 1) as witnessed by / sending e to
the point in the final cluster and o to a point in C,,.

4. = 1.If § £ a(o < e, (), L), then take an injection f from o <1 e to § satisfying
(cfy)—(cfy). By (cfy) and Lemma 2.6, {f (o)} = v(¢p), for some ¢. As f(o)Rf (o)
by (efy). it is easy to see that 9. f (o) = O(O-¢p — —p) — O—¢p. The case when
T W alo, 0, L) is similar.

(b) Similarly, we can prove that

Log{(N,<)} =K43@ T @ 0O(Opy — po) — (©COpy — Opy)
=K43Dale.0.1)Dalcxo,®, L)

by showing that, for every 9t and § as above, the following are equivalent:
— M = Log{(N. <) }:
— either the final cluster in § is degenerate or there is a non-degenerate non-limit
cluster different from the final cluster in §;
~ S ale.d, L)Aalo<o,, L).
(¢) A prominent example of a non-cofinal subframe logic is K4.3 ® Op — OOp
with dense frames, whose canonical axioms

Ké3da(e<e’ {a}, L) Dale<e’ go {a}. L)dale<e’ Je, {a}, L)

forbid any two consecutive degenerate clusters in finitely generated descriptive
frames for the logic (see also Lemma 5.6).

§3. Craig interpolant existence: Warming up. In this section, we first give a model-
theoretic, bisimulation-based criterion of interpolant non-existence, then apply it to
design a CONP-algorithm deciding the IEP in any finitely axiomatisable d-persistent
cofinal subframe logic containing K4.3. Finally, we illustrate by examples that a
way more involved approach is needed to tackle arbitrary finitely axiomatisable
extensions of K4.3.

A formula : is called a Craig interpolant of formulas ¢ and ¢, in a logic L if
sig(1) C sig(e1) N sig(p,) and both ¢ — 1 and 1 — ¢, are in L. We say that L has
the CIP if an interpolant for ¢, and ¢, exists whenever (¢; — ») € L.

Many standard modal logics have the CIP, including K, K4, and S4. In fact,
there are a continuum of logics containing K4 with the CIP. However, none of the
continuum-many extensions of K4.3 with frames of unbounded depth has the CIP,
and very few—not more than 37—out of the continuum-many logics containing S4
enjoy the CIP (deciding whether a finitely axiomatisable logic above S4 has the CIP
is in CONExPTIME and PSpacg-hard). The reader can find proofs of these results
and further references in [9, 14 (see also Example 3.6).

We now introduce the model-theoretic notions and tools that are needed in our
non-uniform approach to deciding interpolant existence in modal logics.

Given two models ;, i = 1,2, based on §; = (W;, R;, P;) with x; € W;, we
write DMy, x1 =, M. X7, for a signature . if 15, (x1) = tn, (x2). The equivalence
relation =,C W, x W, can be characterised in terms of bisimulations. Namely, a
relation # C W, x W, iscalled a g-bisimulation between 9t and 91, if the following
conditions hold whenever x;fx;:
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12 AGI KURUCZ, FRANK WOLTER., AND MICHAEL ZAKHARYASCHEV

(atom) arg, (x1) = atgy (x2):

(move) if x; R, y;. then there is y» such that x,R,y» and yBy»: and, conversely,

if xR,y then there is y; with x| Ry, and yfy».

If there is such B with z|fz,, we write My, z; ~, My, zo. We call B global if,
for every x| € W, there is x, € W, with x;f8x;. and, for every x, € W, there is
x1 € Wy with x1fx,. In this case, we say that 9t and 9, are globally o-bisimilar
and write 9 ~, M.

We employ the following characterisation of =, (see [20] for a further discussion
of the relationship between bisimulations and modal equivalence).

LemMma 3.1. For any signature o, any models IMM;, i = 1,2, based on descriptive
frames §; = (W;. R;.P;), and any x; € W;,

My, x1 = Mo x2 iff D.x1 ~5 M. xo.
The implication (<) holds for arbitrary models.

PrOOF. (=) We show that {(y1,y2) € Wy x W, | fé’ml(yl) = [gﬁz<y2)} is a o-
bisimulation between 9t; and 91,. Condition (atom) is obvious. For (move), suppose
y1R1z1 and t5n, (y1) = 15n, (y2). LetI' = 5w, (z1). Then, for every finite " C T, we
have M.y E O AT, and so Dy, 3, | O AT as well. Since §, is descriptive,
Lemma 2.3 gives us z; with y,Ryz; and M,z =T 1t follows that tgﬁl(zl) =
tgﬁz(zz), as required. The implication (<) is straightforward. -

Note that if B is a set of o-bisimulations between 9t; and 91,, then Uﬂ€ g B is
also a g-bisimulation between 9, and 91,. It follows that there is always a largest
o-bisimulation between 9%, and 9, (which is =, if both 91, are based on descriptive
frames).

Variations of the following criterion of interpolant (non-)existence are implicit in
various (dis-)proofs of the CIP in modal logics [20, 32].

THEOREM 3.2. Formulas ¢, and p, do not have an interpolant in a modal logic L
iff there are models IM;, i = 1.2, based on finitely IM;-generated descriptive frames
S = (Wi, R;.P;) for L with points x; € W; such that

My, x1 = @1, M. x2 | 2. My, X1~ My Xa, for o = sig(pr) N sig(p).
If L O K4, we may assume that x; is the root of the descriptive frame §;,i = 1,2.
ProOF. (<«=) is straightforward (and holds for arbitrary frames for L). For (=),
consider the signature ¢ = sig(¢1) U sig(¢,) and the set
Y ={y | xisaoc-formulaand (p; — y) € L} U {~¢p>}

of -formulas. As ¢; and ¢, have no interpolant in L, X is L-consistent, and so, by
Lemma 2.1, there exists a 0-model 91, based on a finitely 9%,-generated descriptive
frame §, and a point x, with 9y, x, E 2. Let ¥/ = l§ﬁ2(xz) U{ei}. As X' is an
L-consistent set of 5-formulas, Lemma 2.1 gives a -model 9t; based on a finitely
9, -generated descriptive frame §; and an x; in 91 such that Ny, x; = X'. We
clearly have tgﬁl(xl) = tgnz(xz), and so MMy, x; ~, My, x, by Lemma 3.1. In case
L D K4, (1) allows us to make x; the root of §;. 4

The next lemma refines Theorem 3.2; it is used in the proof of Lemma 4.21.
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 13

LemMma 3.3. If ¢ and @, do not have an interpolant in a logic L O K4.3, then
there are rooted models M;, x;. 1 = 1,2, satisfying the criterion Theorem 3.2 such that
C(x;) is not a limit cluster in M;, fori = 1,2.

PrOOF. Suppose M, x is a rooted d-model, for some finite signature d, that is based
on a finitely 9-generated descriptive frame § = (W, R, P) such that 9, x |= ¢, for
some ¢ with sig(¢) C 8, and C(x) is a root limit cluster in §. Pick a fresh variable
g ¢ 0. For x € {e 0}, take the frames §* = * < §. denote the root point of F* by x*,
and consider the 0 U {¢g}-models 9t* based on §*, which coincide with 9t on F and
have 9*, x* = p iff M, x | p, for p € 5, and M*, x* = ¢. To prove the lemma, it
suffices to show that there is x € {e, 0} with (i)9*, x* | ¢, (ii)9M*, x* ~, M, x,
for any o C sig(¢), and (iii)Log(F) C Log(F*).

As the limit cluster C(x) is non-degenerate by Lemma 2.6, we have (i) and (ii).
To show (iii), suppose on the contrary that, for each x € {e, o}, there is a canonical
formula a(®*, D%, L) with§ | a(6*, D*, L) and §* £ a(6*, D*, L). Let /* bean
injection from &* to §* satisfying (cf;)—(cfy) for a(&*, D*, L), and let C(r*) be the
root-cluster in * and C (y*) its immediate successor in &*. By assumption, f* isnot
an injection from &* to § satisfying (cfy)—(cfy). so f*(r*) = x* and f*(y*) € W.
As{f*(y*)} € Pby (cfy) and C(x) is a limit cluster, it follows from Lemma 2.6 that
f*(y*) ¢ C(x),and so y* ¢ D*. Suppose, for definiteness, that f°(y°)Rf*(y*) or
fo(y°) = f*(y*). Let C be the immediate predecessor of C(f°(y°)) in §. Then C
is a non-limit cluster. By Lemma 2.6, C € P and, by Lemma 2.5, {z} € P, for every
z € C.1If Cis non-degenerate, then we modify f° by taking f°(r°) € C: otherwise,
we modify /' by taking /*(r®) € C. In either case, the modified /* is an injection
from &* to § satisfying (cf;)—(cfy). a contradiction. 4

We begin our study of the IEP by showing how the criterion of Theorem 3.2 can be
used to decide whether given formulas have an interpolant in any fixed d-persistent
cofinal subframe logic L O K4.3 (defined in Section 2.4). Suppose that ¢; and ¢,
do not have an interpolant in L. Let o = sig(¢1) N sig(p;). By Theorem 3.2, there
exist models 91;. i = 1,2, based on descriptive frames §; = (W;, R;. P;) for L with
roots x; € W; such that My, x; ~; Dy, x2, My, x1 E 1 and Ny, x5 = —pr. We
may assume that f is the largest o-bisimulation =, between 91; and 90, (for which
x1Bx2, of course). We show how to extract from the 9; polynomial-size models 91
that still witness that ¢ and ¢, lack an interpolant in L. We proceed in two steps.

Step 1: For each i = 1,2 and each 7 € sub(p;) satisfied in 9;, we take a {r}-

maximal point y, € W; (which exists by Lemma 2.3). and denote the set
of all these y, by M; C W;. Note that M; is cofinal in §; because each
point in W; \ M; has a {¢; }- or {—¢; }-maximal R;-successor. Set

T = {15, (x) | x € {1 UM} U {5, (x) [ x € {xa} UM} (7)

Step 2: As 9y, x1 ~; My, xp and B is the largest o-bisimulation, each t € T
is satisfied in both 90t;. For i = 1,2, we take a smallest set S; C I¥;
containing a 7-maximal point z, in 90; (which exists by Lemma 2.3), for
eachtr € T.

Now. let W/ = {x;} UM;US;. Ri = R; [y;. §; = (W/.R;). and let 9 be the

restriction of 91; to F;. We let

k(1. ¢2) = 3+ 3max(|ei]. [¢2]). (8)
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Clearly, |W/| < k(p1.¢2). so the size of 90; is O(max(|p1].|p2])). As L is d-
persistent, (W;, R;) |= L. By construction, §/ is a cofinal subframe of (W;, R;), and
so &} = L as Lis a cofinal subframe logic. Finally, we define 8’ as the restriction of
B to W x Wy xif'x; iff 1§ (x) = 15, (x3). forall x| € W{, x5 € WJ.

Lemma 3.4. (a) M. x1 | 1. My x2 =~ and (b) B is a o-bisimulation
between I and My with x1B'x,.

ProoF. (a) follows from the fact that, for any © € sub(yp;) and x € W/, ;. x =
7 iff 9. x = 7. which can be established by a straightforward induction on the
construction of ;1 and ;. We only show (=) fort = Ow. If ;. x = Ow. then there
is y € W; with xR;y and ;. y = w. Take y, € M; C W/. By the {y }-maximality
of y,. either y = y,, or yR;y,. and so xR}y, and M}, x = Oy.

(h) Condition (atom) follows from the definition. To establish (move), assume
xp'x" and xR{y. Let t = tg (). Then ¢ € T, and so there is a r-maximal z, €

S» C W, in M. In particular, tgﬁz(z,) =t¢. and so yp'z,. As xfx’ and B is the
largest o-bisimulation, there is z € W with x"Ryz and #5, (z) = t. It follows from
the #-maximality of z, that z = z; or zR,z,;. and so xR/ z,, as required. -

Thus, the fact that ¢; and ¢, have no interpolant in L can always be witnessed
(in the sense of Theorem 3.2) by models 901; of size polynomial in max (||, |¢2]).
and so we can say that L has the polysize bisimilar model property. This gives the
first claim of the following theorem.

THEOREM 3.5. (a) All d-persistent cofinal subframe logics L O K4.3 have the
polysize bisimilar model property. (b) If such an L is consistent and finitely
axiomatisable, then the IEP for L is CONP-complete.

ProoF. We show that (@) = (b) (cf. Theorem 4.9 in Section 4). Indeed, suppose
Lis given by (6) (with &; = (V;,S;) and ©; = 0, for all j in the finite index set J ).
To decide whether formulas ¢; and ¢, do not have an interpolant in L, we guess
polynomial-size pointed models 97;, x; based on Kripke frames §; = (W;. R;) for
K4.3 and restricted to the variables in ¢; and ¢5. The conditions 9, x| = ¢; and
My, x» |~y are clearly polynomially checkable; that 9%y, x; ~, My, x5, for ¢ =
sig(p1) N sig(¢py), can be established in polynomial time using a standard technique
from [2, Chapter 7). Finally, to check whether §; = a(®,.0, L), for each j € Jp.
we simply enumerate all injective functions from &; to §;. whose number does not
exceed | W,~|‘V.f|, and verify that at least one of them satisfies (cf;) and (cf,), which
can obviously be done in time polynomial in | W;|. (Condition (ef3) holds vacuously,
and (cfy) always holds as §; is a Kripke frame.) 5

We now give two examples illustrating that the construction above does not work
for logics that are not d-persistent, even for logics with the fmp. Prominent examples
of such logics are GL.3 and Log{(N, <)} (see Example 2.10). We show that, for these
logics, establishing model-theoretically (using Theorem 3.2) that some formulas do
not have an interpolant requires a pair of models that are based on infinite descriptive
(non-Kripke) frames.
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 15
ExamPLE 3.6. (a) Consider the following formulas ¢; and ¢»:

o1 =(p1 AOT=q) AO(p2 — OFqn).
02 = [C(pa A OFT=ga) AO(pr — OF )] 9)

To show that (o1 — ¢5) € K4.3 C GL.3, suppose otherwise. Then there exists a
model 91 based on a frame § = (W, R) for K4.3and z € W with 9N, z = @1 A ~ps.
So we have x,x’,y,y" € W with zRxR*x’, zZRyR"y’, M. x = p1, M. x" = —q1,
M,y | p2. and M, y’ = —g. Since § is a frame for K4.3, either x’ = y’ or x’Ry’
or y’'Rx’. However, none of these is possible because of the boxed conjuncts of ;
and —,.

We now use Theorem 3.2 to show that ¢; and ¢, do not have an interpolant in
GL.3. Let o = sig(e1) N sig(ez) = {p1. po}. Observe that any models 9; meeting
the conditions of Theorem 3.2 cannot be based on a Kripke frame §; = (W;. R;) for
GL.3. Indeed, let # be the corresponding bisimulation. Then 01}, x| = ¢; implies
that there is x| € W) with x;R;x] and 9, x| = p1; we must also have My, y; =
—q1, for some y; with xl1 Rl+ »1- Similarly, 9, x> = —¢p, implies that there is le e w,
with x,R;x] and My, x] = p. and we also have 9. y; |= —¢s. for some y, with
XIRTy>. As x1Bx; and xiR;x]. (move) gives x with x2R,x7 and x|fx3. But
then M, x3 = p1. and so x2R>x) RS y2Rox3 since F, is a frame for K4.3 and in
view of —¢,’s second conjunct. Symmetrically, we find x7 with x;Rix| R y1 Rix}
and x7px}. Using (move). we construct infinite ascending chains of not necessarily
distinct points as shown in the picture below.

P1 P1 41 P2 P1

My A K ——> K ——> K ————————> %
DX | IR S U B 3

: Xy LXT X

p o o

: N |

S Xy oy X w3

M, f— >k —> ok —> Kk ————— » %
2 P2 42 P1 P2

It follows that the §; are not frames for GL.3 (see any of [3, 9. 19] for details).

