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A NON-UNIFORM VIEW OF CRAIG INTERPOLATION IN MODAL
LOGICS WITH LINEAR FRAMES

AGI KURUCZ , FRANK WOLTER , AND MICHAEL ZAKHARYASCHEV

Abstract. Normal modal logics extending the logic K4.3 of linear transitive frames are known to
lack the Craig interpolation property (CIP), except some logics of bounded depth such as S5. We turn
this ‘negative’ fact into a research question and pursue a non-uniform approach to Craig interpolation by
investigating the following interpolant existence problem: decide whether there exists a Craig interpolant
between two given formulas in any fixed logic above K4.3. Using a bisimulation-based characterisation of
interpolant existence for descriptive frames, we show that this problem is decidable and coNP-complete
for all finitely axiomatisable normal modal logics containing K4.3. It is thus not harder than entailment in
these logics, which is in sharp contrast to other recent non-uniform interpolation results. We also extend
our approach to Priorean temporal logics (with both past and future modalities) over the standard time
flows—the integers, rationals, reals, and finite strict linear orders—none of which is blessed with the CIP.

§1. Introduction. Unlike classical and intuitionistic first-order and propositional
logics, numerous modal logics, L, do not enjoy the Craig interpolation property
(CIP): they contain valid implications ϕ → � without an interpolant in L—a
formula � in the shared signature of ϕ and � such that both ϕ → � and � → � are
also valid in L. Typical examples of such L are first-order modal logics with constant
domains between K and S5 [13] and propositional modal logics with linear transitive
Kripke frames of unbounded depth [14, 39]. There have been various attempts to
classify propositional modal logics with the CIP, successful for extensions of S4
[14, Section 8] and unsuccessful for extensions of K4 or GL, where the CIP turned
out to be undecidable [9, Sections 14 and 17].

While establishing the CIP of a logic L typically gives rise to further research
problems—develop proof systems that admit efficient/elegant interpolant compu-
tation [3, 29], investigate the complexity of computing interpolants from proofs
[25, Sections 17 and 18], consider restrictions on the shape of interpolants such
as in, say, Lyndon’s interpolation [31], or employ the CIP to investigate related
properties such as Beth definability [10, 11]—a counterexample to the CIP has
usually terminated further research of Craig interpolants and their applications for
the unfortunate logic in question.

In this article, we take a different, non-uniform view of Craig interpolation and
aim to understand interpolants also for logics L without the CIP. We consider the
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2 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

following interpolant existence problem (IEP) for L: given formulas ϕ and �, decide
whether ϕ → � has an interpolant in L. For L without the CIP, the existence of an
interpolant for ϕ and � does not follow from the validity of ϕ → � in L, and so
the IEP does not reduce to validity checking (which is reducible to the IEP). A first
question then is whether the former problem is genuinely harder than the latter one.
In fact, when the IEP was introduced [1, 24], this was shown to be the case for modal
logics with nominals and for the two-variable and guarded fragments of first-order
logic. Since then, this has also been confirmed for the one-variable fragment of
first-order modal logic S5 and weak K4 [26, 27].

Here, we show that the opposite is true of propositional modal logics containing
K4.3, the logic of linear transitive frames: while none of these logics with frames of
unbounded depth has the CIP [14, 39], interpolant existence is nevertheless decidable
in coNP for finitely axiomatisable logics, and so is as hard as validity [30]. This is the
first general result on Craig interpolant existence covering a large family of modal
logics and, potentially, a step towards a classification of modal logics according to
the complexity of the IEP.

We proceed as follows. To begin with, we give a ‘folklore’ characterisation of
interpolant existence via bisimulations between models based on descriptive frames:
ϕ → � does not have an interpolant in L iff ϕ and ¬� can be satisfied in sig(ϕ) ∩
sig(�)-bisimilar models based on descriptive frames for L. If L had the CIP, we could
merge these two models into a single one satisfying ϕ ∧ ¬� (using, say, bisimulation
products [32]) or amalgamate the induced modal algebras [14], which is impossible
in our case. Instead, we aim to understand the fine-grained structure of the required
bisimilar models and use it to decide their existence. We show that, for some logics
(such as first-order definable cofinal subframe logics), any pair of bisimilar models
can be transformed into bisimilar models of polynomial size; in other words, such
logics enjoy the polysize bisimilar model property. However, for other logics like
GL.3, not even models based on infinite Kripke frames are enough despite GL.3
having the finite model property (fmp).

We prove, nevertheless, that every pair of bisimilar models satisfyingϕ and¬� and
based on descriptive frames for a finitely axiomatisable L ⊇ K4.3 can be converted
to a pair of such models with an understandable structure. In a nutshell, their
underlying frames look like a polynomial-size chain of polynomial-size clusters and
tadpole-like descriptive frames that comprise a non-degenerate cluster {a0, ... , ak–1},
for some polynomial-size k > 0, followed by an infinite descending chain of points
bn, n < �, which are all irreflexive or all reflexive, with the internal sets (restricting
possible valuations) generated as a modal algebra by the singletons {bn} and the
k-many pairwise disjoint infinite setsXi = {ai} ∪ {bn | n ≡ i (mod k)}. The picture
below illustrates the underlying Kripke frame and the generators of the tadpole
descriptive frame with k = 2.
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 3

Because of this, we say that all finitely axiomatisable L ⊇ K4.3 have the
quasi-polysize bisimilar model property. We show that the existence of such quasi-
polysize bisimilar models can be checked in NP in the size of ϕ and �, for any
finitely axiomatisable L.

Finally, we extend the developed techniques to analyse the IEP for a few Priorean
temporal logics with past and future modal operators: the logic Lin of all linear
frames, the logic Lin<� of all finite strict linear orders, and the logics LinQ of the
rationals, LinR of the reals, and LinZ of the integers. We prove that Lin, LinQ, and
LinR have the polysize bisimilar model property, while Lin<� and LinZ have the
quasi-polysize one, with the IEP being coNP-complete. The proofs can be regarded
as applications of the general method, which works for all extensions of K4.3, to a
few concrete logics with transparent frames. In fact, one could read the Priorean
case in parallel with the full general proof, using the former as an illustration of the
latter.

The remainder of the article is organised as follows. The introduction is concluded
with a brief discussion of related work. Section 2 contains the necessary modal
logic preliminaries. Section 3 gives the bisimulation-based criterion of interpolant
existence and applies it to first-order definable cofinal subframe logics above K4.3.
It also provides illustrative examples explaining why the same method does not
work in general and what kind of descriptive frames might be needed. Section 4
establishes the quasi-finite bisimilar model property of all logics above K4.3 and
the quasi-polysize bisimilar model property of all finitely axiomatisable ones; for
the latter, it gives a coNP-algorithm for deciding the IEP. Section 5 extends the
developed techniques to the Priorean temporal logics mentioned above.

1.1. Related work. The IEP for some logics of linear frames turns out to be
closely related to separability of regular languages by first-order definable languages.
Formally, the separability problem is to decide whether two input regular languages
L1 and L2 can be separated by some language L in a given class L in the sense that
L1 ⊆ L andL ∩ L2 = ∅. IfL is the class of first-order definable languages over finite
words, the separability problem is equivalent to the IEP for the linear temporal logic
LTL extending modal logic with the operators ‘next’ and ‘until’ over finite strict linear
orders. For regular languages of infinite words, the separability problem is equivalent
to the IEP for LTL over the natural numbers (see [28] for details). It was shown in
[21, 22, 34] that both of these separability problems are decidable in 2ExpTime in
the size of NFAs defining L1 and L2. It follows that the corresponding IEPs are
decidable in 3ExpTime in the size of LTL-formulas. (Separability by other language
classes L are discussed in [33, 35].) These separability results have been obtained
using algebraic machinery from semigroup theory, which seems to be orthogonal to
our model-theoretic approach to the IEP developed to deal with all modal logics of
linear orders. However, for finite strict linear orders and the natural numbers, the
algebraic approach also provides an upper bound for the size of interpolants.

It is also worth mentioning that, for these two frame classes, the smallest modal
logic with the CIP is LTL extended with fixed-point operators or, equivalently,
monadic second-order logic (under very mild conditions on the definition of what
a logic is) [15]. Thus, to ‘repair’ the CIP by extending the expressive power of the
logic, we require the addition of second-order features.
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4 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

§2. Preliminaries. This section provides the basic definitions and facts that will
be used later on in the article; consult [5, 6, 9, 16, 17] for more details.

2.1. Descriptive frames for normal modal logics. The formulas,ϕ, of propositional
unimodal logics are built from propositional variables pi ∈ V , for some countably-
infinite setV = {pi | i < �}, and constants�,⊥ using the Boolean connectives¬,∧,
and the unary possibility operator �. The other Booleans and the necessity operator
� dual to � are defined as standard abbreviations. We also use �+ϕ = ϕ ∨�ϕ,
�+ϕ = ϕ ∧�ϕ, and �Γ = {�ϕ | ϕ ∈ Γ}, for a set Γ of formulas. By a signature
we mean any set � ⊆ V , denoting by sig(ϕ) the (finite) set of variables in a formulaϕ.
If sig(ϕ) ⊆ �, we call ϕ a �-formula. We denote by sub(ϕ) the set of subformulas of
ϕ together with their negations, and let |ϕ| = |sub(ϕ)|.

A (normal) modal logic, L, is any set of formulas that contains all Boolean
tautologies, the modal axiom �(p0 → p1) → (�p0 → �p1), and is closed under
the rules of modus ponens, uniform substitution of formulas in place of variables,
and necessitation ϕ/�ϕ. The smallest such logic goes by the moniker K. Given a set
Γ of formulas and a modal logic L, the smallest modal logic to contain L and Γ is
denoted by L⊕ Γ. We write L⊕ ϕ for L⊕ {ϕ}. For example,

K4 = K⊕�p0 → ��p0,

K4.3 = K4⊕�(�+p0 → p1) ∨�(�+p1 → p0),

GL.3 = K4.3⊕�(�p0 → p0) → �p0,

Log{(N, <)} = K4.3⊕��⊕�(�p0 → p0) → (��p0 → �p0).

All logics considered in this article are extensions of K4.3.
We interpret formulas in (general) frames F = (W,R,P), where R is a binary

(accessibility) relation on a nonempty set W (of worlds or, more neutrally, points)
and P ⊆ 2W contains ∅, W and is closed under ∩, ¬, and the operator

�FX = {x ∈W | ∃y ∈ X xRy}.

The structure F+ = (P ,∩,¬, ∅,W,�F) is a Boolean algebra (P ,∩,¬, ∅,W ) with
a normal and additive operator �F (BAO, for short). If F+ is generated by a set
X ⊆ P as a BAO, we say that the frame F (or the setP) is generated byX . If |X | = n,
for some n < �, we call Fn-generated or finitely generated. The elements of P are
called internal sets in F. If P = 2W , F is known as a Kripke frame; in this case, we
drop P and write F = (W,R). A frame F = (W,R,P) is descriptive if the following
conditions hold: for any x, y ∈W and any X ⊆ P ,

(dif) x = y iff ∀X ∈ P (x ∈ X ↔ y ∈ X ),
(tig) xRy iff ∀X ∈ P (y ∈ X → x ∈ �FX ),

(com) ifX ⊆ P has the finite intersection property (fip, for short)—that is,
⋂
X ′ �=

∅, for every finite X ′ ⊆ X—then
⋂
X �= ∅.

(Frames with (dif) are called differentiated, with (tig) tight, and with (com)
compact.) Every BAO is isomorphic to F+, for some descriptive frame F. A finite
frame is descriptive iff it is a Kripke frame [9, Section 8].

Given a signature �, a �-model based on a frame F = (W,R,P) is a pair M =
(F, v) with a valuation v : � → P . The atomic �-type of x ∈W in M is

at�M(x) = {pi | pi ∈ �, x ∈ v(pi)} ∪ {¬pi | pi ∈ �, x /∈ v(pi)}.
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 5

We omit � = V , saying simply model and writing atM(x). The value of a formula
ϕ in M is the set v(ϕ) ∈ P computed inductively in the obvious way starting from
v(pi), v(�) =W and v(⊥) = ∅. A set X ⊆W is definable in M if X = v(ϕ), for
some formula ϕ, in which caseX ∈ P . If every internal setX ∈ P is definable in M,
we say that F is M-generated. Every F with countable P is clearly M-generated, for
some model M.

A formula ϕ is true at x in M, written M, x |= ϕ, if x ∈ v(ϕ). The �-type of x in
M is the set t�

M
(x) of all �-formulas that are true at x in M. For a set X of points in

M, we let t�
M

(X ) =
{
t�
M

(x) | x ∈ X
}
. As before, we drop � = V .

A set Γ of formulas is finitely satisfiable inM if, for every finite subset Γ′ ⊆ Γ, there
isx′ ∈W such that Γ′ ⊆ tM(x′); Γ is satisfiable inM if Γ ⊆ tM(x), for somex ∈W .
Using these definitions and notations, we can equivalently reformulate conditions
(dif), (tig), and (com) for M-generated frames as follows: for any x, y ∈W and any
set Γ of formulas,

(dif) x = y iff tM(x) = tM(y),
(tig) xRy iff �tM(y) ⊆ tM(x) iff {ϕ | �ϕ ∈ tM(x)} ⊆ tM(y),

(com) if Γ is finitely satisfiable in M, then Γ is satisfiable in M.

A frame F satisfies Γ if there is a model M based on F satisfying Γ. Further, ϕ
is valid in F, written F |= ϕ, if M, x |= ϕ, for any model M based on F and any
x ∈W . We call F a frame for a logic L and write F |= L if F |= ϕ, for all ϕ ∈ L.
Conversely, any class S of general frames determines the modal logic LogS = {ϕ |
∀F ∈ S F |= ϕ}. We write Log(F) for Log({F}).

A set Γ of formulas is L-consistent if (
∧

Γ′ → ⊥) /∈ L, for any finite Γ′ ⊆ Γ. We
require the following well-known fact (see, e.g., [9, Section 8.6]).

Lemma 2.1. For any modal logic L and any finite signature �, if Σ is an L-consistent
set of �-formulas, then Σ is satisfiable in a �-model M based on a finitely M-generated
descriptive frame for L.

By Lemma 2.1, every modal logic L is determined by the class of all descriptive
frames for L. A logic L is Kripke complete if L is determined by the class of all Kripke
frames for L. L is d-persistent (aka canonical) if (W,R,P) |= L implies (W,R) |= L,
for any descriptive frame (W,R,P). L has the fmp if it is determined by its finite
(Kripke) frames.

The smallest logic K4.3 we are interested in is d-persistent; its descriptive and
Kripke frames F = (W,R,P) are transitive and weakly connected, that is,

∀x, y, z ∈W (xRy ∧ yRz → xRz),
∀x, y, z ∈W (xRy ∧ xRz → y = z ∨ yRz ∨ zRy).

GL.3, on the contrary, is not d-persistent yet has the fmp. In fact, all extensions of
K4.3 are Kripke complete [12].

A frame F′ = (W ′, R′,P ′) is a subframe of a frame F = (W,R,P) if W ′ ⊆W ,
R′ = R �W ′ = R ∩ (W ′ ×W ′), andP ′ ⊆ P . For every internal setV ∈ P , the frame
F �V =

(
V,R �V ,P �V

)
with P �V = {V ∩ X | X ∈ P} is a subframe of F. For a

model M = (F, v), we let M �V = (F �V , v �V ), where v �V (p) = V ∩ v(p). Given
a frame F = (W,R,P) with transitive R and a point x ∈W , we define the frame
Fx = (Wx,Rx,Px) by taking Wx = {y ∈W | xR+y}, where R+ is the reflexive
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6 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

closure of R (that is, R+ = R ∪ {(y, y) | y ∈W }), Rx = R �Wx , and Px = P �Wx .
We call F rooted if F = Fx , for some x ∈W , in which case x is called a root of F.
Note that Fx is not necessarily a subframe of F, but we have:

if F is descriptive and transitive, then Fx is descriptive as well. (1)

Indeed, suppose F = (W,R,P) is descriptive and x ∈W . Conditions (dif) and (tig)
for Fx are straightforward and left to the reader. To establish (com), consider any
Xx ⊆ Px with the fip. Then

X = {V ∈ P | V ∩Wx ∈ Xx} ∪ {V ∈ P |Wx ⊆ V }

also has the fip, and so
⋂
X �= ∅. To prove that

⋂
Xx �= ∅, it suffices to show

that
⋂
{V ∈ P |Wx ⊆ V } ⊆Wx . To this end, suppose on the contrary that y ∈⋂

{V ∈ P |Wx ⊆ V } and y /∈Wx . Then (dif) and (tig) give Z,Y ∈ P such that
x ∈ Z, y /∈ Z, y ∈ Y , and x ∈ �¬Y . It follows that Z ∪ ¬Y ∈ P ,Wx ⊆ Z ∪ ¬Y ,
and so y ∈ Z ∪ ¬Y , which is a contradiction.

2.2. The structure of linear finitely-generated descriptive frames. From now on,
all frames F = (W,R,P) are assumed to be rooted frames for K4.3, so their relation
R is always transitive and connected:

∀x, y ∈W
(
xRy ∨ x = y ∨ yRx

)
. (2)

A cluster in F is any set of the form C (x) = {x} ∪ {y ∈W | xRy ∧ yRx} with
x ∈W . If x is irreflexive, i.e., xRx does not hold, C (x) is called a degenerate cluster
and depicted as •; a reflexive x (for which xRx) is depicted as ◦. A non-degenerate
cluster with k ≥ 1 (reflexive) points is depicted as©k . The next example will be used
many times in what follows.

Example 2.2. Consider the frame F = (Wk,Rk•,Pk), where 0 < k < �,

Wk = Ak ∪ {bn | n < �}, Ak = {a0, ... , ak–1},
xRk•y iff either x = ai or x = bn, y = bm, and m < n,

and Pk is generated by the sets Xi = {ai} ∪ {bn | n < �, n ≡ i (mod k)}, for i < k,
and {bn}, for n < �. (For instance, P1 consists of all finite subsets of {bn | n < �}
and their complements inW1.) The underlying Kripke frame (Wk,Rk•) is shown in
the picture below, where all ∗ are •.

a0

...
ak–1

... ∗
bn

∗
bn–1

... ∗
b2

∗
b1

∗
b0

It is not hard to see that

for any X ∈ Pk, X is infinite iff Ak ∩ X �= ∅, (3)

and so Ak /∈ Pk . For every nonempty X ∈ Pk , the set �FX is cofinite in Wk .
Using these observations, it is readily checked that F is a descriptive frame; we
denote it by C(©k , •). Clearly, C(©k , •) is M-generated for M with v(pi) = Xi if
i < k, and v(pi) = ∅ otherwise. The descriptive frame (Wk,Rk◦,Pk) with Rk◦ =
Rk• ∪ {(bn, bn) | n < �} is denoted by C(©k , ◦); (Wk,Rk◦) looks like in the picture
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 7

above, with all ∗ = ◦. Note that C(©k , •) |= GL.3 but C(©k , ◦) �|= GL.3, cf. Example
2.10(a).

The next lemma, originating in [12], will play a key role in our subsequent
constructions. Let M be a model based on a rooted frame F = (W,R,P) for K4.3,
and let Γ be a set of formulas. A point x ∈W is called Γ-maximal in M if M, x |= Γ,
and whenever xRy and M, y |= Γ, then yRx. We denote by maxM Γ the set of all
Γ-maximal points in M.

Lemma 2.3. Suppose Γ is a set of formulas and M is a model based on a rooted
descriptive frame F = (W,R,P) for K4.3. Then the following hold:

(modal saturation) if M, x |= �
∧

Γ′ for every finite Γ′ ⊆ Γ, then there is y with
xRy and M, y |= Γ;

(maximal points) if there is x with M, x |= Γ, then maxM Γ �= ∅.
Given a rooted frame F = (W,R,P) for K4.3, let Rs = {(x, y) ∈ R | (y, x) /∈ R}

be the strict R-accessibility in F. Sometimes it will be convenient to view (W,R) as
a strict linear order Fc = (Wc,<R) of clusters, where Wc = {C (x) | x ∈W } and
C (x) <R C (y) iff xRsy. A cluster C is final in F if there is no cluster C ′ with
C <R C

′. A cluster C is a root cluster if there is no cluster C ′ with C ′ <R C , in
which case C <R C ′ for every C ′ �= C in F; the root cluster in F is unique. A cluster
C ′ is an immediate successor of a cluster C in F if C <R C ′ and there is no C ′′ with
C <R C

′′ <R C
′, in which case C is an immediate predecessor ofC ′. A sequenceCn,

n < �, of clusters in Fc is an infinite ascending chain if Cn <R Cn+1, for all n < �.
Fc is converse well-founded if it has no infinite ascending chain of clusters.