We now give a descriptive frame for GL.3 that can be used to show that ¢; and
> do not have an interpolant in GL.3. Take the descriptive frame €((2). ) defined
in Example 2.2 and construct § = e <1 e <1 €((2), ®) (see Definition 2.8), which is a
frame for GL.3 by property (iii) in Example 2.10 (a). Consider the rooted models
M;. x;, i = 1,2, shown in Figure 1, both of which are based on a frame isomorphic
to §. Itis readily checked that M), x; = 1, M. x2 = —¢po, and the depicted relation
p is a o-bisimulation between 9t; and 9, with x;fx;.

In fact, the argument above shows that none of the logics L in the interval
K4.3 C L C GL.3 has the CIP.

(b) Consider next the logic Log{(N, <)} and show that the formulas

@1 =O(p1 AOT=q1) AD(pr — O q1) AOr A=O(r A py)

and ¢, given by (9) do not have an interpolant in it, though (¢, — ¢>) € K4.3, and
$0 (] = 1) € K4.3 C Log{(N.<)}.
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1 Pl q1 q1 P1-491  p2.q1 pr-qr P2-q1

9ﬁ1 *—>0— v @——0—>0——>0
LX) »n b3 S b2 S bl S
: 1 e 2 e

B : : : :
n o BN

0, *— » i — r0— r0— @
P2 P2 q2 q> P1-92 D2:-492 P1-92 D292

FIGURE 1. o-bisimilar models based on a descriptive frame for GL.3.

As in (a) above, any models 91;, i = 1,2, satisfying the conditions of Theorem
3.2 for ¢} and ¢, cannot be based on Kripke frames, however the reason for this is
slightly different. Suppose f is a bisimulation witnessing these conditions. Then the
models 91, must contain infinite ascending chains such as those in Example 3.6(a).
Also, the model 9ty with 91y, x; |= ¢] must contain a point z such that x; R,z and
9.z = r A O=p;, which means that z is located after all of the x{. j < w. But then
the Kripke frame §; underlying 90, is not a frame for Log{(N, <)}, as it refutes its
axiom O(dp — p) — (OOp — Op) if we make p true everywhere after the initial
ascending chain in §; and false elsewhere.

The picture below shows models 9t and 91, based on e <1 e <1 €((2), ») <1 0 and
satisfying the conditions of Theorem 3.2 for ¢| and ¢,. That this frame is a frame
for Log{(N., <)} follows from Example 2.10(b).

e P11 0 P91 p2-q1  P1-q1 D241 .
oy *~——o—— . ——>e——>0——>0——0
L X 11 S p3 ©p2 cpl ©po :
: 1 1 1 1
g
éxZ 2. : bg : b% : b21 : bg :
M, ——o—» i — r0— +o— r0— 0
P2 P2 7q2 q2 P1-92 P2.92 P1-92 P2.92 r.q2

§4. Interpolant existence in logics above K4.3. We now generalise Theorem 3.5 to
all finitely axiomatisable logics containing K4.3. It turns out that, even though these
logics do not have the polysize bisimilar model property in general, the structure of
the models required in Theorem 3.2 is perfectly understandable. We show that one
can assemble a pair of bisimilar models witnessing the absence of an interpolant
for ¢, and ¢, in any L D K4.3 as the ordered sum of finitely-many ‘nice’ models,
which are either finite or infinite but finitely ‘presentable’. Hence, we say that all
L D K4.3 have the ‘quasi-finite bisimilar model property’. Moreover, if L is finitely
axiomatisable, we can replace ‘finite’ by ‘polynomial in ¢, and max(|p1], |p2|)’.
for some constant ¢; depending on L only. In this case, we say that L has the
‘quasi-polysize bisimilar model property’.

s
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 17

Section 4 is organised as follows. In Section 4.1, we formulate our main results
(Theorems 4.5-4.7 and 4.9), and show how Theorem 4.6 implies Theorem 4.9. In
Sections 4.2 and 4.3, we prove Theorem 4.5. Then, in Section 4.4, we show how
to fine-tune the proof of Theorem 4.5 and obtain proofs of Theorems 4.6 and 4.7.
Finally, in Section 4.5, we formulate and prove an interesting consequence of our
methods for cofinal subframe logics (Theorem 4.25).

4.1. The quasi-polysize bisimilar model property. Given a finite signature ¢, a -
model 9 = (F. ) is called simple if either § is finite or § = €(®), *), for 0 < k <
o and * € {e, 0}, and, for every p €9, there is 4, C {0,....k — 1} with w(p) =
Uie 4, Xi. where the X; are the infinite generators of the internal sets in €(%). *)

defined in Example 2.2. Thus, even though €((%). *) is infinite, any simple 5-model
based on it is fully determined by the finitary information provided by the sets 4.
p €0, that is, by the atomic J-types of the points in the (¥)-cluster. A é-model is
called quasi-finite if it is the ordered sum of finitely-many simple models.

DEerINITION 4.1. A logic L D K4.3 is said to have the quasi-finite bisimilar model
property if, for any formulas ¢, ¢, without an interpolant in L, there are rooted
quasi-finite 6-models My, x; and Ny, x, satisfying conditions (a)—(c) below, for
d = sig(yp1) U sigp2) and o = sig(ep1) N sigepa):

(a) N, x1 = @1 and M. X2 =~

(b) 91; and N, are based on frames for L;

(c) M. x1 ~5 M. X2

Our first result is as follows.
THEOREM 4.2. All L D K4.3 have the quasi-finite bisimilar model property.

We actually prove a stronger Theorem 4.5 that prescribes more structure for the
pair of quasi-finite models witnessing the lack of an interpolant, which makes it
easy to deduce the existence of a g-bisimulation between the models. The prescribed
structure is easily checkable, which is used in the proof of the main Theorem 4.9. To
formulate our ‘structural’ theorem, we require a few definitions.

ForO0 <m < w, let m< = o < --- < o. An atomic frame takes one of the forms

—_——

m

m=,. ©O<am™. ®. ¢®.e). U®.0). (10)

where 0 < m < w and 0 < k < 291,

The size ||F|| of an atomic § is defined by taking |m<| = m. |[© <m<|| =1+ m,
and ||®] = [|€(®. o)|| = |€(®.0)|| = k. If M =My < --- < M,,;. for some 0 <
n < o and simple d-models 9t; based on atomic frames §;, j < n, then we set
9] = [[Fo <+ A Fuall = [[Soll + -+ + S |-

DErINITION 4.3. Suppose 91;, i = 1, 2. is the ordered sum of finitely-many simple
J-models based on atomic frames. The pair (91;. N, ) is called o-matching if it satisfies
one of the following conditions (a)—(c):

(a) My and 9, are simple models based on the same atomic frame § with
atgy, (y) = at&z(y), for every point y in ;
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18 AGI KURUCZ, FRANK WOLTER., AND MICHAEL ZAKHARYASCHEV

(b) the final clusters C; of 0M;, i = 1.2, are non-degenerate and, for every point
y1 in Ny, there is y, € C, with atgy (y1) = atgy, (y2). and, for every point 3,
in 9. there is y; € Cy with arfy,) (32) = atgh(yl);

(c) 1. the last <t-components of the 91} and 9, are based on the same atomic

frame & of the form ¢((®), ) or €(®). o). with 0 < k < 20!;

2. aty (y) = atg, (»). for every point y in the root ®)-cluster 4, of &;

3. forevery point y; in any non-last <\-component of 91;, there is y, € A; with
atg, (y1) = atgb( ¥2) and, for every point y, in any non-last <-component
of 0y, there is y| € Ay with arfy) (1) = atg, (y1).

If (91;. OM) satisfies condition (x), for x = a, b, ¢, we say that it is of type (x).

(a) L ()

o [} J<[J<C 0

(c)

|

‘QDQ@M%

—

-

0000

2
Q

The following lemma justifies this definition.

LeEmMMA 4.4. Suppose M; = N <+ <NV, for i = 1,2 and 0 < N < w, and x;
is a root of M. If atgy (x1) = at, (x2) and. for every £ < N. the pair (M. NY) is
o-matching, then ., x| ~4; Mo, X3.

Proor. First, we show that, for every £ < N, there is a global g-bisimulation
between D¢ and M. This is clear for (N4, 9NY) of type (a). in which case the identity
function on §) is a g-bisimulation.

If (M. 9) is of type (b). then the final clusters C; of 0¥, i = 1.2, are non-
degenerate. Thus, B, U B, is a global g-bisimulation between 91 and 9%,

Bi={(r1.2) | y1in N} y2in Cr.atgy(vi) = at;g(yz)},
Br={(r1.32) [ y2in M1 in Croary (1) = arfy (32)}-
If (M, 9%) is of type (c), suppose N = N < 9N for 0 < m; < w and
i=12.By(c).l, ‘ﬂ';“u and ‘ﬂ;’zfl’l are simple models based on the same atomic

frame of the form €((®), ®) or €((®). o). As in Example 2.2, let 4y = {a, | s < k} and
Wi = Ax U{b, | n < w} (containing all the points of €(®), *)). We claim that

algﬁ (b,) = at“;g (b,). foralln < w. (11)
Indeed, suppose n < w and let s < k be such that n = s (mod k). As ‘II;"”’Z isa
simple model. we have

atg,(by) = at;,,i,l_l (by) = at;,,i,l_g(ax) =aty,(a;). fori=1.2,
i i i

i
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and so (11) follows from (c).2. Now let

. 24 o
Br=1{.y) [ y1in M < aM s € Ag.aty (n) = atfy (1)},

Br={(1.y2) | »2in N q ‘ﬁ;ﬂj,yl € Ak’at&{ () = atﬂmg(yz)}-
By (11) and (¢).2-3. B, U B, U {(by.b,) | n < w} is a global o-bisimulation between
N and N, Finally, if f° is a global g-bisimulation between MY and MY, then
ﬁo U{(x1,x2)} is also a global g-bisimulation between ‘)“((1’ and ‘)1‘2) because
atg, (x1) = atg, (x2). The union of the constructed global bisimulations is a (global)
bisimulation f between 0, and 91, with x;fx,, as required. =

The following strengthening of Theorem 4.2 will be proved in Sections 4.2 and
4.3,

THEOREM 4.5. For any logic L O K4.3 and formulas o1, @, without an interpolant
in L, there are rooted 6-models Ny, x| and Ny, x5 satisfying (a)—(d) below, for 6 =
sig(p1) U sig(pa) and o = sig(er) N sig(ea):

a) Ny, x1 = o1 and My, X3 = —pa;

b) eachM;, i = 1,2, is based on a frame for L;
)
)

, <p2|)) such that N, = ‘ﬁ? - ‘ﬁfv’l, i=1,2,

and, for any £ < N,

1. each M¢ is the ordered sum of O(max(|p
based on atomic frames;

2. the pair (N{. M) is a-matching.

©2|))-many simple 5-models

s

Observe that the models provided by Theorem 4.5 are ordered sums of
polynomially-many simple models. However, the sizes of these simple models are
not necessarily polynomial in max (||, |¢2]). Our second main result shows that
all finitely axiomatisable logics L O K4.3 have the stronger quasi-polysize bisimilar
model property: the lack of an interpolant can be witnessed by a pair quasi-finite
models of polynomial size. More precisely, suppose L is given by its canonical axioms
as L =K43® {a(6;.9;.1) | j € J.}. for some finite set J, and &; = (V. S;).
Let ¢, = max;cy, |V;|. An atomic frame in (10) is called L-bounded if it is of the

form m=< or @) < m=< with m < ¢, + 1, or it has one of the three remaining forms
with

k < ppler ) = 2(k(p1, @2) — 1) - max (eL + 2. k(1. 2)) + k(1. 2).
for the polynomial number k(1. ;) defined in (8). In Section 4.4, we prove the

following.

THEOREM 4.6. For any finitely axiomatisable logic L O K4.3 and formulas o1, ©>
without an interpolant in L, there are rooted d-models Ny, x| and Ny, x, satisfying
(a)—(d) from Theorem 4.5, in which condition (d).1 is strengthened to

1. each ME, i =1.2. is the ordered sum of O(max(|pil.|¢2|))-many simple
d-models based on L-bounded atomic frames.

s

In Section 4.4, we also show the following.
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THEOREM 4.7. All finitely axiomatisable L O K4.3 have the quasi-polysize bisimilar
model property, with the size of witnessing models bounded by

(3k(1.2) — 1) -max (e +2.p (1. 92)).

REMARK 4.8. As a consequence we obtain that each finitely axiomatisable logic
L D K4.3 has the quasi-polysize model property: ¢ € L iff o is true in all models 9t
that are (i) ordered sums of simple models and (ii) are based on a frame for L of
size O(|p]?) (cf. [30. 43]).

In the remainder of Section 4.1, we show how Theorem 4.6 implies the following.

THEOREM 4.9. The IEP for any fixed finitely axiomatisable logic L O K4.3 is
CONP-complete.

PrOOE. We describe an NP-algorithm deciding the complement of the IEP for
L given by its canonical axioms (6). Given ¢; and s, let 6 = sig(ip) U sig(p»).
We guess polynomial-size N. Then, for each £ < N, we guess z; € {a.b, c}, and if
z¢ = a, we let nf = nf = 1: otherwise, we guess polynomial-size n¢, for i = 1,2; we
also guess simple d-models ‘ﬂ{'[, fore <N, i=1,2,j< nf, based on L-bounded
atomic frames that are either of the form &), €(%). ). or €((®). o), for some k <
P (¢1.92). or of the form m= or ) < m=, for some m < ¢, + 1, and respective

roots x; in MI’. We then let N = N4 <. < ’ﬁ;’{*l'e, for £<N.i=1.2, and
M =N < 9NV!. Checking (¢) and (d).2 in Theorem 4.6 can clearly be done
in time polynomial in ||| (which is polynomial in max(|p|, |¢2])). For (a), we
use the following.

LeMMA 4.10.  Checking whether My <1 --- <M, 1, x |= . for simple sig(p)-models
M, j < n, based on atomic frames with root x in My, can be done in time polynomial
in I and || | + -+ + [ 9,1

PROOF. Let M = My < -+ < M,,_1. Suppose 9N; is based on the frame €(®). *)
defined in Example 2.2 with points a;, s < k., and by, £ < w. Using the definition
of a simple model. it is readily shown by structural induction that any formula
w € sub(yp) is satisfiable in 9, iff there is £ < k + md(y) with ;. b, =y, where
md(y), the modal depth of . is the maximal number of nested modal operators in
w. The required algorithm is now obvious. .

Suppose L = K43 @ {a(6;.D,. 1) | j € J.} with finite J; and &; = (V. S;).
To check condition (b) in Theorem 4.6, we require the following.

LEMMA 4.11. If § = §o < -+ < Fu1 with atomic frames Fy, £ < n, then checking
whether § |= a(&;.9;, L), for all j € Ji. can be done in time polynomial in

ng ;i =n-max ([|Foll. ... | [l [V;])-

Proor. Let § = (W.R,P). Given any a(&;,D;, L), we construct the Kripke
frame $; = (W;. R;), where R; = R lw, and W; C W comprises

s

— the underlying sets of all finite <-components F; of §:
— thelast|V;| + 1-many points by, . ... by in §¢ = €(®, *), where x € {e,0} and
by Vil is ‘painted’ blue (see Example 2.2 for the notation).
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Then $; is a subframe of § because all finite subsets of {b, | n < w} are internal in

€(®. *). We show below that there is an injection f: V; — W satisfying (cfy)—(cfy)
in § iff there is an injection i : V; — W; satisfying (cfl) (cfy) in $; and having no
blue points in 4(¥;). Note that the latter is checkable in time polynomial in ng ;:

just enumerate all (at most n‘ ;l-many) injections V; — W, and verify that at least
one of them meets the requlred conditions.

(<) Suppose i: V; — W; is an injection satisfying (cfy)—(cfs) in $; and having
no blue points in ~(V;). We clalm that 4 satisfies (cf;)—(cfy) in §. Indeed, (cf;) and
(cfg) hold since $); is a subframe of §, and (cfz) holds because the final cluster of §;
is the final cluster of § by definition. To show that 4 also meets (cf3), observe that,
as h(x) is not blue for any x € V;, the immediate predecessor cluster of C (/(x)) in
£; is also the immediate predecessor of C ( (x )) ng.

(=) Let f: V; — W be an injection satisfying (cf;)—(cfs). To obtain h, we

modify those f(x) that belong to infinite <-components §; = €((®). *). Suppose
the intersection of f(¥;) with such an §, is not empty. By (3) in Example 2.2
and (cfy). f(V;) N{ao.....ar 1} = 0. and so the intersection of f(V;) with ; is
{bi,. ... bi,, |} for some m,; < |V;]. It is readily seen that by taking h( )= b, if

f(x)=b,., for z<my, and h(y) = f(p), for f(p) in finite <-components, we
obtain an injection i: V; — W; with (cf;)—(cfs) and no blue pointsin (V). A

If all checks are positive, then, by Lemma 4.4, 91, x; and D%, x, satisfy the
conditions of Theorem 3.2, and so ¢; and ¢, do not have an interpolantin L. -

4.2. Partitioning models into globally o-bisimilar intervals. In this section, we
start proving Theorem 4.5. In a nutshell, our plan is as follows. Given ¢; and ¢,
without an interpolant in L O K4.3, the criterion of Theorem 3.2 supplies models
9M;. i = 1,2, based on finitely 9M1;-generated descriptive frames §; = (W;, R;. P;)
with roots x; € W; such that:

— My, x1 = @1 and Ny, X2 = —ea:
—each ;. i = 1,2, is based on a frame for L;
— M. X1 ~ Do, x5, where o = sig(p) N sig(ps).

To prove Theorem 4.5, we need to turn the 9;, x; to some D;,x; with the
required structure and still satisfying these three conditions. In view of Example 3.6,
extracting the roots x; and the sets M;, S; of maximal points from 9; (similarly
to the proof of Theorem 3.5(a)) is not enough now, so we need to develop a more
involved construction. We proceed in two steps:

— First, we analyse the o-types in the 91; and partition them into internal closed
intervals Z; = {I} | £ < N}, for the same N = O(max( )). such that
Ny T 1t and 91, | 1f are globally g-bisimilar, for every £ < N. By Lemma 2.9,
Mm; = (ml fIO) << (ml F[.N’l)r i=12.

— Then, in Section 4.3, we complete the proof of Theorem 4.5 by transforming
each pair (901, e M [0 ). £< N. into a pair (9{.91%) of models with the
required structure.

We begin with a simple observation on definable closed intervals.
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Lemma 4.12. Suppose I is a model based on a rooted finitely 9M-generated
descriptive frame § = (W, R, P) for K4.3. Then every closed interval [C,C'] in §
with a non-limit cluster C’ is definable in 9.

Proor. By Lemma 2.6 (a)—(c), the non-limit C’ is defined in 9 by some
formula y. Let 6 = L if C is the root cluster, and let 0 define the immediate
predecessor of C in 9 otherwise, which exists by Lemma 2.4(a) and is definable by
Lemma 2.6(a)—(c). Then [C, C'] is defined in 9 by =OF6 A O Ty, %

Next, we look into the structure of g-types in any model 9t based on a rooted
finitely 9)t-generated descriptive frame § = (W, R, P) for K4.3. Given x € W and a
signature g, we define the a-block by (x) of x in 90 by taking

b7 (x) = 1V € W | 015 (y) C 1§ (x). Orf(x) C 1§ (0)}. if Oy (x) C 1 (x):
T {x}. otherwise;

in the latter case—when x must be an irreflexive point—the o-block b3, (x) is
called degenerate. (It can happen that {x} is a degenerate cluster but b3y (x) is not a
degenerate g-block.) Wecallaset b C W aa-block in M if b = by (x), for some x. It
is readily seen that the relation x ~ y iff b3, (x) = b3, (») is an equivalence relation
on W, and every o-block b is an interval in §. (See Example 4.14 below for an
illustration.) Observe that

(block) for all g-blocks b in M and y € W.if y ¢ b. then 15, (y) ¢ t5,(b).

For degenerate o-blocks this follows from the definability of degenerate clusters
(Lemma 2.6), and for other o-blocks it is straightforward from the definitions.

LemmA 4.13. Suppose I is a model based on a rooted finitely 9M-generated
descriptive frame § = (W, R, P) for K4.3. For any a-block b in 9N, there exist clusters
C,. C; in§ such that the following hold:

a) b=[C,.C/]:

b) zf C b+ is maximal in 9N, then it is o-maximal in ON;
c

d

) if C, is degenerate, then b = C,:
) b is deﬁnable in M iff Cf is nol a szzt cluster;

) 152(B) = 15:(C)).

PrOOF. (a) Let X = {C | C be acluster with b N C # (0}. As b is an interval,
b = Ap. By Lemma 2.4, there is a <g-largest cluster C,f in Xj. Also, thereis a <g-
largest cluster D with D < C, for every C € Xj. Suppose there is no <g-smallest
cluster in Xj. Then D is a limit cluster and if y € D. then 15, (y) ¢ 13, (b) by (block).
So there is a g-formula u such that u € 15,(y) and Ou ¢ 15, (x) for any x € b. and
so for any x with yR*x. As D is non-degenerate by Lemma 2.6, it follows that D
is Ou-maximal in 9, contrary to Lemma 2.6(b). Therefore, there is a <g-smallest
cluster C; in ;. and so b = [C,. C}7].

b)1rC b* is maximal in 91, then either it is final or has an immediate successor, by
Lemma 2.6(b). If C,' is final, then it is T-maximal in 901. So suppose that C(y) is an
immediate successor of C;” = C(x). If C;" is not degenerate, then 15, (x) € 15, (v)
follows from y ¢ b. So there is a o-formula g such that 9, x |= x and M, y £~ Ou.
If M.y |=u. then G is Ou-maximal in 9. And if M.y = p. then C, is
u-maximal in 9. If C,; is degenerate, we cannot have O1g,(x) C 1g,(x). for

(
(
(
(
(e
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otherwise £, (x) C 13, (). contrary to (block). Thus, ¢15, (x) € 15, (x). and so there
is o-formula x such that 901, x = u and M. x [~ Ou. Therefore, C;" is u-maximal
in 901

(¢) Suppose on the contrary that C; = {x} # b. Then |b| > 1. and so O1,(x) C
13, (x) follows from b = by (x). So. for every o-formula u. if M. x = w then 9, x |=
<Op. On the other hand, C; is maximal in 9t by Lemma 2.6(a). and so o-maximal
in 901 by (b). which is a contradiction.

(d. <) This is by (a) and Lemma 4.12.

(d. =) Suppose that b is defined in 9t by some . Then C b* is y-maximal in 901,
and so cannot be a limit cluster by Lemma 2.6(b).

(e) If C;" is degenerate, then this is obvious by (¢). So suppose C,” = C(y) is
non-degenerate and x € b. Then 1, (x) C 15,(y).andso O AT € 15, (y) forevery
finite ' C 1§, (x). By Lemma 2.3, there is z such that yRz and 13,(z) = t5;(x). By
(block), we have z € b, and so z € C;. =

EXAMPLE 4.14. The model 9, in Figure 1 from Example 3.6(a) is partitioned
into the following o-blocks (indicated by the brackets), for three different o:

o=10

I 1T 1T 1T 1
P1 P1-q1 P2.q1 P1-41 P2. 41

*—0—>0—0

! BB B
o ={p1.p2}
| I 1 I 1 I 1 I 1 I 1
©1 P1> 741 P1-q1 P2.q1 P1-q1 P2-q1

o ———>0—0

b3 b2 b! bY

X1 V1

o ={p1.p2-q1. 92}

i T 1 I 1T 1T 1T 1
P1 P11 P14 P2 q1 P1-q1 P2 q1

*—0—>0—0

X1 b3 b()

1
b 1

2
b 1

1
To show this for ¢ = ), observe that, for every n > 0, we have O"T € tgﬂl (b{’)
OMHIT ¢ lgnl(bf), 0T € tgﬁl(b?)’ and O"T € lgnl(“?)- The cluster C(a)) is not
maximal in 2 as any formula o that is true at ¢} or g/ is also true at b}, for some

n < w (which is seen by induction on the structure of «). The model 90t} in Example
3.6(b) has only one (-block comprising all of its points.

‘We now return to our models 9;, i = 1, 2, witnessing the lack of interpolants for
@1 and ¢,. By Lemma 4.13(a), o-blocks in each 9; are closed intervals that form
a partition of W; (with not all of them being necessarily definable in 921;). We show
that there is a <j,-respecting bijection between the o-blocks of the two models.
Indeed. suppose that W, is partitioned as {b’ | j € F} into a-blocks in 90, for
some countable set F. For each j € F, we let

B(b) ={y e W2 |15, (y) € 15, (B))}.
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LemMma 4.15. Forall j € F, the following hold:

(a) 15y, (67) = 15, (B(B7)):

(b) p(b’ ) is a o-block in M. and b’ is degenerate iff B(b’) is degenerate:
(c) {B(b’) | j € F} is a partition of W»;

(d) b7 <5, B iff B(b7) <5, B(B"). for j.k € F:

(e) b’ is definable in MM, iff B(b') is definable in M.

PrOOF. () This follows from 9. x| ~, M;. X, and Lemma 3.1. '
(b) Let j € F. As M. x1 ~; M. x2. B(b’) # 0. Take some y € f(b’). We
show that f(b’) = b3y, (y). Indeed. this is straightforward from the definitions if

<>tgﬁ2(y) C tgﬂz(y). If thnz(y) gz tgﬁz(y), then by, (v) = {y} Take some x € b’
with tgﬁl(x) = tgnz(y). Then Otgﬁl(x) Z toy, (x), and so b’/ = {x}. Thus, g(b’) =
{z e Wy tgﬁz(z) = 15, (»)}. and so there is a g-formula y such that u € t5n, (z) =

t5n, (y)and Ou ¢ 15y, (2) = 1y, (). Suppose thereis z € f(b”). z # y. Then either
zR,y or yR,z, which is a contradiction.

(¢) As B(b’) and B(b*) are disjoint for j # k by (a) and (block), the relation
‘y ~ y'iff there is j € F with y. y" € f(b’)’ is an equivalence relation on W5.

(d) This follows from 901, x1 ~¢ My, x5, (a) and (block).

(e) This follows from (b)—(d ) and Lemma 4.13 (a) and (d). 4

So. from now on we assume that we have a strict linear order (F <) such that
each W;. i = 1.2, is partitioned as {b/ | j € F} into g-blocks in 9; with j < k iff
b{ <z, bY iff b <3, b, for j.k € F. (We write j < k whenever j < k or j = k.)
Observe that, by Lemmas 2.4(a) and 2.7, (F, »-) is isomorphic to a countable ordinal.
We say that j € F is a >-limit iff it corresponds to a limit ordinal under this
isomorphism. Thus, every j € F has an immediate <-predecessor, and if j is not a
>-limit, then it also has an immediate <-successor. Also, j is a >-limit iff C;j 1S a

1

limit cluster, fori =1, 2.

Next, we analyse some properties of special a-blocks. Recall that Steps 1 and 2 in
the proof of Theorem 3.5(«) give us the sets M ; containing the { }-maximal points
in 9M; that satisfy each formula y in sub(y;) that is satisfiable in 9;; the set T of
the o-types of points in {x;, x} UM U M, (cf. (7)); and also the sets S; C W; of
t-maximal points in 9; satisfying the o-types ¢ from 7. Points in {x;} UM, U S;
are called relevant in 9;. A cluster or an interval is relevant in 90%; if it contains
a relevant point, and irrelevant otherwise. The number of relevant clusters (and of
relevant o-blocks) in 91; is clearly bounded by the number of relevant points, that is,
by k(1. >) (defined in (8)). Note that the root and final clusters of 9); are always
relevant (the latter because sub(yp;) is closed under negation, so the final cluster
always intersects with M ;).

ExAMPLE 4.16. For the models 9%; shown in Figure 1 from Example 3.6(a)
ando = {p1. p2}. wehave M; = {x;, y;.b}.b?}. 81 = {x1. y1.a].b].b?},and S, =
{x2.y2.a3.b). b9}, so only the first two and the last two o-blocks in the 9; are
relevant (cf. Example 4.14 for the g-blocks).

The next lemma lists a few important properties of relevant o-blocks.
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LemMa 4.17. Forall j € F andi = 1,2, the following hold:
(a) S;Nb/ =8;n ch
(b) ({x:}UM;US)NC), =S8N C)s
(c) b/ is relevant iff S; N C;*{- £ (; l
(d) there is a bijection f~: (S1 N Cb?) — ($2N CbZ) with tgnl(y) = tgnz(f’(y)),
foreveryy € §1N C;{:
(e) by is relevant iff b is relevant.

Proor. Recall the following properties of the .S; defined in Step 2 of the proof of
Theorem 3.5:

L. if x € S, then x is 15, (x)-maximal in 9;;

2. ifx € {x;} UM, and x is 15, (x)-maximal in 901;, then x € S;;

3.ty ({xifuM;uUS;)C zgn,_(s,.);

4. there is a bijection f: §1 — S, with tgﬁl(y) = tgﬁz(f(y)), forevery y € S.

(a) Let x € S; N bJ. By Lemma 4.13(e), there is y € C:j with 1, (y) = tgﬁi(x).
Then C(x) = C(y) follows from 1., and so x € C;Lj.

(b) Take x € ({x;} UM;) N CbJ;.. By 3.. thereis y € S; with 1§, (v) = 3, (x). By
L. yis gy (y)-maximal in 90%;. Thus, by (block) and Lemma 4.13(e). y € C;.. It

1

follows that xx is 75, (x)-maximal in 90;, and so x € §; by 2.
(¢) We show that 13, (({xi} UM;US:)Nb]) C iy ({xi} UM US:) N C).

Then (c) follows from (b). To this end. take x € ({x;} UM, US;) N b/. By 3., there
isy €. S; with 1y, (y) = 150, (x).Byl..yis 13y, (y)-maximal in 90;. Thus, by (block)
and Lemma 4.13(e). y € C;f"

(d) Let f—=7F1 s nc+ for the bijection f provided by 4. Then, for every
b
xesSin Cl’*., f(x) = f(x) € S, with tgnz(f(x)) =I5y, (x). By Lemma 4.15(a),
l . .
tgnz(f(x)) € tgnz(bé), so f(x) € b follows by (block). Thus, f(x) € Cbz. by (a).
(e) follows from (c¢) and (d). 4

We are now in a position to partition each of the 91; into the same polynomial
number N of closed intervals Z; = {If € P; | £ < N} such that 90 [I{z and 901, [Izg
are globally o-bisimilar, for every £ < N, even if there are infinitely many o-blocks
in each 9; and not all of them are definable in 9;.

DErINITION 4.18. We define the partitions Z; of 91;, i = 1,2, in three steps. In
each step, we add interval-pairs (1, I) to Z; x I, in such a way that:

(a) I, is a closed interval whose final cluster is a non-limit cluster, fori = 1,2;
(b) there are j. j' € F such that I; = Ujjkjj’ bf»‘, fori =1.2.
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It follows then from (a) and Lemma 4.12 that all intervals in Z; are definable in 9)t;.
Also, it follows from (b) and Lemma 4.15(a) that

[y elf x Iy | 15w, (V1) = 13y, (2)} is a global g-bisimulation (12)
between 0t | It and M, | 1t for every £ < N.