The next lemma follows from, e.g., the more general [9, Theorems 10.34 and
10.35].

Lemma 2.4. IfF is a rooted n-generated descriptive frame forK4.3, for some n < �,
then:

(a) Fc is converse well-founded, and so the strict linear order F–1
c = (Wc,>R) is

isomorphic to some ordinal;
(b) every cluster in F has at most 2n points.

Proof. Let F = (W,R,P), let ≤R be the reflexive closure of <R, and let G be
a finite set generating P with |G| = n. For x, y ∈W , we write x ∼G y in case
x ∈ G iff y ∈ G , for all G ∈ G, and denote by [x]G the ∼G-class of x. Clearly,∣∣{[x]G | x ∈W

}∣∣ ≤ 2|G| = 2n.
(a) Suppose on the contrary that C (xi), i < �, is an infinite ascending chain

in Fc . Call x ∈W a middle-point if C (x0) ≤R C (x) ≤R C (xi), for some i < �.
Let Vx = {[y]G | y a middle-point with xRy}. Since Vx ⊇ Vy whenever xRy and
each Vx is finite, there is m < � such that Vy = Vxm , for every middle-point y with
C (xm) ≤R C (y). By induction on the construction of X ∈ P from the generators
in G, it is readily seen that

if y, z are middle-points, C (xm) ≤R C (y),C (xm) ≤R C (z), and y ∼G z, (4)

then y ∈ X iff z ∈ X, for all X ∈ P .

(Indeed, the only non-trivial case is when X = �FY , yRz and y ∈ �FY . Then
there is x ∈ Y with yRx. If zRx, we are done. Otherwise, x is a middle-point.
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8 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

As Vy = Vz , there is a middle-point x′ with zRx′ and x ∼G x
′. By IH, x′ ∈ Y .) As

there are finitely many ∼G-classes, there exist k �= � ≥ m such that xk ∼G x� , and
so xk ∈ X iff x� ∈ X , for all X ∈ P , by (4). But this contradicts (dif).

(b) It is straightforward to show that if C (x) = C (y) and x ∼G y, then x ∈ X iff
y ∈ X , for all X ∈ P . So by (dif), every cluster in F has ≤ 2|G| points. �

Note that the existence of maximal points (Lemma 2.3) in models based on rooted
finitely generated descriptive frames for K4.3 also follows from Lemma 2.4. Another
consequence is that such a frame F contains a unique final cluster, and any non-root
cluster in F has an immediate predecessor. If F–1

c = (Wc,>R) is isomorphic to an
ordinal � and α ≤ �, we denote by CF

α the cluster that is the image of α under this
isomorphism. If α is a non-zero limit ordinal, we call CF

α a limit cluster. A non-final
cluster is a limit cluster iff it does not have an immediate successor. By (dif) and
Lemma 2.4(b), we also have the following.

Lemma 2.5. If F = (W,R,P) is a rooted finitely generated descriptive frame for
K4.3 and C ∈ P , for some cluster C, then {x} ∈ P , for every x ∈ C .

Now, suppose M is a model based on a rooted finitely M-generated descriptive
frame F = (W,R,P) for L ⊇ K4.3. Given a formula 
, a cluster C is called 
-
maximal in M if there is a point in C that is {
}-maximal in M. Further, C is
maximal in M if it is 
-maximal in M, for some 
, and C is �-maximal in M, for
a signature �, if there is such a �-formula 
. Every definable in M cluster is clearly
maximal in M. The next lemma says that the converse is also true.

Lemma 2.6. Suppose M is a model based on a rooted finitely M-generated
descriptive frame F = (W,R,P) for K4.3. Then

(a) every degenerate cluster in F is maximal in M;
(b) a cluster is maximal in M iff either it is final or has an immediate successor;
(c) a cluster is definable in M iff it is maximal in M.

So limit clusters are not definable and not degenerate, while every other cluster is
definable in M.

Proof. (a) If C (x) is degenerate, then �tM(x) �⊆ tM(x) by (tig). So there is a
formula 
 with M, x |= 
 but M, x �|= �
.

(b,⇒) LetC (x) be maximal in M with M, x |= 
 and M, y �|= 
whenever xRsy.
Suppose C (x) is a limit cluster. Let S = {C ∈Wc | C (x) <R C} with yC ∈ C , for
C ∈ S. Consider

Γ =
⋃
C∈S

�tM(yC ) ∪ {� | �� ∈ tM(x)} ∪ {�¬
}.

Clearly, Γ is finitely satisfiable in M, and so, by (com), Γ ⊆ tM(y), for some y. Thus,
by (tig), xRyRyC for all C ∈ S, and so yRsyC for all C ∈ S and yRx. But we also
have M, y |= �¬
, contrary to M, x |= 
.

(b,⇐) The (unique) final cluster is maximal in M for �. Suppose C (y) is an
immediate successor of C (x). If C (y) is degenerate, then C (y) is maximal in M by
(a), and so there is 
 with M, y |= 
 ∧ ¬�
. It follows that C (x) is �(
 ∧ ¬�
)-
maximal in M. If C (y) is non-degenerate and C (x) is not maximal in M, then
�tM(x) ⊆ tM(y), and so yRx by (tig), contrary to xRsy.

(c,⇐) Let C (x) be 
-maximal in M. If C (x) is degenerate, it is defined by 
 ∧
¬�
. If C (x) is the non-degenerate root cluster, then �
 defines C (x). Otherwise,
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 9

take the immediate predecessor C (y) of C (x). By (b), C (y) is �-maximal in M, for
some �, so �+¬� ∧�
 defines C (x). (c,⇒) is obvious. �

We require a few important consequences of Lemmas 2.4 and 2.6.

Lemma 2.7. If F = (W,R,P) is a rooted finitely generated descriptive frame for
K4.3, then W is countable.

Proof. By Lemma 2.4, it suffices to show that the ordinal � isomorphic to F–1
c =

(Wc,>R) is countable. Let Z = {α + 1 | α < �, α + 1 �= �} be the set of successor
ordinals < �. Then |Z| = |�| and CF

� ∈ P , for any � ∈ Z, by Lemma 2.6. As F is
finitely generated, P is countable, and so are Z and W. �

Given a rooted finitely M-generated descriptive frame F = (W,R,P) for K4.3,
let mF be the largest ordinal ≤ � with degenerate CF

n for all n < mF. We call
the (possibly empty) interval Z =

⋃
n<mF

CF
n the tail of F. We may assume that

Z = {zn | n < mF}, where all zn are irreflexive and znRzn–1, 0 < n < mF. If Z is
infinite, then Z �=W (as F is rooted). If Z �=W , we call CF

mF
the head of Z. In

particular, ifZ = ∅, its head is the final (non-degenerate) cluster CF

0 ; ifZ �=W and
Z �= ∅ is finite, its head is the immediate predecessor of CF

mF–1 = {zmF–1}; and if Z

is infinite, its head is the limit cluster CF
� . Thus, by Lemma 2.6,

the head of a tail is always non-degenerate. (5)

2.3. Building linear models from pieces.

Definition 2.8. The ordered sum F0 � ···� Fn–1 = (W,R,P) of rooted frames
Fi = (Wi,Ri ,Pi), i < n, for K4.3 with pairwise disjointWi is defined by

W =
⋃
i<n

Wi , R =
⋃
i<n

Ri ∪
⋃
i<j<n

(Wi ×Wj), P = {X0 ∪ ··· ∪ Xn–1 | Xi ∈ Pi}.

It is not hard to see that if the Fi are descriptive, then F0 � ···� Fn–1 is also
descriptive. If Mi = (Fi , vi), then M = M0 � ···� Mn–1 is the model based on
F0 � ···� Fn–1 with the valuation v(p) =

⋃
i<n vi(p), for any p ∈ V . We call the

Mi�-components of M.

Now, let F = (W,R,P) be a rooted frame for K4.3. An interval in F is any subset
I ⊆W such that xRyRz and x, z ∈ I imply y ∈ I , for all x, y, z ∈W . If I ∩ C �= ∅,
for a cluster C, then clearly C ⊆ I . An interval I is closed if there are clusters C,C ′

such that I = C ∪ C ′ ∪
⋃
{D | C <R D <R C ′}, in which case we write I = [C,C ′].

Given two closed intervals I, I ′ in F, we write I ≺F I
′ if I and I ′ are disjoint and

xRx′, for all x ∈ I , x′ ∈ I ′. Notice that if I is a closed internal interval in F, then
F �I is also a rooted frame for K4.3. Also, if F is descriptive, then F �I is descriptive
as well. And if F is finitely M-generated, for some model M, then F �I is finitely
M �I -generated. We clearly have the following.

Lemma 2.9. Suppose F = (W,R,P) is a rooted frame for K4.3 and W is partitioned
as {Ij | j < n}, n < �, with closed intervals Ij ∈ P and Ij ≺F Ik iff j < k. Then

(a) F = F �I0 � ···� F �In–1
;

(b) if M is a model based on F, then M = M �I0 � ···� M �In–1
.
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10 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

2.4. Canonical formulas. To check whether a frame validates a given finitely
axiomatisable logic, we use the canonical formulas of [4, 9, 38, 43] whose basic
properties are summarised below in the context of K4.3; for more details consult
[9, Section 16.3]. Every logic L ⊇ K4.3 can be represented in the form

L = K4.3⊕ {α(Gj ,Dj ,⊥) | j ∈ JL}, for some index set JL, (6)

where each α(Gj ,Dj ,⊥) is a canonical formula based on a finite rooted Kripke
frame Gj = (Vj, Sj) for K4.3 and a (possibly empty) set Dj ⊆ Vj of irreflexive
non-root points in Gj . If L is finitely axiomatisable, its canonical axiomatisation (6)
with finite JL can be constructed effectively, given any finite set of axioms.

Let F = (W,R,P) be any rooted finitely generated descriptive frame for K4.3.
By Theorem 2.4, F contains a unique final cluster, and any non-root cluster in F

has an immediate predecessor. The formulas α(Gj ,Dj ,⊥) are defined so that F �|=
α(Gj ,Dj ,⊥) iff there is an injectionf : Vj →W such that the following conditions
hold: for all x, y ∈ Vj ,

(cf1) xSjy iff f(x)Rf(y) (so x is irreflexive iff f(x) is);
(cf2) if C (x) is the final cluster in Gj , then C (f(x)) is the final cluster in F;
(cf3) if x ∈ Dj and C (y) is the immediate predecessor of C (x) = {x} in Gj ,

then C (f(y)) is the immediate predecessor of C (f(x)) = {f(x)} in F;
(cf4) {f(x)} ∈ P .

Intuitively, every frame F with F �|= α(Gj ,Dj ,⊥) can be obtained by inserting
certain chains of clusters immediately before some clusters C (x) in Gj , provided
that x /∈ Dj , and by enlarging some non-degenerate clusters in Gj .

Canonical formulas of the formα(G, ∅,⊥) axiomatise exactly the cofinal subframe
logics whose frames are closed under taking cofinal subframes. We remind the reader
[9] that a subframe F′ = (W ′, R′,P ′) of a frame F = (W,R,P) is called cofinal if
W ′ is cofinal in F in the sense that, for any x ∈W ′ and y ∈W , whenever xRy then
either y ∈W ′ or there is z ∈W ′ with yRz. Cofinal subframe logics enjoy the fmp,
and so are decidable if finitely axiomatisable [42]. Example 2.10 shows the canonical
axioms of some extensions of K4.3.

Example 2.10. (a) We prove that

GL.3 = K4.3⊕�(�p0 → p0) → �p0 = K4.3⊕ α(◦, ∅,⊥)⊕ α(◦� •, ∅,⊥).

Let F = (W,R,P) be a rooted finitely generated descriptive frame for K4.3. By
Lemma 2.7, W is countable, and so F is M-generated, for some model M = (F, v).
We claim that the following are equivalent:

1. M �|= GL.3;
2. there is a formula � with a non-degenerate �-maximal cluster in M;
3. there is a non-degenerate non-limit cluster in F;
4. F �|= α(◦, ∅,⊥) ∧ α(◦� •, ∅,⊥).

1. ⇒ 2. Suppose M, x �|= �(�ϕ → ϕ) → �ϕ, for some formula ϕ. Then the
¬

(
�(�ϕ → ϕ) → �ϕ

)
-maximal cluster C in M is non-degenerate.

2.⇔ 3. by Lemma 2.6.
2. ⇒ 4. Suppose the �-maximal cluster C� in M is non-degenerate, for some

�. If C� is the final cluster of F, then the injection f mapping ◦ to a point in C�

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10159
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.184, on 18 Nov 2025 at 17:48:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10159
https://www.cambridge.org/core


INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 11

satisfies (cf1)–(cf4), and so F �|= α(◦, ∅,⊥). If C� is not the final cluster, then the
¬�-maximal cluster C¬� is the final cluster in F. If C¬� is non-degenerate, then
again F �|= α(◦, ∅,⊥); otherwise F �|= α(◦� •, ∅,⊥) as witnessed by f sending • to
the point in the final cluster and ◦ to a point in C�.

4. ⇒ 1. If F �|= α(◦� •, ∅,⊥), then take an injection f from ◦� • to F satisfying
(cf1)–(cf4). By (cf4) and Lemma 2.6, {f(◦)} = v(ϕ), for some ϕ. As f(◦)Rf(◦)
by (cf1), it is easy to see that M, f(◦) �|= �(�¬ϕ → ¬ϕ) → �¬ϕ. The case when
F �|= α(◦, ∅,⊥) is similar.

(b) Similarly, we can prove that

Log{(N, <)} = K4.3⊕��⊕�(�p0 → p0) → (��p0 → �p0)

= K4.3⊕ α(•, ∅,⊥)⊕ α(◦� ◦, ∅,⊥)

by showing that, for every M and F as above, the following are equivalent:
– M �|= Log{(N, <)};
– either the final cluster in F is degenerate or there is a non-degenerate non-limit

cluster different from the final cluster in F;
– F �|= α(•, ∅,⊥) ∧ α(◦� ◦, ∅,⊥).
(c) A prominent example of a non-cofinal subframe logic is K4.3⊕�p → ��p

with dense frames, whose canonical axioms

K4.3⊕ α(•� •a, {a},⊥)⊕ α(•� •a � ◦, {a},⊥)⊕ α(•� •a � •, {a},⊥)

forbid any two consecutive degenerate clusters in finitely generated descriptive
frames for the logic (see also Lemma 5.6).

§3. Craig interpolant existence: Warming up. In this section, we first give a model-
theoretic, bisimulation-based criterion of interpolant non-existence, then apply it to
design a coNP-algorithm deciding the IEP in any finitely axiomatisable d-persistent
cofinal subframe logic containing K4.3. Finally, we illustrate by examples that a
way more involved approach is needed to tackle arbitrary finitely axiomatisable
extensions of K4.3.

A formula � is called a Craig interpolant of formulas ϕ1 and ϕ2 in a logic L if
sig(�) ⊆ sig(ϕ1) ∩ sig(ϕ2) and both ϕ1 → � and � → ϕ2 are in L. We say that L has
the CIP if an interpolant for ϕ1 and ϕ2 exists whenever (ϕ1 → ϕ2) ∈ L.

Many standard modal logics have the CIP, including K, K4, and S4. In fact,
there are a continuum of logics containing K4 with the CIP. However, none of the
continuum-many extensions of K4.3 with frames of unbounded depth has the CIP,
and very few—not more than 37—out of the continuum-many logics containing S4
enjoy the CIP (deciding whether a finitely axiomatisable logic above S4 has the CIP
is in coNExpTime and PSpace-hard). The reader can find proofs of these results
and further references in [9, 14 (see also Example 3.6).

We now introduce the model-theoretic notions and tools that are needed in our
non-uniform approach to deciding interpolant existence in modal logics.

Given two models Mi , i = 1, 2, based on Fi = (Wi,Ri ,Pi) with xi ∈Wi , we
write M1, x1 ≡� M2, x2, for a signature �, if t�

M1
(x1) = t�

M2
(x2). The equivalence

relation ≡�⊆W1 ×W2 can be characterised in terms of bisimulations. Namely, a
relation � ⊆W1 ×W2 is called a �-bisimulation betweenM1 andM2 if the following
conditions hold whenever x1�x2:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10159
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.184, on 18 Nov 2025 at 17:48:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10159
https://www.cambridge.org/core


12 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

(atom) at�
M1

(x1) = at�
M2

(x2);
(move) if x1R1y1, then there is y2 such that x2R2y2 and y1�y2; and, conversely,

if x2R2y2, then there is y1 with x1R1y1 and y1�y2.
If there is such � with z1�z2, we write M1, z1 ∼� M2, z2. We call � global if,

for every x1 ∈W1, there is x2 ∈W2 with x1�x2, and, for every x2 ∈W2, there is
x1 ∈W1 with x1�x2. In this case, we say that M1 and M2 are globally �-bisimilar
and write M1 ∼� M2.

We employ the following characterisation of ≡� (see [20] for a further discussion
of the relationship between bisimulations and modal equivalence).

Lemma 3.1. For any signature �, any models Mi , i = 1, 2, based on descriptive
frames Fi = (Wi,Ri ,Pi), and any xi ∈Wi ,

M1, x1 ≡� M2, x2 iff M1, x1 ∼� M2, x2.

The implication (⇐) holds for arbitrary models.

Proof. (⇒) We show that {(y1, y2) ∈W1 ×W2 | t�M1
(y1) = t�

M2
(y2)} is a �-

bisimulation betweenM1 andM2. Condition (atom) is obvious. For (move), suppose
y1R1z1 and t�

M1
(y1) = t�

M2
(y2). Let Γ = t�

M1
(z1). Then, for every finite Γ′ ⊆ Γ, we

have M1, y1 |= �
∧

Γ′, and so M2, y2 |= �
∧

Γ′ as well. Since F2 is descriptive,
Lemma 2.3 gives us z2 with y2R2z2 and M2, z2 |= Γ. It follows that t�

M1
(z1) =

t�
M2

(z2), as required. The implication (⇐) is straightforward. �
Note that if B is a set of �-bisimulations between M1 and M2, then

⋃
�∈B � is

also a �-bisimulation between M1 and M2. It follows that there is always a largest
�-bisimulation betweenM1 andM2 (which is≡� if bothMi are based on descriptive
frames).

Variations of the following criterion of interpolant (non-)existence are implicit in
various (dis-)proofs of the CIP in modal logics [20, 32].

Theorem 3.2. Formulas ϕ1 and ϕ2 do not have an interpolant in a modal logic L
iff there are models Mi , i = 1, 2, based on finitely Mi -generated descriptive frames
Fi = (Wi,Ri ,Pi) for L with points xi ∈Wi such that

M1, x1 |= ϕ1, M2, x2 |= ¬ϕ2, M1, x1 ∼� M2, x2, for � = sig(ϕ1) ∩ sig(ϕ2).

If L ⊇ K4, we may assume that xi is the root of the descriptive frame Fi , i = 1, 2.

Proof. (⇐) is straightforward (and holds for arbitrary frames for L). For (⇒),
consider the signature 
 = sig(ϕ1) ∪ sig(ϕ2) and the set

Σ = {� | � is a �-formula and (ϕ1 → �) ∈ L} ∪ {¬ϕ2}
of 
-formulas. As ϕ1 and ϕ2 have no interpolant in L, Σ is L-consistent, and so, by
Lemma 2.1, there exists a 
-model M2 based on a finitely M2-generated descriptive
frame F2 and a point x2 with M2, x2 |= Σ. Let Σ′ = t�

M2
(x2) ∪ {ϕ1}. As Σ′ is an

L-consistent set of 
-formulas, Lemma 2.1 gives a 
-model M1 based on a finitely
M1-generated descriptive frame F1 and an x1 in M1 such that M1, x1 |= Σ′. We
clearly have t�

M1
(x1) = t�

M2
(x2), and so M1, x1 ∼� M2, x2 by Lemma 3.1. In case

L ⊇ K4, (1) allows us to make xi the root of Fi . �
The next lemma refines Theorem 3.2; it is used in the proof of Lemma 4.21.
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 13

Lemma 3.3. If ϕ1 and ϕ2 do not have an interpolant in a logic L ⊇ K4.3, then
there are rooted models Mi , xi , i = 1, 2, satisfying the criterion Theorem 3.2 such that
C (xi) is not a limit cluster in Mi , for i = 1, 2.