The three steps are as follows:

(s;) First, suppose b-{ , J € F, is a relevant g-block that is definable in 9;. By
Lemmas 4.15(e) and 4.17(e). b, is also a relevant o-block definable in 1.

We put into Z; all those relevant o-blocks b{ that are definable in 901;, for
i = 1,2. Then (b) clearly holds, and (a) holds by Lemma 4.13(a) and (d).

(s2) Next, suppose b{ , J € F, is a relevant g-block that is not definable in 91;.

By Lemmas 4.15(e) and 4.17(e), bé is also a relevant g-block that is not
definable in 90%,. By Lemma 4.13(d), each C;f is a limit cluster in §;, and so

j is a >-limit. We pick some £ > j such that the -blocks bf»‘, forj <k =¢,
are all irrelevant, for i = 1.2. Such an ¢ must exist as j is a >-limit and
the number of relevant points is finite, but this £ is not unique. Let F~ =
{k€F|j=<k={}and = > |,.By Lemmas 2.4(a) and 2.7, there is an
isomorphism f from some countable ordinal y to (F~,="). Asj is a >-limit,
y > w. Take f(n), n < w. There are two cases:

1. There exists m, 0 < m < w, such that b{w is a degenerate g-block for

every n with m < n < w. Then, by Lemma 4.15(b). b§<") is a degenerate
o-block, for every n withm < n < w. We set j/ = f(m).

2. For every n < w, there is m,, n < m, < w, such that b‘lﬂm") is a non-
degenerate g-block. Then, by Lemma 4.15(b), bg (mn) is a non-degenerate

o-block as well. Note that if # > 1, then f(m,) is not a >-limit. Thus,
C;f(m”) is not a limit cluster, and so it is definable in 9%; by Lemma 2.6.

We set j/ = f(my).

In both cases, we put the intervals Ujjkjj, bf-‘ into Z;, i = 1,2, and say
that they extend the relevant non-definable o-blocks b{ . Then (a) and (b)
hold.

(s3) Finally, suppose that, for i = 1,2, the intervals I; = Unl <k<m bf-‘ and J; =
Uj1 <k=j bf-‘ are such that there is k withn, < k < ji, I;, J; € Z;, and there is
no interval in Z; intersecting the ‘gap’ between I; and J; (that is, any bf-‘ with
ny <k < j1).ByI; € Z; and (i), ny isnot a >-limit. Let n;” be the immediate
<-successor of ny and ;| the immediate <-predecessor of j;. Then we put
the (irrelevant) interval Un; <K= b" into Z;, for i = 1,2. Then (b) clearly
holds, and (a) holds as j is not a >~-limit. By doing this for all the gaps, we
end up with the required partition Z; of 9;.

The number of intervals added in steps (s;) and (s;) together cannot exceed the
number of relevant g-blocks. and so it is bounded by k(¢1. ¢>). As the <z, -smallest
and <, -largest g-blocks are relevant, the number of intervals added in step (s3) is
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bounded by k(1. ¢2) — 1, so altogether the (same) number N of intervals in each
Z; does not exceed 2k (1. ).

The following example illustrates Definition 4.18.

ExamMPLE4.19. Formodels 901;, i = 1,2, from Example 3.Q(a) and o-blocks from
Example 4.14 for ¢ = {p;. p»}. we can pick the intervals I/, j < 4, shown below.
where 17 are irrelevant and all other intervals are relevant (cf. Example 4.16). The
choice of the infinite intervals I, extending the non-definable o-blocks till b is
arbitrary. We could make them shorter or, on the contrary, extend until bl2 in which
case there would be no gap between these intervals (extending relevant non-definable

o-blocks) and the next relevant interval.

1 1] I} I} I}
1 [ 1 [ 1 [ 1 [ 1
1 I 1 I 1 I 1 I 1 I 1 I 1
P1 P19 P2 91 P1- 91 P2 91 P1- 91 P2 91
N,y *———>0—> e T/ ——>0——> 00— 0
q D14 3 ) gl 10
xgl M i 'bl gbl b 2 by
x ¥ T S S S

— >0 ro— >0 o
pP1-492  Pp2.92  P1-492  P2.92 P2 42
L 1 L 1 L 1 L 1 L 1

Rze) *——>
Y2 P22
 I— L

I— L | L | L | L |
L I 1:3 [:; [24

4.3. Simplifying interval-based models. Consider again our g-bisimilar §-models
IM;, i = 1,2, that are based on finitely 9);-generated descriptive frames §; =
(W;, R;.P;) for L with roots x; € W; and witness the lack of an interpolant for ¢
and ¢, where 6 = sig(e1) U sig(p,) and o = sig(;) N sig(p,). In Definition 4.18,
we determined N < 2k(¢p). ¢»). for the polynomial number & (¢, 5) from (8), and
constructed the partitions Z; = {If € P; | £ < N} of M; with I? <5, - <5, IN!
satisfying (12). We now use these partitions to prove Theorem 4.5. First, in Lemma
4.21, we transform each pair (9%, [Ilz, Mm, rlzg ). £ < N, into a pair (9, 91) of models
meeting the list of requirements in Definition 4.20. Then, in Lemma 4.22, we
show that these requirements ensure that 9% =9 <.+ <M1 7 = 1,2, satisfy
all conditions in Theorem 4.5.

Foralli = 1,2and£ < N.theframe ¢ = (Hf. R¢, P¢) underlying N is such that
H! C 1! is definable in 90; and R = R; | ¢~ but $¢ is not necessarily a subframe

of §; [,.. However, we require each ﬁf to meet some conditions making sure that
i

the canonical formulas refuted in $; = 56? g leN -1 are also refuted in §; (and
so L C Log(F:) C Log($;)). Another feature of the construction is that the atomic
type of some points in 9%; could be different from their atomic type in 91;. We prove
M. x1 = o1 and DMy, x5 = —¢, by ensuring that no new (compared to 9;) atomic
types are introduced in 9%;, and the distribution of old atomic types in 91; properly
matches their distribution in 9%;. We achieve this by introducing functions hff that
assign to each point x in ¢ a unique ‘parent’ point in M; | ;¢ Whose 901;-behaviour

x 1s intended to mimic in 91;.
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DEerINITION 4.20. Suppose I € P;. i = 1,2, is an interval in §;. We say that a
model 0N based on a frame $ = (H, S.P’) is (1, i)-nice if the following hold:

HCTlandS =R, |y: (13)
({xi}uM;US,)NI C H: (14)
the final cluster in $) is a subset of the final cluster in 3, |, : (15)
if the root cluster C in §) is degenerate, (16)
then C is the root cluster incc§; [; ;
for every x € H, if {x} is a degenerate non-root cluster in ) (17)
and C C [ is the immediate predecessor of {x} in §;, then
C N H is the immediate predecessor of {x} in £:
for every x € H, if {x} € P’, then {x} € P;: (18)

there is a function h: H — H such that:

h(x)=xforallx € ({x,}UM;US;)NH: (19)
atm(x) = atw(h(x)) = aton, (h(x)) forall x € H: (20)
if xR;y, then h(x)R;h(y) forall x,y € H; (21)
if h(x)R;y, then xR;y forallx € H,y €¢ M; N H. (22)

LEmMA 4.21. For alli = 1,2 and ¢ < N, there exist models ‘ﬁf based on frames
9t = (HF. S PY). and numbers nt > 0 with YN nt < 3k(p1.p2) — 1 such that the
following hold.:

(a) MEis (IF.i)-nice:

(b) M is the ordered sum of nt-many simple 5-models based on atomic frames:

1 1
(c) the pair (N, M) is a-matching.

PROOF. We consider three Cases I-111, depending on the step the pair (I{, If) is
added to Z; x 7, in Definition 4.18.
Case 1: (I{.1}) is added in step (s3). so If are irrelevant intervals. We let nf =

nt =1 and define 9t and 9 as follows. Let Z! = {z/ | j < m;}. for i = 1.2, be
the tail of §; |,¢. for some m; < w. with zi’ijzl.J*]. 0<j<m.By(12).{(31.y) €
IF x I | tqn, (1) = 3y, ()} is a global ¢ -bisimulation between 0 [1e and M, [1e-

It is straightforward to see that because of this we must have |Z{| = | Z£| = m, for
some m < w, and Z{ = I{ iff Z{ = I{. Also, if Z! # If. then there exist w/ in the
head of Z¢ with I, (wf) = 1, (wf). Fori =1,2,let

H! =

1

zt itz =1t
{wfluzZf,  otherwise,

St = R; [ ,¢. and let P! consist of all finite subsets of Z! and their complements

in H. Then f: H! — H{ defined by f(z]) = zJ, j <m, and f(w!) = w? is an
isomorphism between the resulting frames .6{ and $%, which are isomorphic to
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(i) m=<, when Z! = I:
(i) © <m=<, when Z! # If and m < w;
(iii) €(@. o), when Z! is infinite (as w! R;w! by (5)).
This gives (13)-(18) for = $* and I = I/ (we have (18) because of (3) and

1

Lemma 2.5). For p € 6, let w!(p) = v;(p) N H} in cases (i) and (ii). and

1o’ .
! 0, otherwise

AT

() = {Hl . ifw! € v;(p),
in case (iii). In all cases, w(p) € P¢ and (b) holds for N¢ = (H, w¢). Also, the
pair (916, 79) is of type (@) in Definition 4.3, and so (c¢) of the lemma holds. Finally,
for x € Hf, we let hé(x) = x in cases (i) and (ii), and hf(x) = w?! in case (iii). It
is straightforward to check that (20) and (21) hold for h = hf. Note that (19) and
(22) hold vacuously. as Hf C I/ and ({x;} UM; US;)NIf =0.i =1,2. Thus, we
have (a) of the lemma.

Case 11: (If.1}) is added in step (s1). For i = 1,2, let b; be the relevant g-blocks
such that g, (b)) = tgnz(bZ) and If = b, isdefinable in M;. For £ < N. let r¢ denote

the number of relevant clusters in ¢, and let Cf‘j . j < r¥, be the sequence (ordered
by < R,.) of all relevant clusters in b; (that intersect with {x;} U M; U S;). Then
£
Cf’r"fl is the final cluster C;' of b;.
4
Case 11.1: Observe that, by Lemmas 4.13(c¢) and 4.15(b). Cf’rrl = Cb+1 is
l
degenerate iff Czl’rzf1 = C,fz is degenerate iff both b; = C,f] and b, = C,fz are
degenerate g-blocks, and so r¢ = 1. So, in this case, we just set nt = 1, ! = F; s,
N =M, ;- and h;(z;) = z; for the only point z; in b;, i = 1,2. Itis straightforward
to check that (a)—(c) of the lemma hold. In particular, (¢) holds because the pair
(M, 98) is of type (a) in Definition 4.3.

l
Case 11.2: So, let C,,“" — C; be non-degenerate, for i = 1,2. We may assume

that, for any j < rf -1, Cf‘j is a non-limit cluster. (For j > 0, this follows from
Lemma 2.6, as Cf” N M; # () by Lemma 4.17(a). However, if C? is the root cluster
in§;.itcan happen that ({x;} UM;) N C? = {x;}. x; ¢ M, and C! isa limit cluster.

l
We may exclude this case by Lemma 3.3.) Also, as b; is definable in O;, Cf’r" 1o C ;

is a non-limit cluster by Lemma 4.13(d ). Below, we define sets 4¢ C Cb‘: , intervals

J{7 C If . and models 07 = (97 wi7) with 77 = (H/ R; [ ,e;.P{7). for i =

1

I,2and j < rf, such that the following hold:

‘)’tf’ is (Jf’ i)-nice, for j < ré: (23)
‘ﬁf’ is the ordered sum of at most two simple d-models (24)

based on atomic frames, for j < rf;

{Jf’j | j < r%}is a partition of I} with Jf"o <z =z Jd (25)

i 1
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there is a o-type preserving bijection between 4% and A4%: (26)
zgﬁl( | H ) C 15y, (45) and zgnz( | HE ) C i, (4).  (27)
j<ré-1 j<rb

Then we show that (23)-(27) imply (a)—(c) for 9! = M0 <. g ‘ﬁf‘r’u and some
n! < 2r%. In particular, (c) because (9, 91) is of type (b) in Definition 4.3.

To this end, we cover first the cases when j < rf — 1 and then, separately, the case
j =r% —1.So suppose first that j < ¥ — 1, and let J/ = [D}/, C//], where D is
the root cluster in §; | It and Df‘j 1s the immediate successor of the non-limit cluster

Cf’j’l, 0 < j<rf—1 Observe that ({x;} UM; US;)N J,-Z"i c Cig'j- We consider
four subcases (i)—(iv), depending on the tail Zf‘j of §i [ e,

i

(i) Z/ = 0.s0 C/ is non-degenerate. Let H/ = ({x;} UM, US,) N C// and

- 0. . . .
Pph =M " Then §7 is isomorphic to ®. for k = [H//|. We set h/ (x) = x,
for x € Hf‘f., and mf’f (p) = nll(p) N H,.“, for p €9. A A A
(i) If0 < |Z/| =m < wand Z\/ = J*/ then by taking H// = J'/ and P}/ =
L.j ; . .
2H:” we obtain $%/ isomorphic to m<. We set h/ (x) = x. for x € H/ and
wi/(p) =vi(p) N H forpes. _ _ _
(ifi)) If 0 < |Z"| =m < w and Z{/ # J*/, then setting H// = {w//}U Z/,
. . . 0 .
for any w’/ in the head of Z/, and P/ = 2" gives §*/ isomorphic
to ) < m=<. Let hf" (x)=x, forx € Hf‘/., and mf” (p) =0v;(p)N Hf"’, for
peo. . 4 . .
(iv) If Z%/ is infinite, then let H* = {w®*/} U Z*/, for any w’/ in the head of
1 L 1 1 y 1
7", and P!/ consist of all finite subsets of H;/ and their complements in
Hf"{ . By (5), the resulting .ﬁf‘f is isomorphic to AQ:(@’ ) <1 1<, In this case.
Cfij ={ vy is a degenerate cluster for some y € {xi} UM;US;. We set
he/ (y7) = y/ and h/ (x) = w'/ forall x € H/ \ {y//}. For p €3, let

vl (p) = (H N\ 1) U (0i(p) 0 {p{7}). ifw)’ € v;(p).
i \P v:(p) N {yf’} otherwise.

Then it is not hard to check that, in all (i)—(iv), we have mf’j (p) € Pf’j . (24)
for DTf’ = (ﬁf‘j,mf’j), and (13)—(22) hold for $ = S’Jf’j, N = ‘J’tf’ h= hf‘j, and
1= Jf‘j. In particular, in (i)—(iii ), we have (18) by Lemma 2.5. In (iv), we also need
(3) to obtain (18), and the fact that M; N Hf‘j = {yf]} to obtain (22). Therefore,
we have (23) for j < rf - 1.

. . . erf-1 o1 ertel erf-1
Now, consider j = rff — 1. First, weletJ,”"  =[D;”" ,C;" ], where D;”" =

Zgl'lf—l . Z.,r‘?—l . . . .. Z,re—Z
C;"ifré =land D;""" is the immediate successor of the non-limit cluster C; "

otherwise. Then we have (25). We let Y/ = | jert Yf‘j , where Yf‘j = Hf’*" in cases
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(i)—(iii) above, and ¥,/ = {w/, z"/}incase (iv). So Y7 is finite. Set © = {tgn1 (x) |
xeY/}u { ,(x) | x € Y7} Let A7 be the smallest set such that ({x;} UM; U

SN C* ' 4L € ¥ and A¢ contains a point z, with tn, (z:) = 1. for cach

a .
1€0. As Y/ CIf =b;. /" = C and 1, (b)) = 13, (o). such 4! exist by
Lemma 4.13(e). Observe that not only 75, (4f) = o, (A4%) but, by Lemma 4.17(b)

and (d). we actually have (26). Then k := |A{| = |45| < 21 by Lemma 2.4(b). and
also

k <Y+ 1Y5|+ k(o1 02). (28)
-1

By taking Hf’ = A%and Pe Tl — 4] i — 1,2, we obtain .6? ~ and 536 il both
isomorphic to ®. (The sets A are used differently in Case I11.) Then we have (27)

‘l* ) V N
For p € 6. set mf"" 1(p):t)i(p)ﬁHf’ and he 1( )*x for allerZ -
ol riol Y N
Then we clearly have mf""' 1( ) € 735., , (24) for ‘ﬁ (.V)f - mf ", and
(13)—(22) hold forﬁ:.ﬁf" M= m"" B h_h“ la dr=1J .“ 1 ((18) is by

Lemma 2.5). This gives (23) for j=ri-1

3

Finally, we claim that (a)—(c) hold for 0t = 9%° < - < 9" and some n? with

0 < n‘ < 2rt. Indeed, (b) is by the definition of <t and (24). For (¢): The final cluster
£

in MN¢ = final cluster in ‘ﬁf’r" = the non-degenerate cluster A¢. So the requirements
in Definition 4.3(b) follow from (26) and (27). For (a): By (2%) each N/ is (J, 7)-
nice, for j < r¥, that is, conditions (13)—(22) are satisfied for 91 = mfff, H = ﬁf],
I = ,.Z], and h = h,. 7/ (as defined above). We claim that (13)—(22) are satisﬁed for
N =N, H = the frame H; underlying N7, 7 = I/ and hj =, < hi”. Indeed.
(13), (14), and (18)—(20) clearly follow from (25) the deﬁnitlon of <, and the
correspondlng properties for N/, %/, 75/ and h/, j < r?; (15) follows from (15)
for ﬁz il and Jeri-1 :and (16) follows from (16) for $H“* and J%°. For (17): Suppose
x € Hf. {x} is a degenerate non-root cluster in §¢ and C C I/ is the immediate
predecessor of {x} in §;. Let j < r¢ be such that x € Hf”. If {x} is the root cluster
in ﬁf’], then j > 0 and {x} is the root cluster in §; [ ¢, by (16) for ﬁf‘] and Jf‘].

Thus, the final cluster C~ C Hf"j ¢ H! of ﬁf‘j “lis a subset of C by (15) for .V)f’j -
and Je e {x} is a non-root cluster in .V)Z" then C C JM and (17) for ﬁf and
1! follows from H// C H! and (17) for £/ and J* . For (21) Suppose x. y € Hf,
xR;y and let j < j’ < r! be such that x € H// and y € H/". Then h‘(x)R;h¢(y)
follows by (21) for hi J when] = j’, and by the definition of <t when j < j’. For (22):
Suppose x.y € HY, y € M, h!(x)R;y. and let j < j’ < r! be such that x € H/
andy € Hf’j/. Then xR; y follows by (22) for hf’j when j = j’, and by the definition
of < when j < j’.

Case 111: (I, 1{) is added in step (s2). For i = 1,2, let b; be the relevant
a-blocks such that 1, (b1) = 1§, (b2) and If is extending b; that is not definable
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in 91;. We use the notation from Case II. As explained in Case II, we may again
assume that, for every j <rf -1, Cf‘] is a non-limit cluster. However, as now

l
b; is not definable in 9;, Ci“"*l = Cbt is a limit cluster by Lemma 4.13(d). We
again define sets A7 C C,'. intervals J C It and models M/ = (97, w'/) with
ﬁf‘j = (Hf’j,R,- [H_z_,-,Pf'j) such that (23)—(27) hold. Then we show that (a)-(c)
! s

of the lemma hold for 9 = M0 < ... a7 This time, (M, M) is -matching
because it is of type (c¢) in Definition 4.3.

To thisend, forany i = 1,2 and j < rf — 1. we define everything like in Case I1.2.

4
For j =rf—1. weset J''' = [D!. E!]. where D! is the root cluster in ; [, if
s :
r! = 1 and the immediate successor of the non-limit cluster "7~ if ¢ > 1, and E*
is the final cluster in 1. We clearly have (25) and can define the sets Y/ and A¢ in
L
the same way as in Case I1.2. However, for property (18) to hold for $ = ﬁf"’ 1, we
3

need to define ﬁf’ri - differently. We consider the two cases in step (s;) of Definition
4.18:

1. The tail of M; [ ¢ is {b! € I} \ b; | n < w} with b R;b"1, 0 < n < w. (Using

the notation of Definition 4.18: {b"} = b/ "™ n < w.)
2. There is a sequence of non-degenerate clusters D' C I/ \ b; definable in 9;.
n < w, with D? being the final cluster in 90; |, and D <z, D', 0 < n < w.

(Using the notation of Definition 4.18: D' = CJr/,(m +l).) For n < w, we pick
b
some b € D
£
In both cases. we set H "'~ = A U{b" | m < w}. Take the k < w with |4¢| =
L
A% = k. and suppose A¢ = {a®, ....a* "}, i = 1,2. We let P be generated in
2 i i i i

l

(Hf’r"fl,R,' I ,.,) by the sets {b!}, n < w. and X}, s < k, where X = {a]} U
H
3

{b" |n<w, n=s (mod k)} (see Example 2.2). The resulting .V)f”r”fl are both
isomorphic to €((),e) in case 1., and to €(®),o) in case 2. For p €, we set

erfl £rb-
o, (p) = Uafeni(p) X7 . Foreveryx € H"' *, we set

oL
hlf’,i ! (x) =

' af ifx=>b"n<wandn=s (modk).

!x, if x = af, fors <k,

rf—l

¢ ¢ a ‘.
Then clearly mf’ri*l (p) € Pf’ and (24) holclls for Utf’r"fl = (ﬁf"’ l,mf’r’ 1). It
is not hard to check that (23) holds for ‘ﬁf’r" " as well. In particular, (18) for
4
H = .?)f”r’jl follows from (3) and Lemma 2.5. Also, as 4% C C;i and Cbt is a limit
£
cluster, M; N Hf’ri*l =M;nN Af = () follows by Lemma 2.6, and so we also have

¢ L
(22) for H = HY and h = hf,r,.71.

1
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Next, the arguments showing that (a) and () of the lemma hold for the models

e
Nt = fﬁf’o g ‘Itf"" ! and some n! with 0 < n% < 2r! are the same as in Case
I1.2. To establish (c), we show that the pair (9, 9) is of type (¢) in Definition

s .
4.3. Indeed. observe that the last <-components of 0t are fﬁf"" " whose underlying
[7
frames ﬁf’” ! are both isomorphic to the same atomic frame of the form €((®), o)

or €(®.0), with 0 < k < 2Pl Also, the (®-cluster in ﬁf"r’“ is A%, and so the
requirements in Definition 4.3(c) follow from (26) and (27).

Finally, observe that nt = 1if (1{. I}) is added in step (s3) of Definition 4.18 (see
Case I). and n < 2rfif (If. 1)) is added in steps (s1) or (s3) (see Cases I and 11I).
So Y, ynt < (k(pr.p2) 1)+ X,y 2rf <3k(p1.p2) — 1. as required. -

We now complete the proof of Theorem 4.5. In Definition 4.18, we partitioned
the models 91}, x; and 9N, x, witnessing the lack of interpolants for ¢, ¢, into
the same polynomial number N of intervals. For each £ < N, Lemma 4.21 gave us
a pair of models (9, 9%). Let 0, =N < - <NV fori =1.2.

LemMA 4.22. Conditions (a)—(d) in Theorem 4.5 hold for My, x1 and Ny, x».

ProoF. We use the notation of the proof of Lemma 4.21. By Lemma 4.21(a),
each M is (I£. i)-nice, that s, conditions (13)—(22) are satisfied for 9 = N¢, § = H,
I =1/ andh=h.

(a) We show by induction that ;. h!(x) =7 iff M;.x =7, for any i = 1.2,
< N.tesub(p;).and x € H'. Then My, x; |= 1 and My, x3 |= —p, follow from
My, x1 = 1 and My, x2 = —ps. as we have x; € H? and h?(x;) = x; by (14)
and (19). For T = p €6, the statement follows from (20). The Boolean cases are
straightforward, so suppose 7 = Oy.

(=) IfM;, hé(x) = Oy, then there are k > £ and y,, € M; N IF with h!(x)R;y,
and 9M;. y, = w. We have y, € H¥ by (14), and so M.y, = w by (19) and TH.
We claim that xR;y,. and so 91;, x |= Ow. Indeed, for k > £, this follows from the
definition of <1, and for £ = k, by (22).

(<) If My, x |= Oy, then there are k > £ and y € HF with xR;y and M.y = w.
We have ;. h%(y) = w by IH, and h¢(x) R;h*(y) by the definition of < when k > £,
and by (21) when k = £. Hence 9;, h;(x) | Ow.

(¢) follows from (14), (19). (20) and M1, x1 ~5 My, Xo.

(d) 1t is shown in Definition 4.18 that 0 < N < 2k(¢1. ¢2). The rest of (d ) follows
from Lemma 4.21(b) and (c).

(h) We use the refutation criteria for the canonical formulas to show that the
frame $); underlying 0; is a frame for L, i = 1, 2. To this end, we prove that,

for any canonical formula a(®. D, L), if f is an injection (29)
from & to §; satisfying (cfy)—(cfy), then the same f
is an injection from & to §; satisfying (cfy)—(cfy).

Indeed. (cf;) holds by (13) and the definition of <; (cf,) holds, as the final cluster
in $; = final cluster in $ ' C final cluster in §; [,~1 = final cluster in 901;. by

(15). Condition (cfy) holds by (18) and the definition of <. For (ef3), suppose
x €D, C(y) is the immediate predecessor of C(x) = {x} in & and C(f(y)) is
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the immediate predecessor of C(f(x)) = {f(x)} in $;. Let £ < N be such that
x € Hf. If {x} is the root cluster in $¢, then £ > 0 and {x} is the root cluster
in §; [,¢ by (16). Thus, C(f(y)) in $; = final cluster in $*! C final cluster in

Filper = C(f(»)) in §;. by (15). If {x} is a non-root cluster in $¢. then C(f(y))

inH =C(f(y)inH C C(f(y)) inF: F,’_e = C(f(»)) in §;. by (17). Now, (29)
implies that L C Log(g;) C Log($;). as required. 4

4.4. Proofs of Theorems 4.6 and 4.7. Suppose the finitely axiomatisable logic
L is given by its canonical axioms as L =K4.3® {a(6;.D;.1)|j € J.}, for
some finite index set J, and &; = (V;.S;). j € J.. Let ¢, = max¢y, |V;|. Given
formulas 1. , without an interpolant in L, let 0 < N < 2k(p;.,) and N; =
N < 9NV with root x;i = 1.2, be the models satisfying the conditions of
Theorem 4.5 and obtained via Lemma 4.21. In particular, the underlying frame $);
of each 91; is a frame for L. We show in Lemma 4.23 below that the proof of Lemma
4.21 can be refined to yield polynomial-size models ‘ﬁj‘f . £ < N.However, *ﬁ;‘( is no
longer (1f.i)-nice, as conditions (16) and (17) in Definition 4.20 do not necessarily
hold for $ = $7¢ underlying 9% and I = If. Thus, we do not have (29) in the proof
of Lemma 4.22 for the frames $7 underlying 97 = 9 <t --- < M*V-1. We prove that
7.1 =1,2, are frames for L (as required by Theorem 4.6(h)) by using Lemma 4.24
below instead.

Take the number N, 0 < N < 2k(yp1,,), provided by Definition 4.18, the
numbers nt > 0 with }_,_, nt <3k(p1.¢>) — 1. and sets Hf.i = 1,2, £ < N, from
Lemma 4.21.

Lemma 4.23. If L D KA4.3 is finitely axiomatisable, then, fori = 1,2, £ < N, there
exist sets Hi*z C Hf and models ‘)’tl’.‘l based on frames .Sﬁf‘f = (Hi*é, S;*Z, 771-*5) such that
the following hold:

(a) 90 is ‘almost’ (1. i)-nice in the sense that (13)—(15) and (18)—(22) hold for

N = ‘ﬁjg and I = If;

(b) 90 is the ordered sum of n®-many simple 5-models based on L-bounded atomic

frames;

(¢) the pair (Y, W) is o-matching.

PrOOF. We go through Cases I-1II in the proof of Lemma 4.21 and make the
necessary modifications.

Case 1. (If.1}) is added in step (s3) of Definition 4.18. An inspection of this
part of the proof of Lemma 4.21 reveals that m=< or () <t m< is used in cases (i)
and (i7), and in both cases all the m elements of the finite non-empty tails Zf of
i I,¢ are put into the chosen subset H; of I/. Now, we choose a subset H}* C Hf

with |H*| < ¢y +2 as follows. Suppose Zf = {z¢ | a < m} with zfRz¢71, 0 <
a <m,and let m" = min(m, ¢y + 1). We set H* = {z¢ | a < m'} in case (i), and
H* = {wf} U {z¢ | a < m'}, for the chosen w! from the head of Z! in case (ii).
In case (iii). we let H¥* = Hf. Then, in all cases (i)-(iii), we let 5 = $ [,
and ¥ = NY [ ,,.¢. Observe that we have h!(x) € H*, for every x € H}*, and so
h* = h% [« is an H* — H* function. It is straightforward to check that (13)-

(15) and (18)—(22) hold for M = M, § = H*, h = h**, and I = I}. Note that all
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non-degenerate clusters in £ are of the form () this case, and so 9 is a simple
J-model based on an L-bounded atomic frame.
Cases 11 and I1I: (I, I{) is added in step (s1) or (s2). An inspection of these parts

of the proof of Lemma 4.21 reveals that m=< or ) <m~ is used only when b is
non-degenerate, in cases (ii) and (iii) of the definition on) 7 for some j < ¢ — 1.
(Recall that r¢ denotes the number of relevant clusters in If ) In both cases (i)

and (iii). all the m elements of the finite non-empty tail Zf‘j of §i | ,4J are put

into the chosen subset Hf"j of Jf 7/, for some subinterval Jf’j of If. We repeat the
trick from Case I above. Suppose Z“ ={z%|a <m} with zR{z* 0 < a < m,
and let m’ = min(m, c; +1). We setH*Z’ ={z%]a< m’}mcase (zz) andH*fj

{w?’} U {z% | a < m'}, for the chosen w'’ from the head of Z// in case (m) In
cases (i) and (iv) of Cases II and 111, we let H*Z J Hf /. Then, in all cases (i )—(iv),
we let 51 =907 | .y and Y =N |

i H: 12 1 H
hf’j(x) € Hl,*e‘j, for every x € Hl.* and so h’ e — h“ [ e is an Hi*é"j — Hl.*e‘j
function. It is straightforward to check that, for all j < r¢ — 1, (13)—(15) and (18)—
(22) hold for 9 = /. § =5/ h=h*/, and I = J*/ (but (16) and (17) do
not necessarily hold). Note that the size of non-degenerate clusters in these 55?2’-’

«j. for j <rf—1. One can see that

is bounded by k(1. ;). and so 9“(}‘[“" is the ordered sum of at most two simple
J0-models based on L-bounded atomic frames. , , ,

We also need to adjust the definitions of ﬁf’r" o ‘Itf""’ "' and hf‘r" ' We define
the sets Y C Y/ and 4*¢ C A% from H*/, j < r! — 1, in the same way as Y/ and
AL were defined from H//, j < rf — 1, resulting in (26) and (27). Let k* = |4}| =
|45¢|. By (28).

k<Y + Y3+ kpr2) <
2(k(p1.p2) — 1) - max (e + 2. k(1. 92)) + k(@1.02) = p (1. 2).

eréiol - eréol - erf1
In Case IT, we set 57 i =gt [H*[,e LT = ‘ﬁf’r’ : [H*“z ,.and h;" il
i i
heri-l Z,rf—l £rf-1
; I ! . In Case III, the definitions of 5'3 M7, and h; need to

i
. . . orf-1 o1 orf-1 .
be mimicked for k* in place of k to obtain $; ", 9", and h . It is
*Zr —1

straightforward to check now that (13)—(15) and (18)—(22) hold for 9N = 91;
A £ *L.r; £

H=9H""",h=h

é7 . . .
55?“" is bounded by p, (¢1.¢2) and every other non-degenerate cluster in it is of

[7
.and I = Jf’r" ', Note that the size k* of the root cluster in

£
the form (©), so fﬁ?e'rf Tisa simple J-model based on an L-bounded atomic frame.