Proof. SupposeM, x is a rooted 
-model, for some finite signature 
, that is based
on a finitely M-generated descriptive frame F = (W,R,P) such that M, x |= ϕ, for
some ϕ with sig(ϕ) ⊆ 
, and C (x) is a root limit cluster in F. Pick a fresh variable
q /∈ 
. For ∗ ∈ {•, ◦}, take the frames F∗ = ∗� F, denote the root point of F∗ by x∗,
and consider the 
 ∪ {q}-models M∗ based on F∗, which coincide with M on F and
have M∗, x∗ |= p iff M, x |= p, for p ∈ 
, and M∗, x∗ |= q. To prove the lemma, it
suffices to show that there is ∗ ∈ {•, ◦} with (i)M∗, x∗ |= ϕ, (ii)M∗, x∗ ∼� M, x,
for any � ⊆ sig(ϕ), and (iii)Log(F) ⊆ Log(F∗).

As the limit cluster C (x) is non-degenerate by Lemma 2.6, we have (i) and (ii).
To show (iii), suppose on the contrary that, for each ∗ ∈ {•, ◦}, there is a canonical
formulaα(G∗,D∗,⊥) withF |= α(G∗,D∗,⊥) andF∗ �|= α(G∗,D∗,⊥). Letf∗ be an
injection from G∗ to F∗ satisfying (cf1)–(cf4) for α(G∗,D∗,⊥), and let C (r∗) be the
root-cluster inG∗ andC (y∗) its immediate successor inG∗. By assumption,f∗ is not
an injection from G∗ to F satisfying (cf1)–(cf4), so f∗(r∗) = x∗ and f∗(y∗) ∈W .
As {f∗(y∗)} ∈ P by (cf4) andC (x) is a limit cluster, it follows from Lemma 2.6 that
f∗(y∗) /∈ C (x), and so y∗ /∈ D∗. Suppose, for definiteness, that f◦(y◦)Rf•(y•) or
f◦(y◦) = f•(y•). Let C be the immediate predecessor of C (f◦(y◦)) in F. Then C
is a non-limit cluster. By Lemma 2.6, C ∈ P and, by Lemma 2.5, {z} ∈ P , for every
z ∈ C . If C is non-degenerate, then we modifyf◦ by takingf◦(r◦) ∈ C ; otherwise,
we modify f• by taking f•(r•) ∈ C . In either case, the modified f∗ is an injection
from G∗ to F satisfying (cf1)–(cf4), a contradiction. �

We begin our study of the IEP by showing how the criterion of Theorem 3.2 can be
used to decide whether given formulas have an interpolant in any fixed d-persistent
cofinal subframe logic L ⊇ K4.3 (defined in Section 2.4). Suppose that ϕ1 and ϕ2

do not have an interpolant in L. Let � = sig(ϕ1) ∩ sig(ϕ2). By Theorem 3.2, there
exist models Mi , i = 1, 2, based on descriptive frames Fi = (Wi,Ri ,Pi) for L with
roots xi ∈Wi such that M1, x1 ∼� M2, x2, M1, x1 |= ϕ1 and M2, x2 |= ¬ϕ2. We
may assume that � is the largest �-bisimulation ≡� between M1 and M2 (for which
x1�x2, of course). We show how to extract from the Mi polynomial-size models M′

i

that still witness that ϕ1 and ϕ2 lack an interpolant in L. We proceed in two steps.
Step 1: For each i = 1, 2 and each � ∈ sub(ϕi) satisfied in Mi , we take a {�}-

maximal point y� ∈Wi (which exists by Lemma 2.3), and denote the set
of all these y� byM i ⊆Wi . Note thatM i is cofinal in Fi because each
point inWi \M i has a {ϕi}- or {¬ϕi}-maximal Ri -successor. Set

T =
{
t�M1

(x) | x ∈ {x1} ∪M1
}
∪

{
t�M2

(x) | x ∈ {x2} ∪M2
}
. (7)

Step 2: As M1, x1 ∼� M2, x2 and � is the largest �-bisimulation, each t ∈ T
is satisfied in both Mi . For i = 1, 2, we take a smallest set S i ⊆Wi
containing a t-maximal point zt in Mi (which exists by Lemma 2.3), for
each t ∈ T .

Now, let W ′
i = {xi} ∪M i ∪ S i , R′

i = Ri �W ′
i
, F′
i = (W ′

i , R
′
i), and let M′

i be the
restriction of Mi to F′

i . We let

k(ϕ1, ϕ2) = 3 + 3 max(|ϕ1|, |ϕ2|). (8)
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14 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

Clearly, |W ′
i | ≤ k(ϕ1, ϕ2), so the size of Mi is O

(
max(|ϕ1|, |ϕ2|)

)
. As L is d-

persistent, (Wi,Ri) |= L. By construction, F′
i is a cofinal subframe of (Wi,Ri), and

so F′
i |= L as L is a cofinal subframe logic. Finally, we define � ′ as the restriction of

� toW ′
1 ×W ′

2 : x′1�
′x′2 iff t�

M1
(x′1) = t�

M2
(x′2), for all x′1 ∈W ′

1 , x′2 ∈W ′
2 .

Lemma 3.4. (a) M′
1, x1 |= ϕ1, M′

2, x2 |= ¬ϕ2 and (b) � ′ is a �-bisimulation
between M′

1 and M′
2 with x1�

′x2.

Proof. (a) follows from the fact that, for any � ∈ sub(ϕi) and x ∈W ′
i , Mi , x |=

� iff M′
i , x |= �, which can be established by a straightforward induction on the

construction ofϕ1 andϕ2. We only show (⇒) for � = ��. IfMi , x |= ��, then there
is y ∈Wi with xRiy and Mi , y |= �. Take y� ∈M i ⊆W ′

i . By the {�}-maximality
of y�, either y = y� or yRiy�, and so xR′

i y� and M′
i , x |= ��.

(b) Condition (atom) follows from the definition. To establish (move), assume
x� ′x′ and xR′

1y. Let t = t�
M1

(y). Then t ∈ T , and so there is a t-maximal zt ∈
S 2 ⊆W ′

2 in M2. In particular, t�
M2

(zt) = t, and so y� ′zt . As x�x′ and � is the
largest �-bisimulation, there is z ∈W2 with x′R2z and t�

M2
(z) = t. It follows from

the t-maximality of zt that z = zt or zR2zt , and so x′R′
2zt , as required. �

Thus, the fact that ϕ1 and ϕ2 have no interpolant in L can always be witnessed
(in the sense of Theorem 3.2) by models Mi of size polynomial in max(|ϕ1|, |ϕ2|),
and so we can say that L has the polysize bisimilar model property. This gives the
first claim of the following theorem.

Theorem 3.5. (a) All d-persistent cofinal subframe logics L ⊇ K4.3 have the
polysize bisimilar model property. (b) If such an L is consistent and finitely
axiomatisable, then the IEP for L is coNP-complete.

Proof. We show that (a) ⇒ (b) (cf. Theorem 4.9 in Section 4). Indeed, suppose
L is given by (6) (with Gj = (Vj, Sj) and Dj = ∅, for all j in the finite index set JL).
To decide whether formulas ϕ1 and ϕ2 do not have an interpolant in L, we guess
polynomial-size pointed models Mi , xi based on Kripke frames Fi = (Wi,Ri) for
K4.3 and restricted to the variables in ϕ1 and ϕ2. The conditions M1, x1 |= ϕ1 and
M2, x2 |= ¬ϕ2 are clearly polynomially checkable; that M1, x1 ∼� M2, x2, for � =
sig(ϕ1) ∩ sig(ϕ2), can be established in polynomial time using a standard technique
from [2, Chapter 7]. Finally, to check whether Fi |= α(Gj , ∅,⊥), for each j ∈ JL,
we simply enumerate all injective functions from Gj to Fi , whose number does not
exceed |Wi ||Vj |, and verify that at least one of them satisfies (cf1) and (cf2), which
can obviously be done in time polynomial in |Wi |. (Condition (cf3) holds vacuously,
and (cf4) always holds as Fi is a Kripke frame.) �

We now give two examples illustrating that the construction above does not work
for logics that are not d-persistent, even for logics with the fmp. Prominent examples
of such logics are GL.3 and Log{(N, <)} (see Example 2.10). We show that, for these
logics, establishing model-theoretically (using Theorem 3.2) that some formulas do
not have an interpolant requires a pair of models that are based on infinite descriptive
(non-Kripke) frames.
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 15

Example 3.6. (a) Consider the following formulas ϕ1 and ϕ2:

ϕ1 = �(p1 ∧�+¬q1) ∧�(p2 → �+q1),

ϕ2 = ¬[�(p2 ∧�+¬q2) ∧�(p1 → �+q2)]. (9)

To show that (ϕ1 → ϕ2) ∈ K4.3 ⊆ GL.3, suppose otherwise. Then there exists a
model M based on a frame F = (W,R) for K4.3 and z ∈W with M, z |= ϕ1 ∧ ¬ϕ2.
So we have x, x′, y, y′ ∈W with zRxR+x′, zRyR+y′, M, x |= p1, M, x′ |= ¬q1,
M, y |= p2, and M, y′ |= ¬q2. Since F is a frame for K4.3, either x′ = y′ or x′Ry′

or y′Rx′. However, none of these is possible because of the boxed conjuncts of ϕ1

and ¬ϕ2.
We now use Theorem 3.2 to show that ϕ1 and ϕ2 do not have an interpolant in

GL.3. Let � = sig(ϕ1) ∩ sig(ϕ2) = {p1, p2}. Observe that any models Mi meeting
the conditions of Theorem 3.2 cannot be based on a Kripke frame Fi = (Wi,Ri) for
GL.3. Indeed, let � be the corresponding bisimulation. Then M1, x1 |= ϕ1 implies
that there is x1

1 ∈W1 with x1R1x
1
1 and M1, x

1
1 |= p1; we must also have M1, y1 |=

¬q1, for some y1 withx1
1R

+
1 y1. Similarly,M2, x2 |= ¬ϕ2 implies that there isx1

2 ∈W2

with x2R1x
1
2 and M2, x

1
2 |= p2, and we also have M2, y2 |= ¬q2, for some y2 with

x1
2R

+
2 y2. As x1�x2 and x1R1x

1
1 , (move) gives x2

2 with x2R2x
2
2 and x1

1�x
2
2 . But

then M2, x
2
2 |= p1, and so x2R2x

1
2R

+
2 y2R2x

2
2 since F2 is a frame for K4.3 and in

view of ¬ϕ2’s second conjunct. Symmetrically, we find x2
1 with x1R1x

1
1R

+
1 y1R1x

2
1

and x2
1�x

1
2 . Using (move), we construct infinite ascending chains of not necessarily

distinct points as shown in the picture below.

M2 ∗
¬ϕ2

x2

∗
p2

x1
2

∗
¬q2

y2

∗
p1

x2
2

∗
p2

x3
2

...

M1 ∗
ϕ1

x1

∗
p1

x1
1

∗
¬q1

y1

∗
p2

x2
1

∗
p1

x3
1

...

�

It follows that the Fi are not frames for GL.3 (see any of [5, 9, 19] for details).
We now give a descriptive frame for GL.3 that can be used to show that ϕ1 and

ϕ2 do not have an interpolant in GL.3. Take the descriptive frame C(©2 , •) defined
in Example 2.2 and construct F = •� •� C(©2 , •) (see Definition 2.8), which is a
frame for GL.3 by property (iii) in Example 2.10 (a). Consider the rooted models
Mi , xi , i = 1, 2, shown in Figure 1, both of which are based on a frame isomorphic
toF. It is readily checked thatM1, x1 |= ϕ1,M2, x2 |= ¬ϕ2, and the depicted relation
� is a �-bisimulation between M1 and M2 with x1�x2.

In fact, the argument above shows that none of the logics L in the interval
K4.3 ⊆ L ⊆ GL.3 has the CIP.

(b) Consider next the logic Log{(N, <)} and show that the formulas

ϕ′
1 = �(p1 ∧�+¬q1) ∧�(p2 → �+q1) ∧�r ∧ ¬�(r ∧�p1)

and ϕ2 given by (9) do not have an interpolant in it, though (ϕ1 → ϕ2) ∈ K4.3, and
so (ϕ′

1 → ϕ2) ∈ K4.3 ⊆ Log{(N, <)}.
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M2 ¬ϕ2

x2

p2,¬q2

y2 a0
2

p2

a1
2

p1 q2

...
b3

2

p1, q2

b2
2

p2, q2

b1
2

p1, q2

b0
2

p2, q2

M1

ϕ1

x1

p1,¬q1

y1 a0
1

p2

a1
1

p1 q1
...

b3
1

p1, q1

b2
1

p2, q1

b1
1

p1, q1

b0
1

p2, q1

�

Figure 1. �-bisimilar models based on a descriptive frame for GL.3.

As in (a) above, any models Mi , i = 1, 2, satisfying the conditions of Theorem
3.2 for ϕ′

1 and ϕ2 cannot be based on Kripke frames, however the reason for this is
slightly different. Suppose � is a bisimulation witnessing these conditions. Then the
models Mi must contain infinite ascending chains such as those in Example 3.6(a).
Also, the model M1 with M1, x1 |= ϕ′

1 must contain a point z such that x1R1z and
M1, z |= r ∧�¬p1, which means that z is located after all of the xj1 , j < �. But then
the Kripke frame F1 underlying M1 is not a frame for Log{(N, <)}, as it refutes its
axiom �(�p → p) → (��p → �p) if we make p true everywhere after the initial
ascending chain in F1 and false elsewhere.

The picture below shows models M1 and M2 based on •� •� C(©2 , •) � ◦ and
satisfying the conditions of Theorem 3.2 for ϕ′

1 and ϕ2. That this frame is a frame
for Log{(N, <)} follows from Example 2.10(b).

M2 ¬ϕ2

x2

p2,¬q2

y2 a0
2

p2

a1
2

p1 q2

...
b3

2

p1, q2

b2
2

p2, q2

b1
2

p1, q2

b0
2

p2, q2 r, q2

M1

ϕ′1

x1

p1,¬q1

y1 a0
1

p2

a1
1

p1 q1
...

b3
1

p1, q1

b2
1

p2, q1

b1
1

p1, q1

b0
1

p2, q1 r, q1

�

§4. Interpolant existence in logics above K4.3. We now generalise Theorem 3.5 to
all finitely axiomatisable logics containing K4.3. It turns out that, even though these
logics do not have the polysize bisimilar model property in general, the structure of
the models required in Theorem 3.2 is perfectly understandable. We show that one
can assemble a pair of bisimilar models witnessing the absence of an interpolant
for ϕ1 and ϕ2 in any L ⊇ K4.3 as the ordered sum of finitely-many ‘nice’ models,
which are either finite or infinite but finitely ‘presentable’. Hence, we say that all
L ⊇ K4.3 have the ‘quasi-finite bisimilar model property’. Moreover, if L is finitely
axiomatisable, we can replace ‘finite’ by ‘polynomial in cL and max(|ϕ1|, |ϕ2|)’,
for some constant cL depending on L only. In this case, we say that L has the
‘quasi-polysize bisimilar model property’.
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 17

Section 4 is organised as follows. In Section 4.1, we formulate our main results
(Theorems 4.5–4.7 and 4.9), and show how Theorem 4.6 implies Theorem 4.9. In
Sections 4.2 and 4.3, we prove Theorem 4.5. Then, in Section 4.4, we show how
to fine-tune the proof of Theorem 4.5 and obtain proofs of Theorems 4.6 and 4.7.
Finally, in Section 4.5, we formulate and prove an interesting consequence of our
methods for cofinal subframe logics (Theorem 4.25).

4.1. The quasi-polysize bisimilar model property. Given a finite signature 
, a 
-
model M = (F,w) is called simple if either F is finite or F = C(©k , ∗), for 0 < k <
� and ∗ ∈ {•, ◦}, and, for every p ∈ 
, there is Ap ⊆ {0, ... , k – 1} with w(p) =⋃
i∈Ap Xi , where the Xi are the infinite generators of the internal sets in C(©k , ∗)

defined in Example 2.2. Thus, even though C(©k , ∗) is infinite, any simple 
-model
based on it is fully determined by the finitary information provided by the sets Ap,
p ∈ 
, that is, by the atomic 
-types of the points in the ©k -cluster. A 
-model is
called quasi-finite if it is the ordered sum of finitely-many simple models.

Definition 4.1. A logic L ⊇ K4.3 is said to have the quasi-finite bisimilar model
property if, for any formulas ϕ1, ϕ2 without an interpolant in L, there are rooted
quasi-finite 
-models N1, x1 and N2, x2 satisfying conditions (a)–(c) below, for

 = sig(ϕ1) ∪ sig(ϕ2) and � = sig(ϕ1) ∩ sig(ϕ2):

(a) N1, x1 |= ϕ1 and N2, x2 |= ¬ϕ2;
(b) N1 and N2 are based on frames for L;
(c) N1, x1 ∼� N2, x2.

Our first result is as follows.

Theorem 4.2. All L ⊇ K4.3 have the quasi-finite bisimilar model property.

We actually prove a stronger Theorem 4.5 that prescribes more structure for the
pair of quasi-finite models witnessing the lack of an interpolant, which makes it
easy to deduce the existence of a �-bisimulation between the models. The prescribed
structure is easily checkable, which is used in the proof of the main Theorem 4.9. To
formulate our ‘structural’ theorem, we require a few definitions.

For 0 < m < �, let m< = •� ···� •︸ ︷︷ ︸
m

. An atomic frame takes one of the forms

m<, ©1 �m<, ©k , C(©k , •), C(©k , ◦), (10)

where 0 < m < � and 0 < k ≤ 2|
|.

The size ‖F‖ of an atomic F is defined by taking ‖m<‖ = m, ‖©1 �m<‖ = 1 +m,
and ‖©k ‖ = ‖C(©k , •)‖ = ‖C(©k , ◦)‖ = k. If M = M0 � ···� Mn–1, for some 0 <
n < � and simple 
-models Mj based on atomic frames Fj , j < n, then we set
‖M‖ = ‖F0 � ···� Fn–1‖ = ‖F0‖+ ···+ ‖Fn–1‖.

Definition 4.3. Suppose Ni , i = 1, 2, is the ordered sum of finitely-many simple

-models based on atomic frames. The pair (N1,N2) is called �-matching if it satisfies
one of the following conditions (a)–(c):

(a) N1 and N2 are simple models based on the same atomic frame H with
at�

N1
(y) = at�

N2
(y), for every point y in H;
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18 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

(b) the final clusters Ci of Ni , i = 1, 2, are non-degenerate and, for every point
y1 in N1, there is y2 ∈ C2 with at�

N1
(y1) = at�

N2
(y2), and, for every point y2

in N2, there is y1 ∈ C1 with at�
N2

(y2) = at�
N1

(y1);
(c) 1. the last �-components of the N1 and N2 are based on the same atomic

frame G of the form C(©k , •) or C(©k , ◦), with 0 < k ≤ 2|
|;
2. at�

N1
(y) = at�

N2
(y), for every point y in the root©k -cluster Ak of G;

3. for every point y1 in any non-last �-component ofN1, there is y2 ∈ Ak with
at�

N1
(y1) = at�

N2
(y2) and, for every point y2 in any non-last �-component

of N2, there is y1 ∈ Ak with at�
N2

(y2) = at�
N1

(y1).

If (N1,N2) satisfies condition (x), for x = a, b, c, we say that it is of type (x).

∼�

(a)

N2

N1

(b)

� � � �

︷ ︸︸ ︷

� �︸ ︷︷ ︸
(c)

� � � � ··· ∗ ∗

︷ ︸︸ ︷

� � ··· ∗ ∗︸ ︷︷ ︸

The following lemma justifies this definition.

Lemma 4.4. Suppose Ni = N0
i � ···� NN–1

i , for i = 1, 2 and 0 < N < �, and xi
is a root of N0

i . If at�
N1

(x1) = at�
N2

(x2) and, for every � < N , the pair (N�1,N
�
2) is

�-matching, then N1, x1 ∼� N2, x2.

Proof. First, we show that, for every � < N , there is a global �-bisimulation
between N�1 and N�2. This is clear for (N�1,N

�
2) of type (a), in which case the identity

function on H is a �-bisimulation.
If (N�1,N

�
2) is of type (b), then the final clusters Ci of N�i , i = 1, 2, are non-

degenerate. Thus, � 1 ∪ � 2 is a global �-bisimulation between N�1 and N�2,

� 1 =
{
(y1, y2) | y1 in N�1, y2 in C2, at

�
N�1

(y1) = at�
N�2

(y2)
}
,

� 2 =
{
(y1, y2) | y2 in N�2, y1 in C1, at

�
N�1

(y1) = at�
N�2

(y2)
}
.

If (N�1,N
�
2) is of type (c), suppose N�i = N

0,�
i � ···� N

ni –1,�
i , for 0 < ni < � and

i = 1, 2. By (c).1, Nn1–1,�
1 and N

n2–1,�
2 are simple models based on the same atomic

frame of the form C(©k , •) or C(©k , ◦). As in Example 2.2, letAk = {as | s < k} and
Wk = Ak ∪ {bn | n < �} (containing all the points of C(©k , ∗)). We claim that

at�
N�1

(bn) = at�
N�2

(bn), for all n < �. (11)

Indeed, suppose n < � and let s < k be such that n ≡ s (mod k). As N
ni –1,�
i is a

simple model, we have

at�
N�i

(bn) = at�
N
ni –1,�
i

(bn) = at�
N
ni –1,�
i

(as) = at�
N�i

(as), for i = 1, 2,
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 19

and so (11) follows from (c).2. Now let

� 1 =
{
(y1, y2) | y1 in N

0,�
1 � ···� N

n1–2,�
1 , y2 ∈ Ak, at�N�1

(y1) = at�
N�2

(y2)
}
,

� 2 =
{
(y1, y2) | y2 in N

0,�
2 � ···� N

n2–2,�
2 , y1 ∈ Ak, at�N�1

(y1) = at�
N�2

(y2)
}
.

By (11) and (c).2–3, � 1 ∪ � 2 ∪
{
(bn, bn) | n < �

}
is a global �-bisimulation between

N�1 and N�2. Finally, if � 0 is a global �-bisimulation between N0
1 and N0

2, then
� 0 ∪ {(x1, x2)} is also a global �-bisimulation between N0

1 and N0
2 because

at�
N1

(x1) = at�
N2

(x2). The union of the constructed global bisimulations is a (global)
bisimulation � between N1 and N2 with x1�x2, as required. �

The following strengthening of Theorem 4.2 will be proved in Sections 4.2 and
4.3.

Theorem 4.5. For any logic L ⊇ K4.3 and formulas ϕ1, ϕ2 without an interpolant
in L, there are rooted 
-models N1, x1 and N2, x2 satisfying (a)–(d ) below, for 
 =
sig(ϕ1) ∪ sig(ϕ2) and � = sig(ϕ1) ∩ sig(ϕ2):

(a) N1, x1 |= ϕ1 and N2, x2 |= ¬ϕ2;
(b) each Ni , i = 1, 2, is based on a frame for L;
(c) at�

N1
(x1) = at�

N2
(x2);

(d) there is N = O
(

max(|ϕ1|, |ϕ2|)
)

such that Ni = N0
i � ···� NN–1

i , i = 1, 2,
and, for any � < N ,
1. each N�i is the ordered sum of O

(
max(|ϕ1|, |ϕ2|)

)
-many simple 
-models

based on atomic frames;
2. the pair (N�1,N

�
2) is �-matching.

Observe that the models provided by Theorem 4.5 are ordered sums of
polynomially-many simple models. However, the sizes of these simple models are
not necessarily polynomial in max(|ϕ1|, |ϕ2|). Our second main result shows that
all finitely axiomatisable logics L ⊇ K4.3 have the stronger quasi-polysize bisimilar
model property: the lack of an interpolant can be witnessed by a pair quasi-finite
models of polynomial size. More precisely, suppose L is given by its canonical axioms
as L = K4.3⊕ {α(Gj ,Dj ,⊥) | j ∈ JL}, for some finite set JL and Gj = (Vj, Sj).
Let cL = maxj∈JL |Vj |. An atomic frame in (10) is called L-bounded if it is of the
form m< or ©1 �m< with m ≤ cL + 1, or it has one of the three remaining forms
with

k ≤ pL(ϕ1, ϕ2) := 2(k(ϕ1, ϕ2) – 1) ·max
(
cL + 2,k(ϕ1, ϕ2)

)
+ k(ϕ1, ϕ2),

for the polynomial number k(ϕ1, ϕ2) defined in (8). In Section 4.4, we prove the
following.

Theorem 4.6. For any finitely axiomatisable logic L ⊇ K4.3 and formulas ϕ1, ϕ2

without an interpolant in L, there are rooted 
-models N1, x1 and N2, x2 satisfying
(a)–(d ) from Theorem 4.5, in which condition (d ).1 is strengthened to

1. each N�i , i = 1, 2, is the ordered sum of O
(

max(|ϕ1|, |ϕ2|)
)
-many simple


-models based on L-bounded atomic frames.

In Section 4.4, we also show the following.
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Theorem 4.7. All finitely axiomatisableL ⊇ K4.3 have the quasi-polysize bisimilar
model property, with the size of witnessing models bounded by

(3k(ϕ1, ϕ2) – 1) ·max
(
cL + 2, pL(ϕ1, ϕ2)

)
.

Remark 4.8. As a consequence we obtain that each finitely axiomatisable logic
L ⊇ K4.3 has the quasi-polysize model property: ϕ ∈ L iff ϕ is true in all models M
that are (i) ordered sums of simple models and (ii) are based on a frame for L of
size O(|ϕ|2) (cf. [30, 43]).

In the remainder of Section 4.1, we show how Theorem 4.6 implies the following.

Theorem 4.9. The IEP for any fixed finitely axiomatisable logic L ⊇ K4.3 is
coNP-complete.

Proof. We describe an NP-algorithm deciding the complement of the IEP for
L given by its canonical axioms (6). Given ϕ1 and ϕ2, let 
 = sig(ϕ1) ∪ sig(ϕ2).
We guess polynomial-size N. Then, for each � < N , we guess z� ∈ {a, b, c}, and if
z� = a, we let n�1 = n�2 = 1; otherwise, we guess polynomial-size n�i , for i = 1, 2; we
also guess simple 
-models N

j,�
i , for � < N , i = 1, 2, j < n�i , based on L-bounded

atomic frames that are either of the form ©k , C(©k , •), or C(©k , ◦), for some k ≤
pL(ϕ1, ϕ2), or of the form m< or ©1 �m<, for some m ≤ cL + 1, and respective

roots xi in N
0,0
i . We then let N�

i
= N

0,�
i � ···� N

n�i –1,�
i , for � < N , i = 1, 2, and

Ni = N0
i � ···� NN–1

i . Checking (c) and (d ).2 in Theorem 4.6 can clearly be done
in time polynomial in ‖Ni‖ (which is polynomial in max(|ϕ1|, |ϕ2|)). For (a), we
use the following.

Lemma 4.10. Checking whetherM0 � ···� Mn–1, x |= ϕ, for simple sig(ϕ)-models
Mj , j < n, based on atomic frames with root x in M0, can be done in time polynomial
in |ϕ| and ‖M0‖+ ···+ ‖Mn–1‖.

Proof. Let M = M0 � ···� Mn–1. Suppose Mj is based on the frame C(©k , ∗)
defined in Example 2.2 with points as , s < k, and b� , � < �. Using the definition
of a simple model, it is readily shown by structural induction that any formula
� ∈ sub(ϕ) is satisfiable in Mj iff there is � < k + md(�) with Mj , b� |= �, where
md(�), the modal depth of �, is the maximal number of nested modal operators in
�. The required algorithm is now obvious. �

Suppose L = K4.3⊕ {α(Gj ,Dj ,⊥) | j ∈ JL} with finite JL and Gj = (Vj, Sj).
To check condition (b) in Theorem 4.6, we require the following.

Lemma 4.11. If F = F0 � ···� Fn–1 with atomic frames F� , � < n, then checking
whether F |= α(Gj ,Dj ,⊥), for all j ∈ JL, can be done in time polynomial in

nF,j = n ·max
(
‖F0‖, ... , ‖Fn–1‖, |Vj |

)
.

Proof. Let F = (W,R,P). Given any α(Gj ,Dj ,⊥), we construct the Kripke
frame Hj = (Wj,Rj), where Rj = R �Wj andWj ⊆W comprises

– the underlying sets of all finite �-components F� of F;
– the last |Vj |+ 1-many points b|Vj |, ... , b0 in F� = C(©k , ∗), where ∗ ∈ {•, ◦} and
b|Vj | is ‘painted’ blue (see Example 2.2 for the notation).
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Then Hj is a subframe of F because all finite subsets of {bn | n < �} are internal in
C(©k , ∗). We show below that there is an injection f : Vj →W satisfying (cf1)–(cf4)
in F iff there is an injection h : Vj →Wj satisfying (cf1)–(cf4) in Hj and having no
blue points in h(Vj). Note that the latter is checkable in time polynomial in nF,j :

just enumerate all (at most n
|Vj |
F,j -many) injections Vj →Wj and verify that at least

one of them meets the required conditions.
(⇐) Suppose h : Vj →Wj is an injection satisfying (cf1)–(cf4) in Hj and having

no blue points in h(Vj). We claim that h satisfies (cf1)–(cf4) in F. Indeed, (cf1) and
(cf4) hold since Hj is a subframe of F, and (cf2) holds because the final cluster of Hj
is the final cluster of F by definition. To show that h also meets (cf3), observe that,
as h(x) is not blue for any x ∈ Vj , the immediate predecessor cluster of C

(
h(x)

)
in

Hj is also the immediate predecessor of C
(
h(x)

)
in F.

(⇒) Let f : Vj →W be an injection satisfying (cf1)–(cf4). To obtain h, we
modify those f(x) that belong to infinite �-components F� = C(©k , ∗). Suppose
the intersection of f(Vj) with such an F� is not empty. By (3) in Example 2.2
and (cf4), f(Vj) ∩ {a0, ... , ak–1} = ∅, and so the intersection of f(Vj) with F� is
{bi0 , ... , bim� –1}, for some m� ≤ |Vj |. It is readily seen that by taking h(x) = bz if
f(x) = biz , for z < m� , and h(y) = f(y), for f(y) in finite �-components, we
obtain an injection h : Vj →Wj with (cf1)–(cf4) and no blue points in h(Vj). �

If all checks are positive, then, by Lemma 4.4, N1, x1 and N2, x2 satisfy the
conditions of Theorem 3.2, and so ϕ1 and ϕ2 do not have an interpolant in L. �

4.2. Partitioning models into globally �-bisimilar intervals. In this section, we
start proving Theorem 4.5. In a nutshell, our plan is as follows. Given ϕ1 and ϕ2

without an interpolant in L ⊇ K4.3, the criterion of Theorem 3.2 supplies models
Mi , i = 1, 2, based on finitely Mi -generated descriptive frames Fi = (Wi,Ri ,Pi)
with roots xi ∈Wi such that:

– M1, x1 |= ϕ1 and M2, x2 |= ¬ϕ2;
– each Mi , i = 1, 2, is based on a frame for L;
– M1, x1 ∼� M2, x2, where � = sig(ϕ1) ∩ sig(ϕ2).

To prove Theorem 4.5, we need to turn the Mi , xi to some Ni , xi with the
required structure and still satisfying these three conditions. In view of Example 3.6,
extracting the roots xi and the setsM i , S i of maximal points from Mi (similarly
to the proof of Theorem 3.5(a)) is not enough now, so we need to develop a more
involved construction. We proceed in two steps:

– First, we analyse the �-types in the Mi and partition them into internal closed
intervals Ii = {I �i | � < N}, for the same N = O

(
max(|ϕ1|, |ϕ2|)

)
, such that

M1 �I �1 and M2 �I �2 are globally �-bisimilar, for every � < N . By Lemma 2.9,

Mi = (Mi �I 0
i

) � ···� (Mi �IN–1
i

), i = 1, 2.
– Then, in Section 4.3, we complete the proof of Theorem 4.5 by transforming

each pair
(
M1 �I �1 ,M2 �I �2

)
, � < N , into a pair (N�1,N

�
2) of models with the

required structure.

We begin with a simple observation on definable closed intervals.
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22 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

Lemma 4.12. Suppose M is a model based on a rooted finitely M-generated
descriptive frame F = (W,R,P) for K4.3. Then every closed interval [C,C ′] in F

with a non-limit cluster C ′ is definable in M.

Proof. By Lemma 2.6 (a)–(c), the non-limit C ′ is defined in M by some
formula �. Let 
 = ⊥ if C is the root cluster, and let 
 define the immediate
predecessor of C in M otherwise, which exists by Lemma 2.4(a) and is definable by
Lemma 2.6(a)–(c). Then [C,C ′] is defined in M by ¬�+
 ∧�+�. �

Next, we look into the structure of �-types in any model M based on a rooted
finitely M-generated descriptive frame F = (W,R,P) for K4.3. Given x ∈W and a
signature �, we define the �-block b�M(x) of x in M by taking

b�M(x) =

{
{y ∈W | �t�

M
(y) ⊆ t�

M
(x), �t�

M
(x) ⊆ t�

M
(y)}, if �t�

M
(x) ⊆ t�

M
(x);

{x}, otherwise;

in the latter case—when x must be an irreflexive point—the �-block b�M(x) is
called degenerate. (It can happen that {x} is a degenerate cluster but b�M(x) is not a
degenerate �-block.) We call a set b ⊆W a �-block inM if b = b�M(x), for some x. It
is readily seen that the relation x ≈ y iff b�M(x) = b�M(y) is an equivalence relation
on W, and every �-block b is an interval in F. (See Example 4.14 below for an
illustration.) Observe that

(block) for all �-blocks b in M and y ∈W , if y /∈ b, then t�
M

(y) /∈ t�
M

(b).
For degenerate �-blocks this follows from the definability of degenerate clusters

(Lemma 2.6), and for other �-blocks it is straightforward from the definitions.

Lemma 4.13. Suppose M is a model based on a rooted finitely M-generated
descriptive frame F = (W,R,P) for K4.3. For any �-block b in M, there exist clusters
C –
b , C+

b in F such that the following hold:

(a) b =
[
C –
b , C

+
b

]
;

(b) if C+
b is maximal in M, then it is �-maximal in M;

(c) if C+
b is degenerate, then b = C+

b ;
(d) b is definable in M iff C+

b is not a limit cluster;
(e) t�

M
(b) = t�

M

(
C+
b

)
.

Proof. (a) Let Xb = {C | C be a cluster with b ∩ C �= ∅}. As b is an interval,
b =

⋃
Xb . By Lemma 2.4, there is a<R-largest clusterC+

b inXb . Also, there is a<R-
largest cluster D with D <R C , for every C ∈ Xb . Suppose there is no <R-smallest
cluster inXb . Then D is a limit cluster and if y ∈ D, then t�

M
(y) /∈ t�

M
(b) by (block).

So there is a �-formula 
 such that 
 ∈ t�
M

(y) and �
 /∈ t�
M

(x) for any x ∈ b, and
so for any x with yRsx. As D is non-degenerate by Lemma 2.6, it follows that D
is �
-maximal in M, contrary to Lemma 2.6(b). Therefore, there is a <R-smallest
cluster C –

b in Xb , and so b =
[
C –
b , C

+
b

]
.

(b) IfC+
b is maximal in M, then either it is final or has an immediate successor, by

Lemma 2.6(b). IfC+
b is final, then it is�-maximal in M. So suppose thatC (y) is an

immediate successor ofC+
b = C (x). IfC+

b is not degenerate, then �t�
M

(x) �⊆ t�
M

(y)
follows from y /∈ b. So there is a �-formula 
 such that M, x |= 
 and M, y �|= �
.
If M, y |= 
, then C+

b is �
-maximal in M. And if M, y �|= 
, then C+
b is


-maximal in M. If C+
b is degenerate, we cannot have �t�

M
(x) ⊆ t�

M
(x), for
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otherwise t�
M

(x) ⊆ t�
M

(y), contrary to (block). Thus, �t�
M

(x) �⊆ t�
M

(x), and so there
is �-formula 
 such that M, x |= 
 and M, x �|= �
. Therefore, C+

b is 
-maximal
in M.

(c) Suppose on the contrary thatC+
b = {x} �= b. Then |b| > 1, and so �t�

M
(x) ⊆

t�
M

(x) follows from b = b�M(x). So, for every �-formula
, ifM, x |= 
 thenM, x |=
�
. On the other hand, C+

b is maximal in M by Lemma 2.6(a), and so �-maximal
in M by (b), which is a contradiction.

(d,⇐) This is by (a) and Lemma 4.12.
(d,⇒) Suppose that b is defined in M by some �. Then C+

b is �-maximal in M,
and so cannot be a limit cluster by Lemma 2.6(b).

(e) If C+
b is degenerate, then this is obvious by (c). So suppose C+

b = C (y) is
non-degenerate and x ∈ b. Then �t�

M
(x) ⊆ t�

M
(y), and so �

∧
Γ ∈ t�

M
(y) for every

finite Γ ⊆ t�
M

(x). By Lemma 2.3, there is z such that yRz and t�
M

(z) = t�
M

(x). By
(block), we have z ∈ b, and so z ∈ C+

b . �

Example 4.14. The model M1 in Figure 1 from Example 3.6(a) is partitioned
into the following �-blocks (indicated by the brackets), for three different �:

� = ∅
ϕ1

x1

p1,¬q1

y1 a0
1

p2

a1
1

p1q1
...

b3
1

p1, q1

b2
1

p2, q1

b1
1

p1, q1

b0
1

p2, q1

� = {p1, p2}
ϕ1

x1

p1,¬q1

y1 a0
1

p2

a1
1

p1q1
...

b3
1

p1, q1

b2
1

p2, q1

b1
1

p1, q1

b0
1

p2, q1

� = {p1, p2, q1, q2}
ϕ1

x1

p1,¬q1

y1 a0
1

p2

a1
1

p1q1
...

b3
1

p1, q1

b2
1

p2, q1

b1
1

p1, q1

b0
1

p2, q1

To show this for � = ∅, observe that, for every n > 0, we have �n� ∈ t�
M1

(bn1 ),
�n+1� /∈ t�

M1
(bn1 ), ¬�� ∈ t�

M1
(b0

1), and �n� ∈ t�
M1

(a0
1 ). The cluster C (a0

1 ) is not
maximal in M1 as any formula α that is true at a0

1 or a1
1 is also true at bn1 , for some

n < � (which is seen by induction on the structure of α). The model M1 in Example
3.6(b) has only one ∅-block comprising all of its points.

We now return to our models Mi , i = 1, 2, witnessing the lack of interpolants for
ϕ1 and ϕ2. By Lemma 4.13(a), �-blocks in each Mi are closed intervals that form
a partition ofWi (with not all of them being necessarily definable in Mi). We show
that there is a ≺Fi

-respecting bijection between the �-blocks of the two models.
Indeed, suppose that W1 is partitioned as {bj | j ∈ F } into �-blocks in M1, for
some countable set F. For each j ∈ F , we let

�(bj) = {y ∈W2 | t�M2
(y) ∈ t�M1

(bj)}.
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Lemma 4.15. For all j ∈ F , the following hold:

(a) t�
M1

(bj) = t�
M2

(
�(bj)

)
;

(b) �(bj) is a �-block in M2, and bj is degenerate iff �(bj) is degenerate;
(c) {�(bj) | j ∈ F } is a partition ofW2;
(d) bj ≺F1 b

k iff �(bj) ≺F2 �(bk), for j, k ∈ F ;
(e) bj is definable in M1 iff �(bj) is definable in M2.