Therefore, ‘ﬁf‘ = 0“(?['0 - ‘ﬁ*lr fori =1,2, ¢ < N, is the ordered sum of
n‘-many simple 6-models based on - bounded atomic frames, for the same n! as in
Lemma 4.21, and so we have (b) of the lemma. Finally, by the same arguments as

in the proof of Lemma 4.21, we obtain («) and (c). 4
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LemMMA 4.24. Fori =1,2.£ < N. take the frames $* and $** provided by Lemmas
4.21 and 4.23. Let $); = 55? g .VJZN’I and ¥ = .6;0 g - @;N’l. Then, for any
J € Jv. if there is an injection f from & ; to $¥ satisfying (cfy)—(cfy) for a(&;,D;, L),
then there is an injection [ from & ; to $; also satisfying (cfy)—(cfy) for a(6;.D;, L).
Thus, $; = L implies $7 }= L.

Proor. Fix some i € {1,2} and j € J.. Suppose that f is an injection from
&; = (V;.S;) to H satisfying (cfy)—(cfy) for a(®;.D;, L). For every atomic <-
component §* = (H*, R; | ;+) in 7 such that:

1. §* is obtained from the atomic <i-component § = (H, R; [ ) in §; of the form

m<or () <4m<, and

2. thereis v € V; such that f(v;) is an irreflexive point in F*,
we proceed as follows. Suppose H = {y¢..... Ym_1} ot H ={y, yo, ..., Ym_1} With
YR YR Yym1R; ... R;yo. and so H* = {yo.....y., } or H*={y.yo.....p¢, }. Let
Vi={veV;| flv)e H*\ {y}}. Then [V;| <|V;| < cr. Thus, by the pigeon-
hole principle. there is i < ¢, with y; ¢ f(V;) N (H*\ {y}). Suppose V; =
{vo. ..., vs1}. for some s < ¢ with v,_1.S; ... S;vp. Let a be the largest k < s with
ViR; f (vg). As f satisfies (cf3), v, ¢ D ;. Now, for k < s, we set

Vo ifk <a,
S (o) = .
Ym—(s—k)> ifa+1<k<s.

y Yer Yi Yo
*
o. o : ° o : ° o o I
}( // ‘ // ‘ //
,o/ ,‘ o/\\ ‘\ o/\ V;
t 7 T Va T~ R S
o——e= < .o ° ° ° o te— te— te
y Ym-1 Yo

We do this for every 3 having 1. and 2. above, and set f7(x) = f(x). for any other
x € V. It is straightforward to check that the resulting /7 is an injection from &
to $; satisfying (cf;)—(cfy) for a(&;.D;, 1). 4

This completes the proof of Theorem 4.6. We obtain Theorem 4.7 using Lemma
4.4 as we have, fori = 1,2:

19 = 1900 + - + [N < Y mf - max (ep+2.p,(1.92)) <
{<N

(3k(p1.2) — 1) -max (eL +2.p; (1. ¢2)).

4.5. Cofinal subframe logics. By Theorem 3.5 (a), all d-persistent cofinal
subframe logics L O K4.3 have the polysize bisimilar model property, with the
polynomial k(1. ,) (defined in (8)) not dependent on L. We show now that,
for arbitrary, not necessarily d-persistent cofinal subframe L, it is enough to replace
polysize in Theorem 3.5 (@) by quasi-polysize.

THEOREM 4.25. All cofinal subframe logics L O K4.3 have the quasi-polysize
bisimilar model property, with the size of witnessing models bounded by k(1. 03).
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This follows from the following special case of the ‘structural’ Theorem 4.5.

THEOREM 4.26. For any cofinal subframe logic L O K4.3 and formulas i, @2
without an interpolant in L, there are rooted d-models Ny, x| and Ny, x, satisfying
(a)—(c) from Theorem 4.5 as well as conditions (d) and (e) below:

(d) thereis M < k(1. ) such that W, = N0 <1 MM and, for all j < M,
1. fﬁ{ is the ordered sum of simple 5-models based on atomic frames:;
2. the pair (‘ﬁ{, ‘ﬁé) is g-matching;

(€) {x;i} UM;US; coincides with the set of points in M;, i = 1,2 that are not in
the {b" | n < w}-part of some <-component based on a €(®), x).

1t follows from (e) that ||| = [{x;} UM; US| < k(p1, ¢2).

PrOOF. As in the proof of Theorem 4.5, we take any o-bisimilar witness models
M;,x;, i = 1,2, based on frames F; = (W;, R;.P;) for L. Let M be the number
of relevant o-blocks in 9%, (or 9, by Lemma 4.17(e)). For i = 1,2, consider the
partitions Z; = {If € P; | £ < N} of M; given by Definition 4.18, and let 0 = £y <
.- < £yr1 = N — 1 be the list of indices such that the pair (Ifj . I;’) is added to Z; x
T, in step (sq) or (s2), and Ifo <5 <3 IIZM*l . We define ‘ﬂf z < M, by choosing
fewer points from If" than in Cases I1.2 and III in the proof of Lemma 4.21, and
we also define functions hfz. Letl =/4. forz < M, let Cf‘j < rff, be the sequence
(ordered by <g,) of all relevant clusters in I/, and D/’ = ¢/ n ({x;} UM, U S)).
Three cases are possible now, the first of which coincides with Case I1.1, while the
other two select fewer points for ‘ﬁf than Cases I1.2 and I11:

(i) If (1{.1f) is added in step (s1) and I} consists of a degenerate cluster. then.,
like in Case IL.1, we let 9t = 901; |, and h! be the identity function on 9.

£
(i) If Cf'r" ! is non-degenerate and (1. 17) is added in step (s;) as in Case 1.2,

3
then €, is definable in M. We let M = 9, [ o0 < <M, | 0, and
i D. i
h¢ be the identity function on 9t¢.
na
(iii) If (7f.1f) is added in (s) like in Case III. then Cf"" "'is a not
definable in 9;. As shown in Case III, there is an infinite sequence

wa
of irrelevant points {b" € If | n < w} such that b"R;b™, C/7' <p,
C(bi) and C(b}) € Pi. n<w. and the b are either 1) all irreflex-
ive or 2) all reflexive. By Lemma 4.17, there is k < k(p;.¢,) with

[ [ ol £
|Df'rl = \D;‘rz '| = k. Suppose Df"’ "= {a. ... .ak}. We let H,.“’ =

¢ ol
DEU{b! |n<w} and Pf’r"fl be generated in (Hf"" ].,R,-[ .0) by
gl
the sets {b"}. n<w, and X} ={a/}U{b" |n<w, n=s (mod k)}.
3
s < k (see Example 2.2). The resulting ﬁf’ri*l are both isomorphic to
£
¢(®.e) in case 1), and to €((®), o) in case 2). We then set mf"ri*l (p) =

£ £ £ .
Uasen, () X7 and ‘ﬁf’r" - ((H.“’ 'R, ) Z}_LI,P“‘;*I),mf’r’ 1).Flnally, we
i 1 H.- i

1
1
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l* . .
set N = M, | pro << m; [D“f’z < ‘ﬂf’r" " and define h as the identity on

relevant points in 9 and h!(b") = a}. for n < w with n = s (mod k).

Clearly, (¢), (d).1, and (e) hold for 0; = ‘ﬁfo Qe ‘)’th*‘. Condition (a) is shown
like in Lemma 4.22 using that (19)—(22) hold for h = h%* and H = H., z < M.
Condition () is proved via (29): (cf;) clearly holds; (cf;) holds as the final cluster in
3 is always relevant; and (cfy) holds, as {x} being definable in 1 implies {x} € P;.
for all z < M and x in ‘ﬁf As L is a cofinal subframe logic, ® = 0. so (¢f3) holds
vacuously. Finally, to show (d).2, observe that (91}, M%) is g-matching as it always
meets one of the conditions in Definition 4.3: in case (i), it meets (a); in case (ii), it
meets (b); and in case (iii), it meets (c). -

ExampLE 4.27. By Example 2.10(a), given any formulas ¢; and ¢, without an
interpolant in GL.3, one can always find witnessing models 9;, i = 1,2, of size
< k(1. ¢>) that are ordered sums of simple models based on m< or €(({). o) (see.
e.g., the models depicted in Figure 1 in Example 3.6(a)).

We emphasise that the construction in the proof of Theorem 4.26 does not work
for non-cofinal subframe logics, in which case D # (); see also the special treatment
of the density axiom in the proof of Theorem 5.9 below.

§5. The IEP for standard Priorean temporal logics. Priorean temporal logics [36]
deal with the operators ‘sometime in the future’ denoted <, ‘sometime in the past’
denoted ©p, and their duals ‘always in the future’ O and ‘always in the past’
Op. Temporal formulas—propositional bimodal formulas with these operators—are
interpreted over general temporal frames of the form § = (W, R, R™, P) representing
various flows of time in such a way that (W, R) is transitive and connected (2), R
is the ‘future-time’ accessibility relation for Og, O, its inverse R~ is the ‘past-time’
accessibility relation for Op, Op. and the internal sets P C 2" are closed under the
Booleans and the operators

O¥X ={xeW |IyeXxRy}, OX={xeW|3yecXxRy}

To simplify notation, we omit R~ and write § = (W, R, P). Also. as before, if P =
2" we call § a Kripke frame and write § = (W, R). The universal modality ‘always’
can be introduced as an abbreviation dp = ¢ A Opp A Opep. Descriptive temporal
frames are defined in the same way as in Section 2. Note that tightness condition
(tig) for R~ actually follows from (tig) for R.

In fact, many results from Sections 2 and 3 straightforwardly generalise to the
temporal setting. Let 9t be a temporal model—that is, a model based on some
temporal frame § = (W, R, P)—and let T be a set of temporal formulas. A point
x € W is T-minimal in M if M, x =T and whenever x'Rx and M, x’ =T, then
xRx'. Denote by mingy I the set of all -minimal points in 9. (The definition of
maxgy I remains the same.) In the temporal case, Lemma 2.3 generalises to the
following lemma.

Lemma 5.1, Suppose T is a set of temporal formulas and N is a model based on a
descriptive temporal frame § = (W. R, P). Then the following hold.:
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(temporal saturation) If 9, x = O AT for every finite T' C T, then there is y
with xRy and M,y ET. If M. x = Op AT for every finite T/ C T, then there is y
with xR™y and M,y ET.

(maximal and minimal points) If there is x with M, x = T, then maxgy T # () and
mingy I # 0.

A relation f C W) x W, is a temporal a-bisimulation between temporal models
M, and 9N, based on respective frames §; = (W;, R;.P;), i = 1,2, if it satisfies
(atom), (move) and its past-time couterpart: whenever x;fx,, then

(move') xR,y implies y;By,. for some y, € W, with x2R;,y»: conversely.
X2R3y, implies y18y», for some y; € Wi with xRy y1.

The relation 9y, x| =, M;, x,. saying that temporal models 1) and M, satisfy
the same temporal o-formulas at x; and x,, respectively, is characterised in terms of
temporal o-bisimulations: it is readily seen that, with this modification, Lemma 3.1
and Theorem 3.2 continue to hold for all Priorean temporal logics. (As temporal
frames are transitive and connected, any of their points can be regarded as a root
with respect to the relation RU R™.)

In this article, we consider the Priorean temporal logics of five most popular
classes of temporal Kripke frames [7]:

Lin={p | § = ¢, § = (W, R) is any temporal Kripke frame}

=Kh @ p = OpCpp @ p — OpOpp @ CpCpp V OpOpp — pV CppV
Cpp:
Ling = {¢ [ (Q.<) ¢}
= Lin D <>|:T D <>PT ) <>Fp — <>|:<>|:p:
Ling = {¢ | (R, <) = ¢}
= Ling ® O(0pp — ©pOpp) — (Opp — Ofp);
Lincw = {p | § E . § = (W. <) any finite strict linear order}
=Lin® {DX(DXP — ])) — Dxp ‘ Xe {F, P}},
Linz = {¢ | (Z.<) = ¢}
=Ling T e CpT @ {Dx(Dxp — p) — (OxOxp — Oxp) | X e
{F, P}},
where K4, is the bimodal version of K4 (with ¢ and Op). None of these five logics
(and any other temporal logic with frames of unbounded depth) has the CIP [9, 14],
and our aim in this section is to prove that the IEP for each of them is decidable in
coNP. The following example illustrates the new semantic phenomena of temporal
logics compared to modal logics containing K4.3 that we need to address in order
to achieve this aim.

ExamPLE 5.2. (a) Consider the formulas ¢; and ¢, from Example 3.6(a) in the
context of Lin., in place of GL.3, reading & as Of and O as O:

@1 = Cr(p1 AOE=q1) A Or(p2 = Bfq1) A Or(p1 — —pa).
02 = —[Cr(p2 A OF=q2) A Or(p1 — Of g2)].
We clearly have (o1 — @) € Ling,. Using Theorem 3.2, we show that ¢; and ¢,

have no interpolant in Lin.,. The argument from Example 3.6(a) shows that any
models 90t; meeting the criterion of Theorem 3.2 cannot be based on a Kripke frame
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for Lin.,,. However, the descriptive frame o < ® <1 €((2). ) we employed for GL.3 in
Example 3.6(a) does not help now, because it refutes Op(Opp — p) — Opp at any
point save the first two under the valuation below:

P P P P P
*— (o] (o] vt /> 0—>0—>0
a0 ajy b3 by by by

To fix this issue, we modify ¢((2), e) by making it symmetric in both directions.
Consider the frame §x = (W/. Rexe. P;). k > 0. in which the points in

W/ ={ag.....ax 1} U {b,,L,b,f |n < w}

are ordered as shown in the picture below

——ro—r0—>0 - o - O - e——r0——>0——>0
L L L L a ag_ R R R R
by by by by by by by by

or, more formally, xRerey iff (x = bL, y = bL forn < m), or (x = bL, y = a;), or
(x =bL, y =bR), or (x =a;, y =a;) or (x =a;. y =bR), or (x =bE,

m
for n > m). The internal sets in P, are generated by

X, ={a}U{bE bR |n<w n=i(modk)}., fori<k. (30)

Observe that {bL}, {bX} € P;. for all n < w. It is not hard to see that F is a

descriptive frame: we denote it by €(e, (k). ®). As an exercise, the reader can check
that, for any natural numbers k. /. ..., m,n > 0,

Ce.®.0) < <1 C(e.@. @) = Ling,,. (31)
C(®.0) < C(e.(D.0) < <1C(e. . 0) < C(e.®) |= Ling. (32)

where € (e, (»)) is the mirror image of €((). ®) (see also Lemma 5.6).
The picture below shows models 91, and 90, based on €(e, (2), ») and satisfying
the conditions of Theorem 3.2 for ¢; and ¢5:

P1 D1 P2-q91  P1-91 P2 P1 P1-q91  P2.491  Pi1-491  DP2.41
R ———e———o—0 - o q o e ——>0————>0

P2 P2 P92 P2.92 P2 Pl P42 pP2.492 DP1.492  P2:.92

By (31), €(e, (. ®) |= Ling,. so ¢; and ¢, do not have an interpolant in Lin,,.
(b) Consider next the temporal version of the implication ¢ — ¢, from Example
3.6(b). which is clearly valid in Linz. To demonstrate that ¢] and ¢, have no

interpolant in Linz, we can use €((D).e) <1€(e, (), o) <1 &(e, (D)), which is a frame
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for Linz by (32). The models 9t; and 901, depicted below

/
Dﬁl 1 pr P41 P1-41 p p1-4q1 P2-91 P1-491 P2-91 41 q1 q1
Ny P2 P2 P12 P20 92 P1:492 P2:92 P1-92 P2-92 92 ) a0

satisfy the conditions of Theorem 3.2 for ¢] and ¢».