Proof. (a) This follows from M1, x1 ∼� M2, x2 and Lemma 3.1.
(b) Let j ∈ F . As M1, x1 ∼� M2, x2, �(bj) �= ∅. Take some y ∈ �(bj). We

show that �(bj) = b�M2
(y). Indeed, this is straightforward from the definitions if

�t�
M2

(y) ⊆ t�
M2

(y). If �t�
M2

(y) �⊆ t�
M2

(y), then b�M2
(y) = {y}. Take some x ∈ bj

with t�
M1

(x) = t�
M2

(y). Then �t�
M1

(x) �⊆ t�
M1

(x), and so bj = {x}. Thus, �(bj) =
{z ∈W2 | t�M2

(z) = t�
M2

(y)}, and so there is a �-formula 
 such that 
 ∈ t�
M2

(z) =

t�
M2

(y) and �
 /∈ t�
M2

(z) = t�
M2

(y). Suppose there is z ∈ �(bj), z �= y. Then either
zR2y or yR2z, which is a contradiction.

(c) As �(bj) and �(bk) are disjoint for j �= k by (a) and (block), the relation
‘y ≈ y′ iff there is j ∈ F with y, y′ ∈ �(bj)’ is an equivalence relation onW2.

(d ) This follows from M1, x1 ∼� M2, x2, (a) and (block).
(e) This follows from (b)–(d ) and Lemma 4.13 (a) and (d ). �

So, from now on we assume that we have a strict linear order (F,≺) such that
eachWi , i = 1, 2, is partitioned as {bji | j ∈ F } into �-blocks in Mi with j ≺ k iff
bj1 ≺F1 b

k
1 iff bj2 ≺F2 b

k
2 , for j, k ∈ F . (We write j  k whenever j ≺ k or j = k.)

Observe that, by Lemmas 2.4(a) and 2.7, (F,!) is isomorphic to a countable ordinal.
We say that j ∈ F is a !-limit iff it corresponds to a limit ordinal under this
isomorphism. Thus, every j ∈ F has an immediate ≺-predecessor, and if j is not a
!-limit, then it also has an immediate ≺-successor. Also, j is a !-limit iff C+

b
j
i

is a

limit cluster, for i = 1, 2.
Next, we analyse some properties of special �-blocks. Recall that Steps 1 and 2 in

the proof of Theorem 3.5(a) give us the setsM i containing the {�}-maximal points
in Mi that satisfy each formula � in sub(ϕi) that is satisfiable in Mi ; the set T of
the �-types of points in {x1, x2} ∪M1 ∪M2 (cf. (7)); and also the sets S i ⊆Wi of
t-maximal points in Mi satisfying the �-types t from T. Points in {xi} ∪M i ∪ S i
are called relevant in Mi . A cluster or an interval is relevant in Mi if it contains
a relevant point, and irrelevant otherwise. The number of relevant clusters (and of
relevant �-blocks) in Mi is clearly bounded by the number of relevant points, that is,
by k(ϕ1, ϕ2) (defined in (8)). Note that the root and final clusters of Mi are always
relevant (the latter because sub(ϕi) is closed under negation, so the final cluster
always intersects withM i).

Example 4.16. For the models Mi shown in Figure 1 from Example 3.6(a)
and � = {p1, p2}, we haveM i = {xi , yi , b1

i , b
0
i }, S 1 = {x1, y1, a

1
1 , b

1
1 , b

0
1}, and S 2 =

{x2, y2, a
0
2 , b

1
2 , b

0
2}, so only the first two and the last two �-blocks in the Mi are

relevant (cf. Example 4.14 for the �-blocks).

The next lemma lists a few important properties of relevant �-blocks.
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Lemma 4.17. For all j ∈ F and i = 1, 2, the following hold:

(a) S i ∩ bji = S i ∩ C+
b
j
i

;

(b)
(
{xi} ∪M i ∪ S i

)
∩ C+

b
j
i

= S i ∩ C+
b
j
i

;

(c) bji is relevant iff S i ∩ C+
b
j
i

�= ∅;

(d) there is a bijection f– :
(
S 1 ∩ C+

b
j
1

)
→

(
S 2 ∩ C+

b
j
2

)
with t�

M1
(y) = t�

M2

(
f–(y)

)
,

for every y ∈ S 1 ∩ C+
b
j
1

;

(e) bj1 is relevant iff bj2 is relevant.

Proof. Recall the following properties of the S i defined in Step 2 of the proof of
Theorem 3.5:

1. if x ∈ S i , then x is t�
Mi

(x)-maximal in Mi ;
2. if x ∈ {xi} ∪M i and x is t�

Mi
(x)-maximal in Mi , then x ∈ S i ;

3. t�
Mi

(
{xi} ∪M i ∪ S i

)
⊆ t�

Mi
(S i);

4. there is a bijection f : S 1 → S 2 with t�
M1

(y) = t�
M2

(
f(y)

)
, for every y ∈ S 1.

(a) Let x ∈ S i ∩ bji . By Lemma 4.13(e), there is y ∈ C+
b
j
i

with t�
Mi

(y) = t�
Mi

(x).

Then C (x) = C (y) follows from 1., and so x ∈ C+
b
j
i

.

(b) Take x ∈
(
{xi} ∪M i

)
∩ C+

b
j
i

. By 3., there is y ∈ S i with t�
Mi

(y) = t�
Mi

(x). By

1., y is t�
Mi

(y)-maximal in Mi . Thus, by (block) and Lemma 4.13(e), y ∈ C+
b
j
i

. It

follows that x is t�
Mi

(x)-maximal in Mi , and so x ∈ S i by 2.

(c) We show that t�
Mi

((
{xi} ∪M i ∪ S i

)
∩ bji

)
⊆ t�

Mi

((
{xi} ∪M i ∪ S i

)
∩ C+

b
j
i

)
.

Then (c) follows from (b). To this end, take x ∈
(
{xi} ∪M i ∪ S i

)
∩ bji . By 3., there

is y ∈ S i with t�
Mi

(y) = t�
Mi

(x). By 1., y is t�
Mi

(y)-maximal in Mi . Thus, by (block)
and Lemma 4.13(e), y ∈ C+

b
j
i

.

(d ) Let f– = f �S 1∩C+

b
j
1

for the bijection f provided by 4. Then, for every

x ∈ S 1 ∩ C+
b
j
1

, f–(x) = f(x) ∈ S 2 with t�
M2

(f(x)) = t�
M1

(x). By Lemma 4.15(a),

t�
M2

(f(x)) ∈ t�
M2

(bj2), so f(x) ∈ bj2 follows by (block). Thus, f(x) ∈ C+
b
j
2

by (a).

(e) follows from (c) and (d ). �

We are now in a position to partition each of the Mi into the same polynomial
number N of closed intervals Ii = {I �i ∈ Pi | � < N} such that M1 �I �1 and M2 �I �2
are globally �-bisimilar, for every � < N , even if there are infinitely many �-blocks
in each Mi and not all of them are definable in Mi .

Definition 4.18. We define the partitions Ii of Mi , i = 1, 2, in three steps. In
each step, we add interval-pairs (I1, I2) to I1 × I2 in such a way that:

(a) Ii is a closed interval whose final cluster is a non-limit cluster, for i = 1, 2;
(b) there are j, j′ ∈ F such that Ii =

⋃
j�k�j′ b

k
i , for i = 1, 2.
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26 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

It follows then from (a) and Lemma 4.12 that all intervals in Ii are definable in Mi .
Also, it follows from (b) and Lemma 4.15(a) that{

(y1, y2) ∈ I �1 × I �2 | t�M1
(y1) = t�M2

(y2)
}

is a global �-bisimulation (12)

between M1 �I �1 and M2 �I �2 , for every � < N.

The three steps are as follows:

(s1) First, suppose bj1, j ∈ F , is a relevant �-block that is definable in M1. By
Lemmas 4.15(e) and 4.17(e), bj2 is also a relevant �-block definable in M2.
We put into Ii all those relevant �-blocks bji that are definable in Mi , for
i = 1, 2. Then (b) clearly holds, and (a) holds by Lemma 4.13(a) and (d ).

(s2) Next, suppose bj1, j ∈ F , is a relevant �-block that is not definable in M1.
By Lemmas 4.15(e) and 4.17(e), bj2 is also a relevant �-block that is not
definable in M2. By Lemma 4.13(d ), each C+

b
j
i

is a limit cluster in Fi , and so

j is a !-limit. We pick some � ! j such that the �-blocks bki , for j ≺ k  �,
are all irrelevant, for i = 1, 2. Such an � must exist as j is a !-limit and
the number of relevant points is finite, but this � is not unique. Let F – =
{k ∈ F | j  k  �} and!–= ! �F – . By Lemmas 2.4(a) and 2.7, there is an
isomorphism f from some countable ordinal � to (F –,!–). As j is a !-limit,
� ≥ �. Take f(n), n < �. There are two cases:
1. There exists m, 0 < m < �, such that bf(n)

1 is a degenerate �-block for

every n with m ≤ n < �. Then, by Lemma 4.15(b), bf(n)
2 is a degenerate

�-block, for every n with m ≤ n < �. We set j′ = f(m).
2. For every n < �, there is mn, n ≤ mn < �, such that bf(mn)

1 is a non-

degenerate �-block. Then, by Lemma 4.15(b), bf(mn)
2 is a non-degenerate

�-block as well. Note that if n ≥ 1, then f(mn) is not a !-limit. Thus,
C+

b
f(mn )
i

is not a limit cluster, and so it is definable in Mi by Lemma 2.6.

We set j′ = f(m1).
In both cases, we put the intervals

⋃
j�k�j′ b

k
i into Ii , i = 1, 2, and say

that they extend the relevant non-definable �-blocks bji . Then (a) and (b)
hold.

(s3) Finally, suppose that, for i = 1, 2, the intervals Ii =
⋃
n1�k�n2

bki and Ji =⋃
j1�k�j2 b

k
i are such that there is k with n2 ≺ k ≺ j1, Ii , Ji ∈ Ii , and there is

no interval in Ii intersecting the ‘gap’ between Ii and Ji (that is, any bki with
n2 ≺ k ≺ j1). By Ii ∈ Ii and (i), n2 is not a!-limit. Let n+

2 be the immediate
≺-successor of n2 and j–

1 the immediate ≺-predecessor of j1. Then we put
the (irrelevant) interval

⋃
n+

2 �k�j–
1
bki into Ii , for i = 1, 2. Then (b) clearly

holds, and (a) holds as j–
1 is not a !-limit. By doing this for all the gaps, we

end up with the required partition Ii of Mi .

The number of intervals added in steps (s1) and (s2) together cannot exceed the
number of relevant �-blocks, and so it is bounded by k(ϕ1, ϕ2). As the≺Fi

-smallest
and ≺Fi

-largest �-blocks are relevant, the number of intervals added in step (s3) is
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 27

bounded by k(ϕ1, ϕ2) – 1, so altogether the (same) number N of intervals in each
Ii does not exceed 2k(ϕ1, ϕ2).

The following example illustrates Definition 4.18.

Example 4.19. For models Mi , i = 1, 2, from Example 3.6(a) and �-blocks from
Example 4.14 for � = {p1, p2}, we can pick the intervals I ji , j ≤ 4, shown below,
where I 2

i are irrelevant and all other intervals are relevant (cf. Example 4.16). The
choice of the infinite intervals I 1

i extending the non-definable �-blocks till b4
i is

arbitrary. We could make them shorter or, on the contrary, extend until b2
i , in which

case there would be no gap between these intervals (extending relevant non-definable
�-blocks) and the next relevant interval.

M2 ¬ϕ2

x2

p2,¬q2

y2 a0
2

p2

a1
2

p1q2

...
b4

2

p1, q2

b3
2

p2, q2

b2
2

p1, q2

b1
2

p2, q2

b0
2

p2, q2

I 0
2 I 1

2 I 2
2 I 3

2 I 4
2

M1

ϕ1

x1

p1,¬q1

y1 a0
1

p2

a1
1

p1q1
...

b4
1

p2, q1

b3
1

p1, q1

b2
1

p2, q1

b1
1

p1, q1

b0
1

p2, q1

I 0
1 I 1

1 I 2
1 I 3

1 I 4
1

�

4.3. Simplifying interval-based models. Consider again our �-bisimilar 
-models
Mi , i = 1, 2, that are based on finitely Mi -generated descriptive frames Fi =
(Wi,Ri ,Pi) for L with roots xi ∈Wi and witness the lack of an interpolant for ϕ1

and ϕ2, where 
 = sig(ϕ1) ∪ sig(ϕ2) and � = sig(ϕ1) ∩ sig(ϕ2). In Definition 4.18,
we determinedN < 2k(ϕ1, ϕ2), for the polynomial number k(ϕ1, ϕ2) from (8), and
constructed the partitions Ii = {I �i ∈ Pi | � < N} of Mi with I 0

i ≺Fi
··· ≺Fi

I N–1
i

satisfying (12). We now use these partitions to prove Theorem 4.5. First, in Lemma
4.21, we transform each pair (M1 �I �1 ,M2 �I �2 ), � < N , into a pair (N�1,N

�
2) of models

meeting the list of requirements in Definition 4.20. Then, in Lemma 4.22, we
show that these requirements ensure that Ni = N0

i � ···� NN–1
i , i = 1, 2, satisfy

all conditions in Theorem 4.5.
For all i = 1, 2 and � < N , the frameH�i = (H�i , R

�
i ,P�i ) underlyingN�i is such that

H�i ⊆ I �i is definable in Mi and R�i = Ri �H�i , but H�i is not necessarily a subframe

of Fi �I �i . However, we require each H�i to meet some conditions making sure that

the canonical formulas refuted in Hi = H0
i � ···� HN–1

i are also refuted in Fi (and
so L ⊆ Log(Fi) ⊆ Log(Hi)). Another feature of the construction is that the atomic
type of some points in Ni could be different from their atomic type in Mi . We prove
N1, x1 |= ϕ1 and N2, x2 |= ¬ϕ2 by ensuring that no new (compared to Mi) atomic
types are introduced in Ni , and the distribution of old atomic types in Ni properly
matches their distribution in Mi . We achieve this by introducing functions h�i that
assign to each point x in N�i a unique ‘parent’ point in Mi �I �i whose Mi -behaviour
x is intended to mimic in Ni .
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28 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

Definition 4.20. Suppose I ∈ Pi , i = 1, 2, is an interval in Fi . We say that a
model N based on a frame H = (H,S,P ′) is (I, i)-nice if the following hold:

H ⊆ I and S = Ri �H ; (13)(
{xi} ∪M i ∪ S i

)
∩ I ⊆ H ; (14)

the final cluster in H is a subset of the final cluster in Fi �I ; (15)

if the root cluster C in H is degenerate, (16)

then C is the root cluster inccFi �I ;

for every x ∈ H, if {x} is a degenerate non-root cluster in H (17)

and C ⊆ I is the immediate predecessor of {x} in Fi , then

C ∩H is the immediate predecessor of {x} in H;

for every x ∈ H, if {x} ∈ P ′, then {x} ∈ Pi ; (18)

there is a function h : H → H such that:

h(x) = x for all x ∈
(
{xi} ∪M i ∪ S i

)
∩H ; (19)

atN(x) = atN
(
h(x)

)
= atMi

(
h(x)

)
for all x ∈ H ; (20)

if xRiy, then h(x)Rih(y) for all x, y ∈ H ; (21)

if h(x)Riy, then xRiy for all x ∈ H, y ∈M i ∩H. (22)

Lemma 4.21. For all i = 1, 2 and � < N , there exist models N�i based on frames
H�i = (H�i , S

�
i ,P�i ), and numbers n�i > 0 with

∑
�<N n

�
i ≤ 3k(ϕ1, ϕ2) – 1 such that the

following hold:

(a) N�i is (I �i , i)-nice;
(b) N�i is the ordered sum of n�i -many simple 
-models based on atomic frames;
(c) the pair (N�1,N

�
2) is �-matching.

Proof. We consider three Cases I–III, depending on the step the pair (I �1 , I
�
2 ) is

added to I1 × I2 in Definition 4.18.
Case I: (I �1 , I

�
2 ) is added in step (s3), so I �i are irrelevant intervals. We let n�1 =

n�2 = 1 and define N�1 and N�2 as follows. Let Z�i = {zji | j < mi}, for i = 1, 2, be
the tail of Fi �I �i , for some mi ≤ �, with zji R

s
i z
j–1
i , 0 < j < mi . By (12),

{
(y1, y2) ∈

I �1 × I �2 | t�M1
(y1) = t�

M2
(y2)

}
is a global �-bisimulation between M1 �I �1 and M2 �I �2 .

It is straightforward to see that because of this we must have |Z�1 | = |Z�2 | = m, for
some m ≤ �, and Z�1 = I �1 iff Z�2 = I �2 . Also, if Z�i �= I �i , then there exist w�i in the
head of Z�i with t�

M1
(w�1 ) = t�

M2
(w�2 ). For i = 1, 2, let

H�i =

{
Z�i , if Z�i = I �i ,

{w�i } ∪ Z�i , otherwise,

S�i = Ri �H�i , and let P�i consist of all finite subsets of Z�i and their complements

in H�i . Then f : H�1 → H�2 defined by f(zj1 ) = zj2 , j < m, and f(w�1 ) = w�2 is an
isomorphism between the resulting frames H�1 and H�2, which are isomorphic to
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 29

(i) m<, when Z�i = I �i ;
(ii) ©1 �m<, when Z�i �= I �i and m < �;

(iii) C(©1 , •), when Z�i is infinite (as w�i Riw
�
i by (5)).

This gives (13)–(18) for H = H�i and I = I �i (we have (18) because of (3) and
Lemma 2.5). For p ∈ 
, let w�i (p) = vi(p) ∩H�i in cases (i) and (ii), and

w�i (p) =

{
H�i , if w�i ∈ vi(p),

∅, otherwise

in case (iii). In all cases, w�i (p) ∈ P�i and (b) holds for N�i = (H�i ,w
�
i ). Also, the

pair (N�1,N
�
2) is of type (a) in Definition 4.3, and so (c) of the lemma holds. Finally,

for x ∈ H�i , we let h�i (x) = x in cases (i) and (ii), and h�i (x) = w�i in case (iii). It
is straightforward to check that (20) and (21) hold for h = h�i . Note that (19) and
(22) hold vacuously, asH�i ⊆ I �i and

(
{xi} ∪M i ∪ S i

)
∩ I �i = ∅, i = 1, 2. Thus, we

have (a) of the lemma.
Case II: (I �1 , I

�
2 ) is added in step (s1). For i = 1, 2, let b i be the relevant �-blocks

such that t�
M1

(b1) = t�
M2

(b2) and I �i = b i is definable inMi . For � < N , let r �i denote

the number of relevant clusters in I �i , and let C�,ji , j < r �i , be the sequence (ordered
by <Ri ) of all relevant clusters in b i (that intersect with {xi} ∪M i ∪ S i). Then

C
�,r�i –1
i is the final cluster C+

bi
of b i .

Case II.1: Observe that, by Lemmas 4.13(c) and 4.15(b), C
�,r�1–1
1 = C+

b1
is

degenerate iff C
�,r�2–1
2 = C+

b2
is degenerate iff both b1 = C+

b1
and b2 = C+

b2
are

degenerate �-blocks, and so r �i = 1. So, in this case, we just set n�i = 1, H�i = Fi �bi ,
N�i = Mi �bi , and hi(zi) = zi for the only point zi in b i , i = 1, 2. It is straightforward
to check that (a)–(c) of the lemma hold. In particular, (c) holds because the pair
(N�1,N

�
2) is of type (a) in Definition 4.3.

Case II.2: So, let C�,r
�
i –1

i = C+
bi

be non-degenerate, for i = 1, 2. We may assume

that, for any j < r �i – 1, C�,ji is a non-limit cluster. (For j > 0, this follows from
Lemma 2.6, as C�,ji ∩M i �= ∅ by Lemma 4.17(a). However, if C 0

i is the root cluster
inFi , it can happen that ({xi} ∪M i) ∩ C 0

i = {xi},xi /∈M i andC 0
i is a limit cluster.

We may exclude this case by Lemma 3.3.) Also, as b i is definable inMi ,C
�,r�i –1
i = C+

bi

is a non-limit cluster by Lemma 4.13(d ). Below, we define sets A�i ⊆ C+
bi

, intervals

J �,ji ⊆ I �i , and models N
�,j
i = (H�,ji ,w

�,j
i ) with H

�,j
i = (H�,ji , Ri �H�,ji ,P

�,j
i ), for i =

1, 2 and j < r �i , such that the following hold:

N
�,j
i is

(
J �,ji , i

)
-nice, for j < r �i ; (23)

N
�,j
i is the ordered sum of at most two simple 
-models (24)

based on atomic frames, for j < r �i ;

{J �,ji | j < r �i } is a partition of I �i with J �,0i ≺Fi
··· ≺Fi

J
�,r�i –1
i ; (25)
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there is a �-type preserving bijection between A�1 and A�2; (26)

t�M1

( ⋃
j<r�1–1

H�,j1

)
⊆ t�M2

(
A�2

)
and t�M2

( ⋃
j<r�2–1

H�,j2

)
⊆ t�M1

(
A�1

)
. (27)

Then we show that (23)–(27) imply (a)–(c) forN�i = N
�,0
i � ···� N

�,r�i –1
i and some

n�i ≤ 2r �i . In particular, (c) because (N�1,N
�
2) is of type (b) in Definition 4.3.

To this end, we cover first the cases when j < r �i – 1 and then, separately, the case
j = r �i – 1. So suppose first that j < r �i – 1, and let J �,ji = [D�,ji , C

�,j
i ], whereD�,0i is

the root cluster in Fi �I �i andD�,ji is the immediate successor of the non-limit cluster

C�,j–1
i , 0 < j < r �i – 1. Observe that

(
{xi} ∪M i ∪ S i

)
∩ J �,ji ⊆ C�,ji . We consider

four subcases (i)–(iv), depending on the tail Z�,ji of Fi �J�,ji .

(i) Z�,ji = ∅, soC�,ji is non-degenerate. LetH�,ji =
(
{xi} ∪M i ∪ S i

)
∩ C�,ji and

P�,ji = 2H
�,j
i . Then H

j
i is isomorphic to©k , for k = |H�,ji |. We set h�,ji (x) = x,

for x ∈ H�,ji , and w
�,j
i (p) = vi(p) ∩H�,ji , for p ∈ 
.

(ii) If 0 < |Z�,ji | = m < � andZ�,ji = J �,ji , then by takingH�,ji = J �,ji andP�,ji =

2H
�,j
i we obtain H

�,j
i isomorphic tom<. We set h�,ji (x) = x, for x ∈ H�,ji , and

w
�,j
i (p) = vi(p) ∩H�,ji , for p ∈ 
.

(iii) If 0 < |Z�,ji | = m < � and Z�,ji �= J �,ji , then setting H�,ji = {w�,ji } ∪ Z
�,j
i ,

for any w�,ji in the head of Z�,ji , and P�,ji = 2H
�,j
i gives H

�,j
i isomorphic

to ©1 �m<. Let h�,ji (x) = x, for x ∈ H�,ji , and w
�,j
i (p) = vi(p) ∩H�,ji , for

p ∈ 
.
(iv) If Z�,ji is infinite, then let H�,ji = {w�,ji } ∪ Z

�,j
i , for any w�,ji in the head of

Z�,ji , and P�,ji consist of all finite subsets of H�,ji and their complements in
H�,ji . By (5), the resulting H

�,j
i is isomorphic to C(©1 , •) � 1<. In this case,

C�,ji = {y�,ji } is a degenerate cluster for some y�,ji ∈ {xi} ∪M i ∪ S i . We set
h�,ji (y�,ji ) = y�,ji and h�,ji (x) = w�,ji for all x ∈ H�,ji \ {y�,ji }. For p ∈ 
, let

w
�,j
i (p) =

{(
H�,ji \ {y�,ji }

)
∪

(
vi(p) ∩ {y�,ji }

)
, if w�,ji ∈ vi(p),

vi(p) ∩ {y�,ji }, otherwise.

Then it is not hard to check that, in all (i)–(iv), we have w
�,j
i (p) ∈ P�,ji , (24)

for N
�,j
i = (H�,ji ,w

�,j
i ), and (13)–(22) hold for H = H

�,j
i , N = N

�,j
i , h = h�,ji , and

I = J �,ji . In particular, in (i)–(iii), we have (18) by Lemma 2.5. In (iv), we also need
(3) to obtain (18), and the fact thatM i ∩H�,ji = {y�,ji } to obtain (22). Therefore,
we have (23) for j < r �i – 1.

Now, consider j = r �i – 1. First, we let J �,r
�
i –1

i = [D�,r
�
i –1

i , C
�,r�i –1
i ], whereD�,r

�
i –1

i =

C
�,r�i –1
i if r �i = 1 andD�,r

�
i –1

i is the immediate successor of the non-limit clusterC�,r
�
i –2

i

otherwise. Then we have (25). We let Y�i =
⋃
j<r�1–1 Y

�,j
i , where Y�,ji = H�,ji in cases
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(i)–(iii) above, andY�,ji = {w�,ji , z
�,j
i } in case (iv). SoY�i is finite. Set Θ =

{
t�
M1

(x) |
x ∈ Y�1

}
∪

{
t�
M2

(x) | x ∈ Y�2
}
. Let A�i be the smallest set such that

(
{xi} ∪M i ∪

S i
)
∩ C�,r

�
i –1

i ⊆ A�i ⊆ C
�,r�i –1
i and A�i contains a point zt with t�

Mi
(zt) = t, for each

t ∈ Θ. As Y�i ⊆ I �i = b i , C
�,r�i –1
i = C+

bi
, and t�

M1
(b1) = t�

M2
(b2), such A�i exist by

Lemma 4.13(e). Observe that not only t�
M1

(A�1) = t�
M2

(A�2) but, by Lemma 4.17(b)

and (d ), we actually have (26). Then k :=
∣∣A�1∣∣ =

∣∣A�2∣∣ ≤ 2|
|, by Lemma 2.4(b), and
also

k ≤ |Y�1 |+ |Y�2 |+ k(ϕ1, ϕ2). (28)

By takingH�,r
�
i –1

i = A�i andP�,r
�
i –1

i = 2A
�
i , i = 1, 2, we obtain H

�,r�1–1
1 and H

�,r�2–1
2 both

isomorphic to©k . (The sets A�i are used differently in Case III.) Then we have (27).

For p ∈ 
, set w
�,r�i –1
i (p) = vi(p) ∩H�,r

�
i –1

i and h
�,r�i –1
i (x) = x for all x ∈ H�,r

�
i –1

i .

Then we clearly have w
�,r�i –1
i (p) ∈ P�,r

�
i –1

i , (24) for N
�,r�i –1
i = (H�,r

�
i –1

i ,w
�,r�i –1
i ), and

(13)–(22) hold for H = H
�,r�i –1
i , N = N

�,r�i –1
i , h = h

�,r�i –1
i and I = J �,r

�
i –1

i ((18) is by
Lemma 2.5). This gives (23) for j = r �i – 1.

Finally, we claim that (a)–(c) hold for N�i = N
�,0
i � ···� N

�,r�i –1
i and some n�i with

0 < n�i ≤ 2r �i . Indeed, (b) is by the definition of � and (24). For (c): The final cluster

in N�i = final cluster in N
�,r�i –1
i = the non-degenerate clusterA�i . So the requirements

in Definition 4.3(b) follow from (26) and (27). For (a): By (23), eachN
�,j
i is

(
J �,ji , i

)
-

nice, for j < r �i , that is, conditions (13)–(22) are satisfied for N = N
�,j
i , H = H

�,j
i ,

I = J �,ji , and h = h�,ji (as defined above). We claim that (13)–(22) are satisfied for
N = N�i , H = the frame H�i underlying N�i , I = I �i and h�i =

⋃
j<r�i

h�,ji . Indeed,

(13), (14), and (18)–(20) clearly follow from (25), the definition of �, and the
corresponding properties for N�,ji , H�,ji , J �,ji , and h�,ji , j < r �i ; (15) follows from (15)

for H�,r
�
i –1

i and J �,r
�
i –1; and (16) follows from (16) for H�,0i and J �,0. For (17): Suppose

x ∈ H�i , {x} is a degenerate non-root cluster in H�i and C ⊆ I �i is the immediate
predecessor of {x} in Fi . Let j < r �i be such that x ∈ H�,ji . If {x} is the root cluster
in H

�,j
i , then j > 0 and {x} is the root cluster in Fi �J�,ji by (16) for H

�,j
i and J �,ji .

Thus, the final cluster C – ⊆ H�,j–1
i ⊆ H�i of H�,j–1

i is a subset of C by (15) for H�,j–1
i

and J �,j–1
i . If {x} is a non-root cluster in H

�,j
i , then C ⊆ J �,ji and (17) for H�i and

I �i follows fromH�,ji ⊆ H�i and (17) for H�,ji and J �,ji . For (21): Suppose x, y ∈ H�i ,

xRiy and let j ≤ j′ < r �i be such that x ∈ H�,ji and y ∈ H�,j
′

i . Then h�i (x)Rih�i (y)
follows by (21) for h�,ji when j = j′, and by the definition of � when j < j′. For (22):
Suppose x, y ∈ H�i , y ∈M i , h�i (x)Riy, and let j ≤ j′ < r �i be such that x ∈ H�,ji
and y ∈ H�,j

′

i . Then xRiy follows by (22) for h�,ji when j = j′, and by the definition
of � when j < j′.

Case III: (I �1 , I
�
2 ) is added in step (s2). For i = 1, 2, let b i be the relevant

�-blocks such that t�
M1

(b1) = t�
M2

(b2) and I �i is extending b i that is not definable
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32 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

in Mi . We use the notation from Case II. As explained in Case II, we may again
assume that, for every j < r �i – 1, C�,ji is a non-limit cluster. However, as now

b i is not definable in Mi , C
�,r�i –1
i = C+

bi
is a limit cluster by Lemma 4.13(d ). We

again define sets A�i ⊆ C+
bi

, intervals J �,ji ⊆ I �i , and models N�,ji = (H�,ji ,w
�,j
i ) with

H
�,j
i = (H�,ji , Ri �H�,ji ,P

�,j
i ) such that (23)–(27) hold. Then we show that (a)–(c)

of the lemma hold for N�i = N
�,0
i � ···� N

�,r�i –1
i . This time, (N�1,N

�
2) is �-matching

because it is of type (c) in Definition 4.3.
To this end, for any i = 1, 2 and j < r �i – 1, we define everything like in Case II.2.

For j = r �i – 1, we set J �,r
�
i –1

i = [D�i , E
�
i ], where D�i is the root cluster in Fi �I �i if

r �i = 1 and the immediate successor of the non-limit clusterC�,r
�
i –2

i if r �i > 1, andE�i
is the final cluster in I �i . We clearly have (25) and can define the sets Y�i and A�i in

the same way as in Case II.2. However, for property (18) to hold for H = H
�,r�i –1
i , we

need to define H�,r
�
i –1

i differently. We consider the two cases in step (s2) of Definition
4.18:

1. The tail of Mi �I �i is {bni ∈ I �i \ b i | n < �} with bni Rib
n–1
i , 0 < n < �. (Using

the notation of Definition 4.18: {bni } = bf(m+n)
i , n < �.)

2. There is a sequence of non-degenerate clusters Dni ⊆ I �i \ b i definable in Mi ,
n < �, with D0

i being the final cluster in Mi �I �i and Dni <Ri D
n–1
i , 0 < n < �.

(Using the notation of Definition 4.18: Dni = C+

b
f(mn+1)
i

.) For n < �, we pick

some bni ∈ Dni .

In both cases, we set H�,r
�
i –1

i = A�i ∪ {bmi | m < �}. Take the k < � with |A�1| =

|A�2| = k, and suppose A�i = {a0
i , ... , a

k–1
i }, i = 1, 2. We let P�,r

�
i –1

i be generated in

(H�,r
�
i –1

i , Ri �
H
�,r�
i

–1
i

) by the sets {bni }, n < �, and Xsi , s < k, where Xsi = {asi } ∪

{bni | n < �, n ≡ s (mod k)} (see Example 2.2). The resulting H
�,r�i –1
i are both

isomorphic to C(©k , •) in case 1., and to C(©k , ◦) in case 2. For p ∈ 
, we set

w
�,r�i –1
i (p) =

⋃
asi ∈vi (p)X

s
i . For every x ∈ H�,r

�
i –1

i , we set

h
�,r�i –1
i (x) =

{
x, if x = asi , for s < k,

asi if x = bni , n < � and n ≡ s (mod k).

Then clearly w
�,r�i –1
i (p) ∈ P�,r

�
i –1

i and (24) holds for N
�,r�i –1
i = (H�,r

�
i –1

i ,w
�,r�i –1
i ). It

is not hard to check that (23) holds for N
�,r�i –1
i as well. In particular, (18) for

H = H
�,r�i –1
i follows from (3) and Lemma 2.5. Also, as A�i ⊆ C+

bi
and C+

bi
is a limit

cluster, M i ∩H
�,r�i –1
i =M i ∩ A�i = ∅ follows by Lemma 2.6, and so we also have

(22) for H = H
�,r�i –1
i and h = h

�,r�i –1
i .
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 33

Next, the arguments showing that (a) and (b) of the lemma hold for the models

N�i = N
�,0
i � ···� N

�,r�i –1
i and some n�i with 0 < n�i ≤ 2r �i are the same as in Case

II.2. To establish (c), we show that the pair (N�1,N
�
2) is of type (c) in Definition

4.3. Indeed, observe that the last �-components of N�i are N
�,r�i –1
i whose underlying

frames H
�,r�i –1
i are both isomorphic to the same atomic frame of the form C(©k , •)

or C(©k , ◦), with 0 < k ≤ 2|
|. Also, the ©k -cluster in H
�,r�i –1
i is A�i , and so the

requirements in Definition 4.3(c) follow from (26) and (27).
Finally, observe that n�i = 1 if (I �1 , I

�
2 ) is added in step (s3) of Definition 4.18 (see

Case I), and n�i ≤ 2r �i if (I �1 , I
�
2 ) is added in steps (s1) or (s2) (see Cases II and III).

So
∑
�<N n

�
i ≤ (k(ϕ1, ϕ2) – 1) +

∑
�<N 2r �i ≤ 3k(ϕ1, ϕ2) – 1, as required. �

We now complete the proof of Theorem 4.5. In Definition 4.18, we partitioned
the models M1, x1 and M2, x2 witnessing the lack of interpolants for ϕ1, ϕ2 into
the same polynomial number N of intervals. For each � < N , Lemma 4.21 gave us
a pair of models (N�1,N

�
2). Let Ni = N0

i � ···� NN–1
i , for i = 1, 2.

Lemma 4.22. Conditions (a)–(d ) in Theorem 4.5 hold for N1, x1 and N2, x2.

Proof. We use the notation of the proof of Lemma 4.21. By Lemma 4.21(a),
eachN�i is (I �i , i)-nice, that is, conditions (13)–(22) are satisfied forN = N�i ,H = H�i ,
I = I �i , and h = h�i .

(a) We show by induction that Mi , h
�
i (x) |= � iff Ni , x |= �, for any i = 1, 2,

� < N , � ∈ sub(ϕi), and x ∈ H�i . Then N1, x1 |= ϕ1 and N2, x2 |= ¬ϕ2 follow from
M1, x1 |= ϕ1 and M2, x2 |= ¬ϕ2, as we have xi ∈ H 0

i and h0
i (xi) = xi by (14)

and (19). For � = p ∈ 
, the statement follows from (20). The Boolean cases are
straightforward, so suppose � = ��.

(⇒) If Mi , h
�
i (x) |= ��, then there are k ≥ � and y� ∈M i ∩ I ki with h�i (x)Riy�

and Mi , y� |= �. We have y� ∈ Hki by (14), and so Ni , y� |= � by (19) and IH.
We claim that xRiy�, and so Ni , x |= ��. Indeed, for k > �, this follows from the
definition of �, and for � = k, by (22).

(⇐) If Ni , x |= ��, then there are k ≥ � and y ∈ Hki with xRiy and Ni , y |= �.
We haveMi , h

k
i (y) |= � by IH, and h�i (x)Rihki (y) by the definition of � when k > �,

and by (21) when k = �. Hence Mi , hi(x) |= ��.
(c) follows from (14), (19), (20) and M1, x1 ∼� M2, x2.
(d ) It is shown in Definition 4.18 that 0 < N < 2k(ϕ1, ϕ2). The rest of (d ) follows

from Lemma 4.21(b) and (c).
(b) We use the refutation criteria for the canonical formulas to show that the

frame Hi underlying Ni is a frame for L, i = 1, 2. To this end, we prove that,

for any canonical formula α(G,D,⊥), if f is an injection (29)
from G to Hi satisfying (cf1)–(cf4), then the same f
is an injection from G to Fi satisfying (cf1)–(cf4).

Indeed, (cf1) holds by (13) and the definition of �; (cf2) holds, as the final cluster
in Hi = final cluster in HN–1

i ⊆ final cluster in Fi �IN–1
i

= final cluster in Mi , by

(15). Condition (cf4) holds by (18) and the definition of �. For (cf3), suppose
x ∈ D, C (y) is the immediate predecessor of C (x) = {x} in G and C (f(y)) is
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34 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

the immediate predecessor of C (f(x)) = {f(x)} in Hi . Let � < N be such that
x ∈ H�i . If {x} is the root cluster in H�i , then � > 0 and {x} is the root cluster
in Fi �I �i by (16). Thus, C (f(y)) in Hi = final cluster in H�–1

i ⊆ final cluster in

Fi �I �–1
i

= C (f(y)) in Fi , by (15). If {x} is a non-root cluster in H�i , then C (f(y))

in Hi = C (f(y)) in H�i ⊆ C (f(y)) in Fi �I �i = C (f(y)) in Fi , by (17). Now, (29)

implies that L ⊆ Log(Fi) ⊆ Log(Hi), as required. �

4.4. Proofs of Theorems 4.6 and 4.7. Suppose the finitely axiomatisable logic
L is given by its canonical axioms as L = K4.3⊕ {α(Gj ,Dj ,⊥) | j ∈ JL}, for
some finite index set JL and Gj = (Vj, Sj), j ∈ JL. Let cL = maxj∈JL |Vj |. Given
formulas ϕ1, ϕ2 without an interpolant in L, let 0 < N < 2k(ϕ1, ϕ2) and Ni =
N0
i � ···� NN–1

i with root xi i = 1, 2, be the models satisfying the conditions of
Theorem 4.5 and obtained via Lemma 4.21. In particular, the underlying frame Hi

of each Ni is a frame for L. We show in Lemma 4.23 below that the proof of Lemma
4.21 can be refined to yield polynomial-size models N��i , � < N . However, N��i is no
longer (I �i , i)-nice, as conditions (16) and (17) in Definition 4.20 do not necessarily
hold for H = H��i underlying N��i and I = I �i . Thus, we do not have (29) in the proof
of Lemma 4.22 for the frames H�i underlying N�i = N�0i � ···� N�N–1

i . We prove that
H�i , i = 1, 2, are frames for L (as required by Theorem 4.6(b)) by using Lemma 4.24
below instead.

Take the number N, 0 < N < 2k(ϕ1, ϕ2), provided by Definition 4.18, the
numbers n�i > 0 with

∑
�<N n

�
i ≤ 3k(ϕ1, ϕ2) – 1, and setsH�i , i = 1, 2, � < N , from

Lemma 4.21.

Lemma 4.23. If L ⊇ K4.3 is finitely axiomatisable, then, for i = 1, 2, � < N , there
exist setsH��i ⊆ H�i and models N��i based on frames H��i = (H��i , S

��
i ,P��i ) such that

the following hold:
(a) N��i is ‘almost’ (I �i , i)-nice in the sense that (13)–(15) and (18)–(22) hold for

N = N��i and I = I �i ;
(b) N��i is the ordered sum of n�i -many simple 
-models based on L-bounded atomic

frames;
(c) the pair (N��1 ,N

��
2 ) is �-matching.

Proof. We go through Cases I–III in the proof of Lemma 4.21 and make the
necessary modifications.