As illustrated by Example 5.2, the temporal frames § = (W, R, P) we need for
checking the criterion of Theorem 3.2 may contain both infinite descending and
ascending chains of clusters (and so the §.! are not necessarily isomorphic to
ordinals). Accordingly, we now have R-final and R -final clusters as well as two types
of limit clusters: an R-limit cluster is a non-R -final cluster without an immediate
R -successor and an R -/imit cluster is a non-R-final cluster without an immediate
R-successor. Some clusters can be both R- and R™-limit clusters.

We say that a set S # () of clusters in § is R-unbounded (R -unbounded) if there is
no C € S such that C’ <y C (respectively, C <p C’),forall C' € S. A cluster Cis
the R-limit of an R-unbounded set Sif C’ <g C forall C’ € S and there is no cluster
C” with C' < C" <g C forall C’ € S: the R -limit of an R-unbounded set S is
defined symmetrically by replacing R with R™. It is straightforward to see that each
R-limit cluster C is the R-limit of the R-unbounded set {C’ | C’ <g C}, and each
R -limit cluster D is the R -limit of the R -unbounded set {D’ | D <z D'}. For any
cluster C, we let (C, +00) = {x | C <z C(x)} and (— 0, C) = {x | C(x) <z C}.

LEMMA 5.3. Suppose § = (W, R, P) is a temporal n-generated descriptive frame,
Jor some n < w. Then

(a) every cluster in § has at most 2" points;
(b) every R-unbounded (R -unbounded) set of clusters in § has an R-limit (R -
limit) in §, and so § contains both R- and R -final clusters.

PrROOF. (a) is proved similarly to Lemma 2.4(b).
(b) Suppose F is M-generated, for some model M. Let S be an R-unbounded set
of clusters in § with yc € C, C € S, and let

T = optm(ye) U (J{w | Ory € tm(ye)}.
ces ces

Clearly, T is finitely satisfiable in 901, and so by (com) and Lemma 5.1, there is a
I'-minimal point x in 9. By (tig), yc Rx for all C € S. Now suppose that y is
such that ycRy. for all C € S, and yRx. Then I" C t9x(y). and so xRy by the
I-minimality of x. Thus, C(x) is the R-limit of S. The existence of R -limits of
R -unbounded S is symmetric. -

A cluster C is called minimal (maximal) in a temporal model O if there is a
formula g such that C Nmingp{u} # 0 (C Nmaxgm{u} # 0). If there is such a
o-formula u. for some signature o, we call Co-minimal (o-maximal) in 9.

LemmA 5.4. Suppose I is a model based on a finitely IMN-generated temporal
descriptive frame §. Then
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(a) every degenerate cluster in § is both maximal and minimal in 9N;

(b) a cluster is maximal (minimal ) in N iff either it is R-final (respectively. R -final )
or has an immediate R-successor (respectively, R -successor);

(c) a cluster is definable in M iff it is both maximal and minimal in IN.

It follows that the R- and R -limit clusters are not definable and not degenerate; all
other clusters are definable in M. We also have that

(d) for any clusters C <p C' in §. the interval [C, C'] contains a maximal cluster
and also a minimal one;

(e) if Cis not an R-limit cluster and C' is not an R -limit cluster, then the closed
interval [C, C'] is definable in M.

ProoF. Items (a)—(c) are proved in the same way as Lemma 2.6. Item (d ) follows
from (tig), which gives formulas ¢ and y with 9, x [~ Opp, M, y E Opp and
M, x = Opw., M, y = Opy. and so [C(x), C(y)] contains a Opp-minimal cluster
and a Opy-maximal one. Item (e): by (b), C is A-minimal and C' is u-maximal for
some A, u. Then [C, C'] is defined in M by OFAA Of u. =

The following temporal analogue is harder to prove than Lemma 2.7.

LemMA 5.5. If § = (W, R, P) is a finitely generated temporal descriptive frame,
then W is countable.

Proor. By Lemma 5.3(a), it suffices to show that g, = (W., <g) is countable.
Suppose § is Mi-generated, for some J-model M = (F, v) and finite signature J.
First, observe that, by Lemma 5.4(b), each non-R-limit cluster C is uc-minimal in
O for some uc. Thus, the internal set X¢ = v(<OF ) distinguishes C from every D
with D <z C.and so X¢ # Xp whenever C # D. As P is countable, the number of
non-R-limit clusters in §. is countable. Similarly, there are countably-many non-R"-
limit clusters in §.. So it is enough to show that the number of clusters in §. that are
both R- and R -limits is countable. We refer to such clusters as simply limit clusters.
Call an interval [C~, C "] a neighbourhood of a limit cluster Cif C- <z C <z C™.
By Lemma 5.4, every limit cluster C has a nice neighbourhood N¢c = [C~. C*] with
non-limit clusters C~ and C ™. As the number of different nice N¢ is countable, it
follows that

every uncountable interval [D, D'] contains a limit cluster C (33)
all of whose neighbourhoods are uncountable

(otherwise all limit clusters in [D, D’] would belong to the countable union of the
countable intervals N¢. and so [D. D'] were countable).

By an atomic type we mean any at,(x) with x € W. For any cluster C. we set
at(C) = {atly(x) | x € C}. Let C be an R-limit cluster. We say that an atomic
type a occurs infinitely R-close to C if, for every C' <g C, there is C” such that
C' <p C" <g C and a € at(C"). Similarly, a occurs infinitely R -close to an R™-
limit cluster C if whenever C <z C’, then there is C” such that C <z C” <p C’
and a € at(C""). We claim that

if a occurs infinitely R-close to an R-limit cluster C, then a € at(C). (34)
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Indeed, let S be an R-unbounded set of clusters with R-limit Cand yp € D, D € S,
and let

I'n=au U Opton(yp) U U {v | Ory € tom(yp)}-
pes Des

If @ occurs infinitely R-close to C, it can be shown similarly to the proof of Lemma
5.3(b) that there is a I',-minimal point x € C. so a = atyy(x) € at(C).
The converse of (34) also holds:

ifa € at(C), for an R-limit C, then a occurs infinitely R-close to C. (35)

Indeed, suppose there is C’ <z C with a ¢ at(C"”), for any C” in the interval
C' <p C" <x C. By Lemma 5.4(d). there is a cluster C” in [C’, C] that is u-
minimal in 9 for some formula x. But then C is Opu A /\ a-minimal, contrary to
Lemma 5.4(b). Symmetric variants of (34) and (35) hold for R-limit clusters.

Call non-degenerate clusters C’ <z C” twins if at(C') = at(C") and, for every
Cin[C’, C"]. we have at(C) C at(C') = at(C"). We claim that

there are no twins. (36)

Indeed. suppose C’, C” are twins. By induction on the construction of a J-formula
a. we see that if x,y € [C’, C"] with xRy and af, (x) = at; (). then M. x = «
iff M, y = a. We only consider one of the nontrivial cases. Let 9, x = Opa. Then
there is z with xRz and M, z = a. If yRz, then clearly M, y = Opa. Otherwise,
z €[C'.C"]. so atdy(z) = afyy(z'). for some z' € C”. Thus, by IH, M.z’ = a.,
which implies M1, y = Opa as C” is non-degenerate. It follows that there are x € C’
and y € C” with tgn(x) = te9n(y). contrary to (dif).

We can now prove that §. is countable. Suppose F. is uncountable. By (33)
and Lemma 5.3(b), §. contains a limit cluster C whose neighbourhoods are all
uncountable. Let C be such a cluster with a minimal az(C). As  is finite, C has a
neighbourhood N such that, for any D € N with D <y C, every a € at(D) occurs
infinitely R-close to C, and, for any D € N with C <x D, every a € at(D) occurs
infinitely R -close to C. We call such N a close proximity of C. As N is uncountable,
either [C~, C) or (C, C*] is uncountable. We only consider the former case, as the
latter is similar. We claim that

for every cluster C’ in [C™, C), the interval [C™, C'] is countable. (37)

Indeed, take such C’. As [C~, C'] is contained in the close proximity N, for every
limit cluster D in [C~, C’]. we have at(D) C at(C), by (34) and (36). So by the
at(C)-minimality of C among limit clusters with only uncountable neighbourhoods,
every limit cluster D in [C~, C'] has a countable neighbourhood. Thus. [C~, C'] is
countable by (33).

By (35). there is a countably infinite ascending chain C; <z C, <y ... of clusters
in[C~, C)such that, foreverya € at(C)and every n < w, thereismwithn < m < w
and a € at(C,,). Let C’ be the R-limit of the R-unbounded set {C, | n < w} (which
exists by Lemma 5.3(b)). Then C’ <y C. Also, every a € at(C) occurs infinitely R-
closeto C’, andsoat(C) C at(C’) by (34). We cannot have C’ <y C since otherwise
(as C’ belongs to the close proximity N of C) every a € at(C’) occurred infinitely
R-close to C, resulting in at(C) = at(C’) by (34), and so C’ and C were twins,
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contrary to (36). It follows that C’ = C, and so [C".C) = |, [C . C,]. As each
[C~. C,]is countable by (37), [C, C) is also countable, which is a contradiction.

Using Lemmas 5.3 and 5.4, we can also obtain elegant characterisations of
descriptive frames for Ling, Ling, Lin.,,, and Linz (cf. [8. 19, 37, 40]).

LEMMA 5.6. Let§ = (W, R, P) be any finitely generated temporal descriptive frame.
Then

Ling: § [= Ling iff § is serial in both directions—i.e., the R- and R -final clusters
in § are both non-degenerate, and § is dense—i.e., there is a non-degenerate
cluster between any two distinct degenerate ones;

Ling: § | Ling iff § is serial, dense, and Dedekind-complete in the sense that there
is a degenerate cluster between any two distinct non-degenerate ones;

Line,: § | Line, iff § does not contain a non-degenerate cluster C such that
(~00,C) € P or (C,+00) € Plin particular, the R- and R -final clusters
in § are degenerate);

Ling: § = Ling iff § is serial and does not contain a non-degenerate cluster C with
0 # (-~00,C) e Pord+# (C,+0) € Pla single non-degenerate cluster is a
frame for Ling but not for Lin,).

Proor. We only show the (=)-directions, leaving the converses to the reader.
Suppose § is M-generated, for some model M = (F. v).

Ling: As F = OrT (§ = ©pT), Lemma 5.1 gives a {Of T }-maximal ({Op T }-
minimal) point x in 9t with R-final (R-final) and non-degenerate C(x). Thus,
§ is serial. Suppose {x}, {y} are degenerate clusters with xRy. Lemma 5.4
gives formulas y, and y, defining {x} and {y} in M. As M. x = Cry, and
5 E Cryy = OrOry,y, the formula Ory), A Opy, is satisfiable in 9. Let z be
{Cryy A Opyy }-maximal in 9. Then xRzRy. As M. z = Op(Ory, A Opyy) by
F E Oryy — OpOry,. the cluster C(z) is non-degenerate.

Ling: Non-degenerate C(x) <z C(y) cannot be <g-consecutive because other-
wise, by Lemma 5.4, C(x) were y-maximal in 91 for some formula w, and so
M, x £ O(OpOpy — OpOpCry) — (OpCry — OpCry). contrary to § = Ling.
Thus, there is z with C(x) <z C(z) <g C(p). If z is irreflexive, we are done.
Otherwise, by (tig), there is some formula y with Ogy € ton(y) and y ¢ ton(z),
and so M, z = Op—y. Let z/ be a Op—y-maximal point in 9M. Clearly, C(x) <g
C(z') <g C(y). If 2’ is irreflexive, we are done. Otherwise, we take the immediate
R-successor z” of z’, which exists by Lemma 5.4. As 9, z” = Oy A =y, point z”
is irreflexive and C(z”) <z C(y).

Lin.,: If there existed a non-degenerate cluster C(x) and a formula w with
(— 00, C(x)) = v(y), then M, x = Op(Opy — w) — Opy, contrary to § = Lin,,.

Linz: If there existed a non-degenerate cluster C(x) and some formula y with () #
(C(x).4+00) = v(y). then M, x |~ Op(Opy — w) — (CpOry — Opyw), contrary
to § = Ling. -

Note that Lin and Ling are d-persistent while the other three logics are not [37].

ExaMmPLE 5.7. The descriptive frame § = (W,, Ro.. P,) with (W>. R,,) depicted
below and P, defined in Example 2.2 is serial, dense, and Dedekind-complete, so
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S ': LinR.
oO—>0——>0—>0—>»0 -
bo by by bs by

It is readily seen, however, that (W3, Ro,) %~ Ling. so Ling is not d-persistent.

The notion of g-block from Section 4.2 also needs a modification for temporal
models. Namely, a set b C W is a g-block in a temporal model 9t based on § =
(W.R.P)ifb = bl(x). for some x € W, where

bin(x) ={y € W | Oxtip(y) C 13 (x) & Oxtgn(x) C 15 (y). for X € {F.P}}.

if both Oprg,(x) C 15, (x) and Opr,(x) C 15, (x) hold: otherwise by (x) = {x}.
Then we have the following temporal analogue of Lemma 4.13.

LEmMMA 5.8. Suppose M is a model based on a finitely 9M-generated temporal
descriptive frame § = (W, R, P). Then, for any c-block b in O, there exist clusters
C, and C;\ in § such that the following hold:

(a) b=[C,.C]:

(b) if cluster C, (cluster C;") is minimal (respectively, maximal) in 9N, then it is

o-minimal (respectively, c-maximal ) in IN;

(¢) if b is non-degenerate, then both C, and C," are non-degenerate:

(d) b is definable in O iff C, is not an R-limit cluster and C;" is not an R™-limit

cluster;

(€) 15,(B) = 15:(C;) = 15(C;).

Proor. This can be proved similarly to Lemma 4.13, using Lemmas 5.3, 5.4, and
5.1, in place of Lemmas 2.4, 2.6, and 2.3, respectively. -

Given g-bisimilar models 90t;, i = 1, 2, based on finitely 9t;-generated temporal
frames, we can adapt Lemma 4.15 to the temporal setting to show that g-blocks in
9, and 90, always come in ¢-bisimilar pairs b, f(b). Being equipped with these
modifications, we show first how to extend the selection procedure from the proof
of Theorem 3.5 to Lin, Ling. and Ling.

THEOREM 5.9. Each L € {Lin, Ling, Ling} has the polysize bisimilar model prop-
erty, and the IEP for L is CONP-complete.

PRrROOF. Suppose ¢ and ¢, have no interpolant in L, ¢ = sig(¢1) N sig(e,). and
6 = sig(1) U sig(¢,). By Theorem 3.2, there are §-models 9;, fori = 1,2, based on
9M;-generated temporal descriptive frames §; = (W;, R;.P;) for L with 0y, x| ~,
My, x2, My, x1 = o1 and My, x5 | —py. Let B be the largest o-bisimulation between
01y and My, thatis, y1 B2 iff 13, (y1) = t3n, (). forall y; € W;. We show that there
exist such 9M; of polynomial size in max(|¢1 . |¢2]).