Case I: (I �1 , I
�
2 ) is added in step (s3) of Definition 4.18. An inspection of this

part of the proof of Lemma 4.21 reveals that m< or ©1 �m< is used in cases (i)
and (ii), and in both cases all the m elements of the finite non-empty tails Z�i of
Fi �I �i are put into the chosen subset H�i of I �i . Now, we choose a subset H��i ⊆ H�i
with |H��i | ≤ cL + 2 as follows. Suppose Z�i = {zai | a < m} with zai R

s
i z
a–1
i , 0 <

a < m, and let m′ = min(m, cL + 1). We set H��i = {zai | a < m′} in case (i), and
H��i = {w�i } ∪ {zai | a < m′}, for the chosen w�i from the head of Z�i in case (ii).
In case (iii), we let H��i = H�i . Then, in all cases (i)–(iii), we let H��i = H�i �H��i
and N��i = N�i �H��i . Observe that we have h�i (x) ∈ H��i , for every x ∈ H��i , and so

h��i = h�i �H��i is an H��i → H��i function. It is straightforward to check that (13)–

(15) and (18)–(22) hold for N = N��i , H = H��i , h = h��i , and I = I �i . Note that all
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INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 35

non-degenerate clusters in H��i are of the form ©1 this case, and so N��i is a simple

-model based on an L-bounded atomic frame.

Cases II and III: (I �1 , I
�
2 ) is added in step (s1) or (s2). An inspection of these parts

of the proof of Lemma 4.21 reveals that m< or ©1 �m< is used only when b i is
non-degenerate, in cases (ii) and (iii) of the definition of H�,ji for some j < r �i – 1.
(Recall that r �i denotes the number of relevant clusters in I �i .) In both cases (ii)
and (iii), all the m elements of the finite non-empty tail Z�,ji of Fi �J�,ji are put

into the chosen subset H�,ji of J �,ji , for some subinterval J �,ji of I �i . We repeat the
trick from Case I above. Suppose Z�,ji = {za | a < m} with zaRsi z

a–1, 0 < a < m,
and letm′ = min(m, cL + 1). We setH��,ji = {za | a < m′} in case (ii), andH��,ji =
{w�,ji } ∪ {za | a < m′}, for the chosen w�,ji from the head of Z�,ji in case (iii). In
cases (i) and (iv) of Cases II and III, we letH��,ji = H�,ji . Then, in all cases (i)–(iv),
we let H

��,j
i = H

�,j
i �

H
��,j
i

and N
��,j
i = N

�,j
i �

H
��,j
i

, for j < r �i – 1. One can see that

h�,ji (x) ∈ H��,ji , for every x ∈ H��,ji , and so h��,ji = h�,ji �
H
��,j
i

is an H��,ji → H��,ji
function. It is straightforward to check that, for all j < r �i – 1, (13)–(15) and (18)–
(22) hold for N = N

��,j
i , H = H

��,j
i , h = h��,ji , and I = J �,ji (but (16) and (17) do

not necessarily hold). Note that the size of non-degenerate clusters in these H
��,j
i

is bounded by k(ϕ1, ϕ2), and so N
��,j
i is the ordered sum of at most two simple


-models based on L-bounded atomic frames.
We also need to adjust the definitions of H

�,r�i –1
i , N�,r

�
i –1

i , and h
�,r�i –1
i . We define

the sets Y��i ⊆ Y�i and A��i ⊆ A�i fromH��,ji , j < r �i – 1, in the same way as Y�i and
A�i were defined from H�,ji , j < r �i – 1, resulting in (26) and (27). Let k� =

∣∣A��1 ∣∣ =∣∣A��2 ∣∣. By (28),

k� ≤|Y��|1 + |Y��2 |+ k(ϕ1, ϕ2) ≤
2(k(ϕ1, ϕ2) – 1) ·max

(
cL + 2,k(ϕ1, ϕ2)

)
+ k(ϕ1, ϕ2) = pL(ϕ1, ϕ2).

In Case II, we set H��,r
�
i –1

i = H
�,r i –1
i �

H
��,r�
i

–1
i

, N��,r
�
i –1

i = N
�,r i –1
i �

H
��,r�
i

–1
i

, and h
��,r�i –1
i =

h
�,r i –1
i �

H
��,r�i –1
i

. In Case III, the definitions of H
�,r�i –1
i , N�,r

�
i –1

i , and h
�,r�i –1
i need to

be mimicked for k� in place of k to obtain H
��,r�i –1
i , N

��,r�i –1
i , and h

��,r�i –1
i . It is

straightforward to check now that (13)–(15) and (18)–(22) hold for N = N
��,r�i –1
i ,

H = H
��,r�i –1
i , h = h

��,r�i –1
i , and I = J �,r

�
i –1

i . Note that the size k� of the root cluster in

H
��,r�i –1
i is bounded by pL(ϕ1, ϕ2) and every other non-degenerate cluster in it is of

the form©1 , so N
��,r�i –1
i is a simple 
-model based on an L-bounded atomic frame.

Therefore, N��i = N
��,0
i � ···� N

��,r�i –1
i , for i = 1, 2, � < N , is the ordered sum of

n�i -many simple 
-models based on L-bounded atomic frames, for the same n�i as in
Lemma 4.21, and so we have (b) of the lemma. Finally, by the same arguments as
in the proof of Lemma 4.21, we obtain (a) and (c). �
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36 AGI KURUCZ, FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

Lemma 4.24. For i = 1, 2, � < N , take the frames H�i and H��i provided by Lemmas
4.21 and 4.23. Let Hi = H0

i � ···� HN–1
i and H�i = H�0i � ···� H�N–1

i . Then, for any
j ∈ JL, if there is an injection f from Gj to H�i satisfying (cf1)–(cf4) for α(Gj ,Dj ,⊥),
then there is an injectionf† fromGj toHi also satisfying (cf1)–(cf4) forα(Gj ,Dj ,⊥).
Thus, Hi |= L implies H�i |= L.

Proof. Fix some i ∈ {1, 2} and j ∈ JL. Suppose that f is an injection from
Gj = (Vj, Sj) to H�i satisfying (cf1)–(cf4) for α(Gj ,Dj ,⊥). For every atomic �-
component F� = (H�,Ri �H�) in H�i such that:

1. F� is obtained from the atomic �-component F = (H,Ri �H ) in Hi of the form
m< or©1 �m<, and

2. there is v ∈ Vj such that f(vj) is an irreflexive point in F�,
we proceed as follows. Suppose H = {y0, ... , ym–1} or H = {y, y0, ... , ym–1} with
yRiyRiym–1Ri ... Riy0, and so H� = {y0, ... , ycL} or H� = {y, y0, ... , ycL}. Let
V –
j =

{
v ∈ Vj | f(v) ∈ H� \ {y}

}
. Then |V –

j | ≤ |Vj | ≤ cL. Thus, by the pigeon-
hole principle, there is i ≤ cL with yi /∈ f(Vi) ∩ (H� \ {y}). Suppose V –

j =
{v0, ... , vs–1}, for some s ≤ cL with vs–1Sj ... Sjv0. Let a be the largest k < s with
yiRif(vk). As f satisfies (cf3), va /∈ Dj . Now, for k < s , we set

f†(vk) =

{
yk, if k ≤ a,
ym–(s–k), if a + 1 ≤ k < s.

y ym–1 y0
H

va
V –
j

y ycL yi y0

H�

f

f†

We do this for every F� having 1. and 2. above, and set f†(x) = f(x), for any other
x ∈ Vj . It is straightforward to check that the resulting f† is an injection from Gj

to Hi satisfying (cf1)–(cf4) for α(Gj ,Dj ,⊥). �
This completes the proof of Theorem 4.6. We obtain Theorem 4.7 using Lemma

4.4 as we have, for i = 1, 2:

‖N�i ‖ = ‖N�0i ‖+ ···+ ‖N�N–1
i ‖ ≤

∑
�<N

n�i ·max
(
cL + 2, pL(ϕ1, ϕ2)

)
≤

(3k(ϕ1, ϕ2) – 1) ·max
(
cL + 2, pL(ϕ1, ϕ2)

)
.

4.5. Cofinal subframe logics. By Theorem 3.5 (a), all d-persistent cofinal
subframe logics L ⊇ K4.3 have the polysize bisimilar model property, with the
polynomial k(ϕ1, ϕ2) (defined in (8)) not dependent on L. We show now that,
for arbitrary, not necessarily d-persistent cofinal subframe L, it is enough to replace
polysize in Theorem 3.5 (a) by quasi-polysize.

Theorem 4.25. All cofinal subframe logics L ⊇ K4.3 have the quasi-polysize
bisimilar model property, with the size of witnessing models bounded by k(ϕ1, ϕ2).
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This follows from the following special case of the ‘structural’ Theorem 4.5.

Theorem 4.26. For any cofinal subframe logic L ⊇ K4.3 and formulas ϕ1, ϕ2

without an interpolant in L, there are rooted 
-models N1, x1 and N2, x2 satisfying
(a)–(c) from Theorem 4.5 as well as conditions (d ) and (e) below:

(d) there isM ≤ k(ϕ1, ϕ2) such that Ni = N0
i � ···� NM–1

i and, for all j < M ,
1. N

j
i is the ordered sum of simple 
-models based on atomic frames;

2. the pair (Nj1 ,N
j
2) is �-matching;

(e) {xi} ∪M i ∪ S i coincides with the set of points in Ni , i = 1, 2 that are not in
the {bni | n < �}-part of some �-component based on a C(©k , ∗).

It follows from (e) that ‖Ni‖ = |{xi} ∪M i ∪ S i | ≤ k(ϕ1, ϕ2).

Proof. As in the proof of Theorem 4.5, we take any �-bisimilar witness models
Mi , xi , i = 1, 2, based on frames Fi = (Wi,Ri ,Pi) for L. Let M be the number
of relevant �-blocks in M1 (or M2, by Lemma 4.17(e)). For i = 1, 2, consider the
partitions Ii = {I �i ∈ Pi | � < N} of Mi given by Definition 4.18, and let 0 = �0 <

··· < �M–1 = N – 1 be the list of indices such that the pair (I
�j
1 , I

�j
2 ) is added to I1 ×

I2 in step (s1) or (s2), and I �0i ≺Fi
··· ≺Fi

I
�M–1
i . We define N�zi , z < M , by choosing

fewer points from I �zi than in Cases II.2 and III in the proof of Lemma 4.21, and
we also define functions h�zi . Let � = �z , for z < M , let C�,ji , j < r �i , be the sequence
(ordered by<Ri ) of all relevant clusters in I �i , andD�,ji = C�,ji ∩

(
{xi} ∪M i ∪ S i

)
.

Three cases are possible now, the first of which coincides with Case II.1, while the
other two select fewer points for N�zi than Cases II.2 and III:

(i) If (I �1 , I
�
2 ) is added in step (s1) and I �i consists of a degenerate cluster, then,

like in Case II.1, we let N�i = Mi �I �i and h�i be the identity function on N�i .

(ii) If C�,r
�
i –1

i is non-degenerate and (I �1 , I
�
2 ) is added in step (s1) as in Case II.2,

then C�,r
�
i –1

i is definable in Mi . We let N�i = Mi �D�,0i � ···� Mi �
D
�,r�i –1
i

and

h�i be the identity function on N�i .

(iii) If (I �1 , I
�
2 ) is added in (s2) like in Case III, then C�,r

�
i –1

i is a not
definable in Mi . As shown in Case III, there is an infinite sequence

of irrelevant points {bni ∈ I �i | n < �} such that bni Rib
n–1
i , C�,r

�
i –1

i <Ri
C (bin) and C (bin) ∈ Pi , n < �, and the bni are either 1) all irreflex-
ive or 2) all reflexive. By Lemma 4.17, there is k ≤ k(ϕ1, ϕ2) with

|D�,r
�
1–1

1 | = |D�,r
�
2–1

2 | = k. Suppose D�,r
�
i –1

i = {a0
i , ... , a

k–1
i }. We let H�,r

�
i –1

i =

D�i ∪ {bni | n < �} and P�,r
�
i –1

i be generated in (H�,r
�
i –1

i , Ri �
H
�,r�i –1
i

) by

the sets {bni }, n < �, and Xsi = {asi } ∪ {bni | n < �, n ≡ s (mod k)},
s < k (see Example 2.2). The resulting H

�,r�i –1
i are both isomorphic to

C(©k , •) in case 1), and to C(©k , ◦) in case 2). We then set w
�,r�i –1
i (p) =⋃

asi ∈vi (p)X
s
i and N

�,r�i –1
i =

(
(H
�,r�i –1
i , Ri �

H
�,r�i –1
i

,P�,r�i –1),w
�,r�i –1
i

)
. Finally, we
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set N�i = Mi �D�,0i � ···� Mi �
D
�,r�i –2
i

�N
�,r�i –1
i and define h�i as the identity on

relevant points in N�i and h�i (b
n
i ) = asi , for n < � with n ≡ s (mod k).

Clearly, (c), (d ).1, and (e) hold for Ni = N
�0
i � ···� N

�M–1
i . Condition (a) is shown

like in Lemma 4.22 using that (19)–(22) hold for h = h�zi and H = H�zi , z < M .
Condition (b) is proved via (29): (cf1) clearly holds; (cf2) holds as the final cluster in
Fi is always relevant; and (cf4) holds, as {x} being definable inN

�z
i implies {x} ∈ Pi ,

for all z < M and x in N
�z
i . As L is a cofinal subframe logic, D = ∅, so (cf3) holds

vacuously. Finally, to show (d ).2, observe that (N�z1 ,N
�z
2 ) is �-matching as it always

meets one of the conditions in Definition 4.3: in case (i), it meets (a); in case (ii), it
meets (b); and in case (iii), it meets (c). �

Example 4.27. By Example 2.10(a), given any formulas ϕ1 and ϕ2 without an
interpolant in GL.3, one can always find witnessing models Ni , i = 1, 2, of size
≤ k(ϕ1, ϕ2) that are ordered sums of simple models based on m< or C(©k , •) (see,
e.g., the models depicted in Figure 1 in Example 3.6(a)).

We emphasise that the construction in the proof of Theorem 4.26 does not work
for non-cofinal subframe logics, in which case D �= ∅; see also the special treatment
of the density axiom in the proof of Theorem 5.9 below.

§5. The IEP for standard Priorean temporal logics. Priorean temporal logics [36]
deal with the operators ‘sometime in the future’ denoted �F, ‘sometime in the past’
denoted �P, and their duals ‘always in the future’ �F and ‘always in the past’
�P. Temporal formulas—propositional bimodal formulas with these operators—are
interpreted over general temporal frames of the form F = (W,R,R–,P) representing
various flows of time in such a way that (W,R) is transitive and connected (2), R
is the ‘future-time’ accessibility relation for �F, �F, its inverse R– is the ‘past-time’
accessibility relation for �P, �P, and the internal sets P ⊆ 2W are closed under the
Booleans and the operators

�F

FX = {x ∈W | ∃y ∈ X xRy}, �F

PX = {x ∈W | ∃y ∈ X xR–y}.

To simplify notation, we omit R– and write F = (W,R,P). Also, as before, if P =
2W , we call F a Kripke frame and write F = (W,R). The universal modality ‘always’
can be introduced as an abbreviation �ϕ = ϕ ∧�Fϕ ∧�Pϕ. Descriptive temporal
frames are defined in the same way as in Section 2. Note that tightness condition
(tig) for R– actually follows from (tig) for R.

In fact, many results from Sections 2 and 3 straightforwardly generalise to the
temporal setting. Let M be a temporal model—that is, a model based on some
temporal frame F = (W,R,P)—and let Γ be a set of temporal formulas. A point
x ∈W is Γ-minimal in M if M, x |= Γ and whenever x′Rx and M, x′ |= Γ, then
xRx′. Denote by minM Γ the set of all Γ-minimal points in M. (The definition of
maxM Γ remains the same.) In the temporal case, Lemma 2.3 generalises to the
following lemma.

Lemma 5.1. Suppose Γ is a set of temporal formulas and M is a model based on a
descriptive temporal frame F = (W,R,P). Then the following hold:
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(temporal saturation) If M, x |= �F

∧
Γ′ for every finite Γ′ ⊆ Γ, then there is y

with xRy and M, y |= Γ. If M, x |= �P

∧
Γ′ for every finite Γ′ ⊆ Γ, then there is y

with xR–y and M, y |= Γ.
(maximal and minimal points) If there is x with M, x |= Γ, then maxM Γ �= ∅ and

minM Γ �= ∅.

A relation � ⊆W1 ×W2 is a temporal �-bisimulation between temporal models
M1 and M2 based on respective frames Fi = (Wi,Ri ,Pi), i = 1, 2, if it satisfies
(atom), (move) and its past-time couterpart: whenever x1�x2, then

(move–) x1R
–
1y1 implies y1�y2, for some y2 ∈W2 with x2R

–
2y2; conversely,

x2R
–
2y2 implies y1�y2, for some y1 ∈W1 with x1R

–
1y1.

The relation M1, x1 ≡� M2, x2, saying that temporal models M1 and M2 satisfy
the same temporal �-formulas at x1 and x2, respectively, is characterised in terms of
temporal �-bisimulations: it is readily seen that, with this modification, Lemma 3.1
and Theorem 3.2 continue to hold for all Priorean temporal logics. (As temporal
frames are transitive and connected, any of their points can be regarded as a root
with respect to the relation R ∪R–.)

In this article, we consider the Priorean temporal logics of five most popular
classes of temporal Kripke frames [7]:

Lin = {ϕ | F |= ϕ, F = (W,R) is any temporal Kripke frame}
= K42 ⊕ p → �F�Pp ⊕ p → �P�Fp ⊕�F�Pp ∨�P�Fp → p ∨�Fp∨

�Pp;
LinQ = {ϕ | (Q, <) |= ϕ}

= Lin⊕�F�⊕�P�⊕�Fp → �F�Fp;
LinR = {ϕ | (R, <) |= ϕ}

= LinQ ⊕�(�Pp → �F�Pp) → (�Pp → �Fp);
Lin<� = {ϕ | F |= ϕ, F = (W,<) any finite strict linear order}

= Lin⊕
{
�X(�Xp → p) → �Xp | X ∈ {F,P}

}
;

LinZ = {ϕ | (Z, <) |= ϕ}
= Lin⊕�F�⊕�P�⊕

{
�X(�Xp → p) → (�X�Xp → �Xp) | X ∈

{F,P}
}
,

where K42 is the bimodal version of K4 (with �F and �P). None of these five logics
(and any other temporal logic with frames of unbounded depth) has the CIP [9, 14],
and our aim in this section is to prove that the IEP for each of them is decidable in
coNP. The following example illustrates the new semantic phenomena of temporal
logics compared to modal logics containing K4.3 that we need to address in order
to achieve this aim.

Example 5.2. (a) Consider the formulas ϕ1 and ϕ2 from Example 3.6(a) in the
context of Lin<� in place of GL.3, reading � as �F and � as �F:

ϕ1 = �F(p1 ∧�+
F¬q1) ∧�F(p2 → �+

F q1) ∧�F(p1 → ¬p2),

ϕ2 = ¬[�F(p2 ∧�+
F¬q2) ∧�F(p1 → �+

F q2)].