For any i = 1,2 and t € sub(yp;) satisfied in 90;, we take one {r}-maximal and
one {7 }-minimal point in 9;. Let M; be the set of all selected points and let

T = {tgp,(x) | x € {1} UM} U {55, (x) | x € {x2} UM>}.

s

For each t € T', we take a smallest set S; C W; containing one t-maximal and one
t-minimal point in 91;.
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Let W/ = {x;} UM; US;. R = R; [y,. §; = (W}, R}). let ] be the restriction
of M; to F. and let x{p'x; iff 13, (x]) = 1y (x3). for all x| € W/, x; € Wj.
Following the proof of Lemma 3.4, we see that M}, x; = @1, M. x2 = —p2, and B’
is a o-bisimulation between 91} and 9, with x; B’ x,. Clearly, & k= Lin and the 9;
are of polynomial size in max (||, |p2]).

For L = Ling. we do not necessarily have S; = L. To fix this, we add some extra
points from W; to W/. As §; = Ling. the R- and R -final clusters in §; are non-
degenerate and, as observed in the selection procedure from Section 3, W/ contains
some points from these final clusters. Thus, §}  Ling iff § contains an irreflexive
point x with an immediate irreflexive R!-successor y. We call such pair x, y an irr-
defect in §}. We are going to ‘cure’ one irr-defect after the other without introducing
new irr-defects in either frame.

Given an irr-defect u;, vy in ). we find an R;-reflexive z; with u; Ryz; Ryvi, which
exists by §1 = Ling and Lemma 5.6. Let 1 = lgﬁl(zl) and b = b3y (z1). AsOpt C t
and Opr C 1, b is a non-degenerate g-block in 9. By Lemma 5.8, there are ¢-
minimal and 7-maximal points z; and z; in the non-degenerate clusters C;, and C,.
As B(b) is a non-degenerate o-block in 91, by Lemma 4.15, there are -minimal
and r-maximal points z, and z; in the non-degenerate clusters Cﬁ’(b) and C/;*(b).

s

By adding z;. z;. z;" to W{ and z,. z; to W, we cure the irr-defect ;. v; without
creating a new irr-defect in either frame. Let W/'. i = 1.2, be the sets we obtain
after curing all irr-defects in both frames in this way, R” = R; |, §/ = (W/,RY)

let 97 be the restriction of 90; to F7. and x|p"x} iff tgy, (x1) = tgnz(xé), for all
x; € W/ x5 € W)'. Then §} |= Ling. by Lemma 5.6, and
(minmax) for all x € W/ U W, and i = 1.2, the set W]’ contains 0, (x)-minimal
and 15, (x)-maximal points in 901;, and W)’ contains 13y, (x)-minimal and 13y, (x)-
maximal points in 5.
So it is readily seen (similarly to the proof of Lemma 3.4) that M), x| = ¢,
M. x2 = —p2. and B” is a o-bisimulation between M and MY with x;B" x,.
Finally, let L = Ling. Since Ling C Ling, we first cure the irr-defects in the F;.
i = 1,2, asdescribed above. Let S;’ ,i = 1,2, be the resulting serial and dense frames.
Thus, §/ #~ Liff §/ contains two < ng/-consecutive non-degenerate clusters C(x) #

C(y). We call such x. y a ref-defect in /. We show that the ref-defects can also be
cured in a step-by-step manner without introducing new defects of either type, while
maintaining (minmax).

If uy, v is a ref-defect in §;'. Lemma 5.6 provides an irreflexive z; € W, with
Ui Rz Ryvy. Let t = tgﬁl(zl). The insertion of extra points into W|” depends on
whether #; and v; are in the same ¢g-block in 9J%; or not.

Case 1: uy, v € b, for some g-block b in 9;. By Lemma 5.8, b is non-degenerate,
and there are r-minimal and s-maximal points z; and z;" in the non-degenerate
clusters C, and C;". By Lemma 4.15, f(b) is a non-degenerate o-block in 901 so
there are /-minimal and -maximal points z, and z;" in the non-degenerate clusters
Cypyand Cj, . Byadding zy. zy. 2" to W{" and z3. z;" to W’ we cure the ref-defect
uy, vy in §/ and maintain (minmax). Also, as (minmax) held in §/. by Lemma 5.8
we already had some points from C, and C," in W/" and some points from Ct;(b)
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and C I;( ») in W,’. So we did not create new defects in either frame, and the property

(minmax) is maintained.

Case 2: u; € b*', vi € b"', for o-blocks b"! # b°! in 9M;. By the definition of
W/ and C(u;). C(v;) being <Ri/—consecutive, C(u) = Cpy and C(v)) = Cpyy
so z1 ¢ b"'. We claim that there is an irreflexive z € W such that u; RizR v
and z is either tgnl(z)—maximal or Ig, (z)-minimal. Indeed. as u;R;z;, we have
<>thﬁl(zl) C tgﬂl(ul) and Optgnl(ul) C tgnl(zl)- As z; ¢ b", there can be two
cases: either (i)Othﬁl(ul) Z tgy, (z1) or (ii)<>ptgnl(u1) z lg)?l(zl)~ In case (i), there
is a o-formula y with M, u; = Opy but My, z; = Opy. Take a {Opy }-maximal
point z’. Clearly, u; Rz’ Rjvy. If z’ is irreflexive, we set z =z’ as it is tgﬁl (z')-
maximal. Otherwise, Lemma 5.4 gives an immediate degenerate < g, -successor C (z)
of C(z') such that z is 1w, (z)-maximal. In case (ii), there is a o-formula y with
My, up = OpybutMy, z; = x,andso M, vy = Cpy. Take a {Op y }-minimal point
z'. Clearly, uy R1z' Ryvy. If z' is irreflexive, we set z = z/ as it is tgﬁl (z’)-minimal.
Otherwise, Lemma 5.4 gives an immediate degenerate <g,-predecessor C(z) of
C(z') such that z is tn, (z)-minimal.

Leth = b3y, (z). Then b is a degenerate g-block in 91 by Lemma 5.8. By Lemma
4.15, p(b) is a degenerate g-block in M, with B(b"!) <5, f(b) <3, (b""). Also, by
(minmax) in 7. CﬂJr(bul) and Cﬁ(/ﬂl) are < Rg-consecutive non-degenerate clusters.
Therefore, by adding z to W/ and z, with C(z2) = B(b) to W,’, we cured the ref-
defect ;. v in §} and we did not create new defects of either kind in either frame
while maintaining (minmax). So again it is readily seen (similarly to the proof of
Lemma 3.4) that, after fixing all defects. we end up with a pair of models as required
that are based on frames for Ling by Lemma 5.6.

This establishes the polysize bisimilar model property of L € {Lin, Ling. Ling}.
We show that the IEP for L is in CONP using the description of finite frames for L
in Lemma 5.6. =

The finitary selection construction in the proof above does not work for logics
L € {Ling,, Linz}. In fact, these logics do not have the polysize bisimilar model
property. However, below we show that they still have a kind of quasi-finite bisimilar
model property similar to Definition 4.1 in the following sense. We can always witness
the lack of an interpolant for ¢, ¢, in L by a pair of temporal models that are based
on frames for L, and assembled from O( max(|¢1]. |¢>]))-many ‘simple’ models (like

those in Example 5.2) that are based atomic descriptive frames of the forms m=<, (%),
C(®. ). €(e. ®.9). and €(e, ®). for m.k = O(max(|pi].|p2])). k > 0.

Given ;. M;. x;, for i = 1.2, as above, let M;, S;, and W/ ={x;,} UM;US;
be as defined in the proof of Theorem 5.9. As before, we call the points from W/
relevant in ;. A cluster or a g-block in 901; is relevant if it contains a relevant point
in 90;. Given any pair b, g(b) of o-bisimilar g-blocks in 91, and 901,, we can now
have the temporal analogue of Lemma 4.17, dealing not only with ;N C," and
SoN C/]*(b) but also with §1 N C, and §> N C/; ) In particular,

(b
there are o-type preserving bijections /' : §1 N Cy — S> N C/;(b) (38)
and f7: 81N C — 8> C;(b);
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|Sl n Cﬂ = |S1 N Cbﬂ and |S2ﬂ Cf?(b)' = |S;ﬁC;<b)

: (39)

b is relevant in 9y iff B(b) is relevant in N,. (40)
THEOREM 5.10. The IEPs for Lin., and Ling are both CONP-complete.

Proor. Let B).....5Y be all the relevant g-blocks in 9, ordered by <3z, for
some N = O((max(|p1]. |¢2])). By (40) and Lemma 4.15, the <z,-ordered list of
all relevant o-blocks in 91, is bg, bév where bé = ﬂ(b{) for j < N. By (38)
and (39), for every j < N there is k/ > 0 with k/ = |§, N C,l=181n Cbﬂ =

1 1

IS2N Cb’j| =185,N C;j |. Also, by Lemma 4.15, b{ is degenerate iffbé is degenerate,
for j < Iif ’

Case L = Lin.,,: By Lemmas 5.6 and 5.8, Y and b . i = 1.2 are degenerate. By
Lemmas 5.4, 5.6, and 5.8, if b{ is non-degenerate, then Cl:j and C;j are R- and

1

R-limit clusters, and C N M; = 0, for every non-degenerate cluster C in bl’ . (It can
happen that x; is in a non-degenerate cluster in b/ different from C ;. C7,.)
b b]

i

Foralli=1,2and j < N, we let m/ = (({x;}uM;) ﬂb{) \ (Cb’j U C;.)} and
define an atomic frame ,611 =(H ij , R{ , Pf ) by taking
o, if bl/ is degenerate;
9l = (. @). o). if C;f = C;. is non-degenerate;
(. (). 0) <t (m!)< < €(e. (). ®). otherwise.
Note that n and m] might be different. and ({x;} UM ;) Nb/ = 0 (and so m/ =
0) can happen even when Cb’{ + Cbt,.. Let 5, = (H;. RL.P)) =90 <9V It is
readily seen that $); is a frame for Lin.,, for i = 1,2. Next, we define a ‘parent’

function h; : H; — W/ such that, for all x € H;.

forall j < N, if x € H/ then h;(x) € W/ N b/, (41)
forall y € H;, if xR}y then h;(x)R;h;(y), (42)
forall y € M, if h;(x)R;y then xR}z and h;(z) = y for some z. (43)

Finally, for j < N, we define a model ‘ﬁl’ based on .Sﬁl’ by taking, forall x € H, ,:j ,
aty, (x) = atoy, (hi(x)). (44)
and let 91, = 0 < - <MY,
Instead of giving the general definitions of h; and 9%;, we illustrate the construction

in the picture below, where 91; has three degenerate o-blocks b?. b7, and b; and one
non-definable non-degenerate o-block b}; the relevant points in 9t; are underlined;
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K=k>=k*=1k'=2 andm! = 3.

by b} b} b}
[ T 1 1
. N A
T S | * / A * *
h[ | 71 | \\\ \ | / 7 71 | \\ | 1
/ 4 \
I 70 NN \ I , , 70 NN I I
| ’ | | ~ \ | / // ’ | | ~ | |

It is readily seen that this way (41)—(43) hold and 0/ is based on $7, for j < N.
Thus, 5’)? < ﬁlN, i = 1,2, is a frame for Lin_,, by Lemma 5.6. Using (41)—(43),
a proof similar to that of Lemma 4.22(a) shows that each point x in 9%; makes
true exactly the same formulas in sub((p;) as its parent h;(x) in 91;. It follows that
M. x| = @1 and My, x5 = —s, where x; = h; (x]).

Further, the construction and (38) guarantee that each pair (‘ﬁ{ . ‘ﬁé) forj < N,
satisfies an obvious condition similar to Definition 4.1(a) or (c¢). Then a proof
similar to that of Lemma 4.4 shows that 91/ and 9} are globally ¢-bisimilar for
every j < N.and so 9. x| ~, 9. x}.

Case L = Linz: While the definitions ofﬁlj, for 0 < j < N, are the same as above,
for j = 0. N we need new ones. Now, by Lemmas 5.6 and 5.8, 5 and 5" are non-
degenerate, fori = 1, 2. Also, by Lemmas 5.4, 5.6, and 5.8, the R -final cluster Cb’0 in

§; 1s an R -limit cluster, and the R-final cluster C;N in §; is an R-limit cluster, fori =

1, 2. There are several cases. If N = 0 (that is, b? = W;) and 40 = C;O, then we let
99 =(@). If N = 0and Cb’? # C;E,, then we let 57 = €((9). o) < (m?)< < €(e, ().
If N > 0 then
g [€©-0). if Cyy = Gy
1

(@), o) < (m)< < €(s, (). »). otherwise.

and
oY ¢(e. @). ifC,y = Gy

(e, @ o) < (m])< < (e, @) otherwise.
This way, by Lemma 5.6, $; = $? <t --- < $Y is a frame for Linz, for i = 1,2. Apart
from these modifications, everything is similar to the Lin.,, case.

A coNP-algorithm deciding interpolant existence in Lin., or Ling is an obvious
adaptation of the algorithm detailed in the proof of Theorem 4.9. —

We conjecture that the IEP for every consistent finitely axiomatisable Priorean
temporal logic is cCONP-complete.

§6. Outlook and open problems. We have turned the lack of the CIP into a research
question by asking whether deciding interpolant existence becomes harder than
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validity for modal logics without the CIP. As argued in [33, 35] for the closely
related problem of separability of disjoint regular languages using a smaller language
class (such as first-order definable languages), this question can be understood as a
generalisation of satisfiability that provides new insights into the expressivity of the
logic in question. We have shown that. in contrast to modal logics with nominals, the
product modal logic S5 x S5, and the guarded and two-variable fragments of first-
order logic, the complexity of deciding interpolant existence in finitely axiomatisable
modal logics of linear frames is in CONP and, therefore, of the same complexity as
validity. This appears to be the first general result about Craig interpolants for logics
lacking the CIP. It gives rise to many further questions of which we mention only a
few:

Q1: Isthere a decidable modal logic above GL, K4, or K with the undecidable IEP?
Currently, the only known example of a decidable logic with the undecidable
IEP is the two-variable fragment of first-order logic with two equivalence
relations [41].

Q2: Do all d-persistent (cofinal) subframe logics above K4 have the finite bisimilar
model property? Can one show a quasi-finite bisimilar model property for
all (cofinal) subframe logics above K4 and use it to prove that interpolant
existence is decidable for all finitely axiomatisable ones?

Q3: What is the situation with the IEP for propositional superintuitionistic
(aka intermediate) logics and (super)intuitionistic modal logics without the
CIP? Note that the Goddel translation reduces the IEP for propositional
superintuitionistic logics to the IEP for (certain fragments of) modal logics
above S4 (see the proof of [9, Theorem 14.9]).

Q4: Our proof is not constructive in the sense that is does not provide a non-
trivial algorithm for computing interpolants if they exist (beyond exhaustive
search) nor any upper bounds on their size. It would be of great interest
to develop such algorithms. First steps towards computing interpolants in
description logics without CIP are presented in [23].

Descriptive frames have been crucial for our proofs. It would therefore be
interesting and in line with the modal logic tradition to characterise logics for which
descriptive frames can be replaced by Kripke (or even finite) frames in Theorem
3.2. While d-persistence is clearly a sufficient condition, Ling shows that it is not a
necessary one (see Example 5.7). It is known, however, that Ling is strongly complete
[37]. which suggests the conjecture that, in Theorem 3.2, descriptive frames for L
can be replaced by Kripke frames iff L is strongly Kripke complete (in the sense that
every L-consistent set of formulas is satisfiable in a Kripke frame for L). Note that
a logic is strongly Kripke complete iff the corresponding variety of modal algebras
is complex [18, 37].

Acknowledgements. We are grateful to the anonymous reviewer whose comments
and suggestions helped us to improve the presentation and terminology.
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