We clearly have (ϕ1 → ϕ2) ∈ Lin<� . Using Theorem 3.2, we show that ϕ1 and ϕ2

have no interpolant in Lin<� . The argument from Example 3.6(a) shows that any
models Mi meeting the criterion of Theorem 3.2 cannot be based on a Kripke frame
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for Lin<� . However, the descriptive frame •� •� C(©2 , •) we employed for GL.3 in
Example 3.6(a) does not help now, because it refutes �P(�Pp → p) → �Pp at any
point save the first two under the valuation below:

p p p

a0 a1

...
b3

p

b2 b1

p

b0

To fix this issue, we modify C(©2 , •) by making it symmetric in both directions.
Consider the frame Fk = (W ′

k, R•k•,P ′
k), k > 0, in which the points in

W ′
k = {a0, ... , ak–1} ∪ {bLn , bRn | n < �}

are ordered as shown in the picture below

bL3bL2bL1bL0

...
a0 ak–1

... ...
bR3 bR2 bR1 bR0

or, more formally, xR•k•y iff (x = bLn , y = bLm for n < m), or (x = bLn , y = ai), or
(x = bLn , y = bRm), or (x = ai , y = aj) or (x = ai , y = bRn ), or (x = bRn , y = bRm ,
for n > m). The internal sets in Pk are generated by

Xi = {ai} ∪ {bLn , bRn | n < �, n ≡ i (mod k)}, for i < k. (30)

Observe that {bLn }, {bRn } ∈ P ′
k , for all n < �. It is not hard to see that Fk is a

descriptive frame; we denote it by C(•,©k , •). As an exercise, the reader can check
that, for any natural numbers k, l, ... , m, n > 0,

C(•,©k , •) � ···� C(•,©n , •) |= Lin<�, (31)

C(©k , •) � C(•,©l , •) � ···� C(•,©m , •) � C(•,©n ) |= LinZ, (32)

where C(•,©n ) is the mirror image of C(©n , •) (see also Lemma 5.6).
The picture below shows models M1 and M2 based on C(•,©2 , •) and satisfying

the conditions of Theorem 3.2 for ϕ1 and ϕ2:

M2
p2, q2p1, q2p2¬ϕ2

...
p2 p1

q2 ...
p1, q2 p2, q2 p1, q2 p2, q2

M1

p1, q1p2, q1p1ϕ1
...

p2 p1

q1
...
p1, q1 p2, q1 p1, q1 p2, q1

�

By (31), C(•,©2 , •) |= Lin<� , so ϕ1 and ϕ2 do not have an interpolant in Lin<� .
(b) Consider next the temporal version of the implication ϕ′

1 → ϕ2 from Example
3.6(b), which is clearly valid in LinZ. To demonstrate that ϕ′

1 and ϕ2 have no
interpolant in LinZ, we can use C(©1 , •) � C(•,©2 , •) � C(•,©1 ), which is a frame
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for LinZ by (32). The models M1 and M2 depicted below

M2
p2 , q2p1 , q2p2¬ϕ2

... ...
p2 p1

q2 ...
p1 , q2 p2 , q2 p1 , q2 p2 , q2 q2 q2

...
q2

M1 p1 , q1p2 , q1p1ϕ′1
... ...

p2 p1

q1
...
p1 , q1 p2 , q1 p1 , q1 p2 , q1 r, q1 q1

...
q1

�

satisfy the conditions of Theorem 3.2 for ϕ′
1 and ϕ2.

As illustrated by Example 5.2, the temporal frames F = (W,R,P) we need for
checking the criterion of Theorem 3.2 may contain both infinite descending and
ascending chains of clusters (and so the F–1

c are not necessarily isomorphic to
ordinals). Accordingly, we now have R-final andR–-final clusters as well as two types
of limit clusters: an R-limit cluster is a non-R–-final cluster without an immediate
R–-successor and an R–-limit cluster is a non-R-final cluster without an immediate
R-successor. Some clusters can be both R- and R–-limit clusters.

We say that a set S �= ∅ of clusters in F is R-unbounded (R–-unbounded) if there is
no C ∈ S such that C ′ ≤R C (respectively, C ≤R C ′), for all C ′ ∈ S. A cluster C is
the R-limit of an R-unbounded set S ifC ′ <R C for allC ′ ∈ S and there is no cluster
C ′′ with C ′ <R C

′′ <R C for all C ′ ∈ S; the R–-limit of an R–-unbounded set S is
defined symmetrically by replacing R with R–. It is straightforward to see that each
R-limit cluster C is the R-limit of the R-unbounded set {C ′ | C ′ <R C}, and each
R–-limit cluster D is theR–-limit of theR–-unbounded set {D′ | D <R D′}. For any
cluster C, we let (C,+∞) = {x | C <R C (x)} and (– ∞, C ) = {x | C (x) <R C}.

Lemma 5.3. Suppose F = (W,R,P) is a temporal n-generated descriptive frame,
for some n < �. Then

(a) every cluster in F has at most 2n points;
(b) every R-unbounded (R–-unbounded ) set of clusters in F has an R-limit (R–-

limit) in F, and so F contains both R- and R–-final clusters.

Proof. (a) is proved similarly to Lemma 2.4(b).
(b) Suppose F is M-generated, for some model M. Let S be an R-unbounded set

of clusters in F with yC ∈ C , C ∈ S, and let

Γ =
⋃
C∈S

�PtM(yC ) ∪
⋃
C∈S

{� | �F� ∈ tM(yC )}.

Clearly, Γ is finitely satisfiable in M, and so by (com) and Lemma 5.1, there is a
Γ-minimal point x in M. By (tig), yCRx for all C ∈ S. Now suppose that y is
such that yCRy, for all C ∈ S, and yRx. Then Γ ⊆ tM(y), and so xRy by the
Γ-minimality of x. Thus, C (x) is the R-limit of S. The existence of R–-limits of
R–-unbounded S is symmetric. �

A cluster C is called minimal (maximal) in a temporal model M if there is a
formula 
 such that C ∩minM{
} �= ∅ (C ∩maxM{
} �= ∅). If there is such a
�-formula 
, for some signature �, we call C�-minimal (�-maximal) in M.

Lemma 5.4. Suppose M is a model based on a finitely M-generated temporal
descriptive frame F. Then
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(a) every degenerate cluster in F is both maximal and minimal in M;
(b) a cluster is maximal (minimal ) inM iff either it is R-final (respectively,R–-final )

or has an immediate R-successor (respectively, R–-successor);
(c) a cluster is definable in M iff it is both maximal and minimal in M.

It follows that the R- and R–-limit clusters are not definable and not degenerate; all
other clusters are definable in M. We also have that

(d) for any clusters C <R C ′ in F, the interval [C,C ′] contains a maximal cluster
and also a minimal one;

(e) if C is not an R-limit cluster and C ′ is not an R–-limit cluster, then the closed
interval [C,C ′] is definable in M.

Proof. Items (a)–(c) are proved in the same way as Lemma 2.6. Item (d ) follows
from (tig), which gives formulas ϕ and � with M, x �|= �Fϕ, M, y |= �Fϕ and
M, x |= �P�, M, y �|= �P�, and so [C (x), C (y)] contains a �Fϕ-minimal cluster
and a �P�-maximal one. Item (e): by (b), C is �-minimal and C ′ is 
-maximal for
some �, 
. Then [C,C ′] is defined in M by �+

P� ∧�+
F
. �

The following temporal analogue is harder to prove than Lemma 2.7.

Lemma 5.5. If F = (W,R,P) is a finitely generated temporal descriptive frame,
then W is countable.

Proof. By Lemma 5.3(a), it suffices to show that Fc = (Wc,<R) is countable.
Suppose F is M-generated, for some 
-model M = (F, v) and finite signature 
.
First, observe that, by Lemma 5.4(b), each non-R-limit cluster C is 
C -minimal in
M for some 
C . Thus, the internal setXC = v(�+

P
C ) distinguishes C from every D
withD <R C , and soXC �= XD wheneverC �= D. As P is countable, the number of
non-R-limit clusters in Fc is countable. Similarly, there are countably-many non-R–-
limit clusters in Fc . So it is enough to show that the number of clusters in Fc that are
both R- andR–-limits is countable. We refer to such clusters as simply limit clusters.
Call an interval [C –, C+] a neighbourhood of a limit cluster C if C – <R C <R C

+.
By Lemma 5.4, every limit cluster C has a nice neighbourhoodNC = [C –, C+] with
non-limit clusters C – and C+. As the number of different nice NC is countable, it
follows that

every uncountable interval [D,D′] contains a limit cluster C (33)

all of whose neighbourhoods are uncountable

(otherwise all limit clusters in [D,D′] would belong to the countable union of the
countable intervals NC , and so [D,D′] were countable).

By an atomic type we mean any at

M

(x) with x ∈W . For any cluster C, we set
at(C ) = {at


M
(x) | x ∈ C}. Let C be an R-limit cluster. We say that an atomic

type a occurs infinitely R-close to C if, for every C ′ <R C , there is C ′′ such that
C ′ <R C

′′ <R C and a ∈ at(C ′′). Similarly, a occurs infinitely R–-close to an R–-
limit cluster C if whenever C <R C ′, then there is C ′′ such that C <R C ′′ <R C

′

and a ∈ at(C ′′). We claim that

if a occurs infinitely R-close to an R-limit cluster C, then a ∈ at(C ). (34)
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Indeed, let S be an R-unbounded set of clusters with R-limit C and yD ∈ D,D ∈ S,
and let

Γa = a ∪
⋃
D∈S

�PtM(yD) ∪
⋃
D∈S

{� | �F� ∈ tM(yD)}.

If a occurs infinitely R-close to C, it can be shown similarly to the proof of Lemma
5.3(b) that there is a Γa-minimal point x ∈ C , so a = at


M
(x) ∈ at(C ).

The converse of (34) also holds:

if a ∈ at(C ), for an R-limit C, then a occurs infinitely R-close to C. (35)

Indeed, suppose there is C ′ <R C with a /∈ at(C ′′), for any C ′′ in the interval
C ′ <R C

′′ <R C . By Lemma 5.4(d ), there is a cluster C ′′ in [C ′, C ] that is 
-
minimal in M for some formula 
. But then C is �P
 ∧

∧
a-minimal, contrary to

Lemma 5.4(b). Symmetric variants of (34) and (35) hold for R–-limit clusters.
Call non-degenerate clusters C ′ <R C

′′ twins if at(C ′) = at(C ′′) and, for every
C in [C ′, C ′′], we have at(C ) ⊆ at(C ′) = at(C ′′). We claim that

there are no twins. (36)

Indeed, suppose C ′, C ′′ are twins. By induction on the construction of a 
-formula
α, we see that if x, y ∈ [C ′, C ′′] with xRy and at


M
(x) = at


M
(y), then M, x |= α

iff M, y |= α. We only consider one of the nontrivial cases. Let M, x |= �Fα. Then
there is z with xRz and M, z |= α. If yRz, then clearly M, y |= �Fα. Otherwise,
z ∈ [C ′, C ′′], so at


M
(z) = at


M
(z ′), for some z ′ ∈ C ′′. Thus, by IH, M, z ′ |= α,

which implies M, y |= �Fα asC ′′ is non-degenerate. It follows that there are x ∈ C ′

and y ∈ C ′′ with tM(x) = tM(y), contrary to (dif).
We can now prove that Fc is countable. Suppose Fc is uncountable. By (33)

and Lemma 5.3(b), Fc contains a limit cluster C whose neighbourhoods are all
uncountable. Let C be such a cluster with a minimal at(C ). As 
 is finite, C has a
neighbourhood N such that, for any D ∈ N with D <R C , every a ∈ at(D) occurs
infinitely R-close to C, and, for any D ∈ N with C <R D, every a ∈ at(D) occurs
infinitelyR–-close to C. We call such N a close proximity of C. As N is uncountable,
either [C –, C ) or (C,C+] is uncountable. We only consider the former case, as the
latter is similar. We claim that

for every cluster C ′ in [C –, C ), the interval [C –, C ′] is countable. (37)

Indeed, take such C ′. As [C –, C ′] is contained in the close proximity N, for every
limit cluster D in [C –, C ′], we have at(D) � at(C ), by (34) and (36). So by the
at(C )-minimality of C among limit clusters with only uncountable neighbourhoods,
every limit cluster D in [C –, C ′] has a countable neighbourhood. Thus, [C –, C ′] is
countable by (33).

By (35), there is a countably infinite ascending chain C1 <R C2 <R ... of clusters
in [C –, C ) such that, for every a ∈ at(C ) and every n < �, there is m with n < m < �
and a ∈ at(Cm). Let C ′ be the R-limit of the R-unbounded set {Cn | n < �} (which
exists by Lemma 5.3(b)). Then C ′ ≤R C . Also, every a ∈ at(C ) occurs infinitely R-
close toC ′, and so at(C ) ⊆ at(C ′) by (34). We cannot haveC ′ <R C since otherwise
(as C ′ belongs to the close proximity N of C) every a ∈ at(C ′) occurred infinitely
R-close to C, resulting in at(C ) = at(C ′) by (34), and so C ′ and C were twins,
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contrary to (36). It follows that C ′ = C , and so [C –, C ) =
⋃
n<�[C –, Cn]. As each

[C –, Cn] is countable by (37), [C –, C ) is also countable, which is a contradiction. �

Using Lemmas 5.3 and 5.4, we can also obtain elegant characterisations of
descriptive frames for LinQ, LinR, Lin<� , and LinZ (cf. [8, 19, 37, 40]).

Lemma 5.6. LetF = (W,R,P) be any finitely generated temporal descriptive frame.
Then

LinQ: F |= LinQ iff F is serial in both directions—i.e., the R- and R–-final clusters
in F are both non-degenerate, and F is dense—i.e., there is a non-degenerate
cluster between any two distinct degenerate ones;

LinR: F |= LinR iff F is serial, dense, and Dedekind-complete in the sense that there
is a degenerate cluster between any two distinct non-degenerate ones;

Lin<�: F |= Lin<� iff F does not contain a non-degenerate cluster C such that
(– ∞, C ) ∈ P or (C,+∞) ∈ P(in particular, the R- and R–-final clusters
in F are degenerate);

LinZ: F |= LinZ iff F is serial and does not contain a non-degenerate cluster C with
∅ �= (– ∞, C ) ∈ P or ∅ �= (C,+∞) ∈ P(a single non-degenerate cluster is a
frame for LinZ but not for Lin<�).

Proof. We only show the (⇒)-directions, leaving the converses to the reader.
Suppose F is M-generated, for some model M = (F, v).

LinQ: As F |= �F� (F |= �P�), Lemma 5.1 gives a {�F�}-maximal ({�P�}-
minimal) point x in M with R-final (R–-final) and non-degenerate C (x). Thus,
F is serial. Suppose {x}, {y} are degenerate clusters with xRy. Lemma 5.4
gives formulas �x and �y defining {x} and {y} in M. As M, x |= �F�y and
F |= �F�y → �F�F�y , the formula �F�y ∧�P�x is satisfiable in M. Let z be
{�F�y ∧�P�x}-maximal in M. Then xRzRy. As M, z |= �F(�F�y ∧�P�x) by
F |= �F�y → �F�F�y , the cluster C (z) is non-degenerate.

LinR: Non-degenerate C (x) <R C (y) cannot be <R-consecutive because other-
wise, by Lemma 5.4, C (x) were �-maximal in M for some formula �, and so
M, x �|= �(�P�F� → �F�P�F�) → (�P�F� → �F�F�), contrary to F |= LinR.
Thus, there is z with C (x) <R C (z) <R C (y). If z is irreflexive, we are done.
Otherwise, by (tig), there is some formula � with �F� ∈ tM(y) and � /∈ tM(z),
and so M, z |= �F¬�. Let z ′ be a �F¬�-maximal point in M. Clearly, C (x) <R
C (z ′) <R C (y). If z ′ is irreflexive, we are done. Otherwise, we take the immediate
R-successor z ′′ of z ′, which exists by Lemma 5.4. As M, z ′′ |= �F� ∧ ¬�, point z ′′

is irreflexive and C (z ′′) <R C (y).
Lin<� : If there existed a non-degenerate cluster C (x) and a formula � with

(– ∞, C (x)) = v(�), then M, x �|= �P(�P� → �) → �P�, contrary to F |= Lin<� .
LinZ: If there existed a non-degenerate clusterC (x) and some formula� with ∅ �=

(C (x),+∞) = v(�), then M, x �|= �F(�F� → �) → (�F�F� → �F�), contrary
to F |= LinZ. �

Note that Lin and LinQ are d-persistent while the other three logics are not [37].

Example 5.7. The descriptive frame F = (W2, R◦•,P2) with (W2, R◦•) depicted
below and P2 defined in Example 2.2 is serial, dense, and Dedekind-complete, so
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F |= LinR.

b4b3b2b1b0 a0 a1

...

It is readily seen, however, that (W2, R◦•) �|= LinR, so LinR is not d-persistent.

The notion of �-block from Section 4.2 also needs a modification for temporal
models. Namely, a set b ⊆W is a �-block in a temporal model M based on F =
(W,R,P) if b = b�M(x), for some x ∈W , where

b�M(x) =
{
y ∈W | �Xt

�
M(y) ⊆ t�M(x) & �Xt

�
M(x) ⊆ t�M(y), for X ∈ {F,P}

}
,

if both �Ft
�
M

(x) ⊆ t�
M

(x) and �Pt
�
M

(x) ⊆ t�
M

(x) hold; otherwise b�M(x) = {x}.
Then we have the following temporal analogue of Lemma 4.13.

Lemma 5.8. Suppose M is a model based on a finitely M-generated temporal
descriptive frame F = (W,R,P). Then, for any �-block b in M, there exist clusters
C –
b and C+

b in F such that the following hold:

(a) b =
[
C –
b , C

+
b

]
;

(b) if cluster C –
b (cluster C+

b ) is minimal (respectively, maximal ) in M, then it is
�-minimal (respectively, �-maximal ) in M;

(c) if b is non-degenerate, then both C –
b and C+

b are non-degenerate;
(d) b is definable in M iff C –

b is not an R-limit cluster and C+
b is not an R–-limit

cluster;
(e) t�

M
(b) = t�

M

(
C –
b ) = t�

M

(
C+
b

)
.

Proof. This can be proved similarly to Lemma 4.13, using Lemmas 5.3, 5.4, and
5.1, in place of Lemmas 2.4, 2.6, and 2.3, respectively. �

Given �-bisimilar models Mi , i = 1, 2, based on finitely Mi -generated temporal
frames, we can adapt Lemma 4.15 to the temporal setting to show that �-blocks in
M1 and M2 always come in �-bisimilar pairs b, �(b). Being equipped with these
modifications, we show first how to extend the selection procedure from the proof
of Theorem 3.5 to Lin, LinQ, and LinR.

Theorem 5.9. Each L ∈ {Lin, LinQ, LinR} has the polysize bisimilar model prop-
erty, and the IEP for L is coNP-complete.

Proof. Suppose ϕ1 and ϕ2 have no interpolant in L, � = sig(ϕ1) ∩ sig(ϕ2), and

 = sig(ϕ1) ∪ sig(ϕ2). By Theorem 3.2, there are 
-modelsMi , for i = 1, 2, based on
Mi -generated temporal descriptive frames Fi = (Wi,Ri ,Pi) for L with M1, x1 ∼�
M2, x2,M1, x1 |= ϕ1 andM2, x2 |= ¬ϕ2. Let � be the largest �-bisimulation between
M1 and M2, that is, y1�y2 iff t�

M1
(y1) = t�

M2
(y2), for all yi ∈Wi . We show that there

exist such Mi of polynomial size in max(|ϕ1|, |ϕ2|).
For any i = 1, 2 and � ∈ sub(ϕi) satisfied in Mi , we take one {�}-maximal and

one {�}-minimal point in Mi . LetM i be the set of all selected points and let

T =
{
t�M1

(x) | x ∈ {x1} ∪M1
}
∪

{
t�M2

(x) | x ∈ {x2} ∪M2
}
.

For each t ∈ T , we take a smallest set S i ⊆Wi containing one t-maximal and one
t-minimal point in Mi .
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LetW ′
i = {xi} ∪M i ∪ S i , R′

i = Ri �W ′
i
, F′
i = (W ′

i , R
′
i), let M′

i be the restriction

of Mi to F′
i , and let x′1�

′x′2 iff t�
M1

(x′1) = t�
M2

(x′2), for all x′1 ∈W ′
1 , x′2 ∈W ′

2 .
Following the proof of Lemma 3.4, we see that M′

1, x1 |= ϕ1, M′
2, x2 |= ¬ϕ2, and � ′

is a �-bisimulation between M′
1 and M′

2 with x1�
′x2. Clearly, F′

i |= Lin and the Mi

are of polynomial size in max(|ϕ1|, |ϕ2|).
For L = LinQ, we do not necessarily have F′

i |= L. To fix this, we add some extra
points from Wi to W ′

i . As Fi |= LinQ, the R- and R–-final clusters in Fi are non-
degenerate and, as observed in the selection procedure from Section 3,W ′

i contains
some points from these final clusters. Thus, F′

i �|= LinQ iff F′
i contains an irreflexive

point x with an immediate irreflexive R′
i -successor y. We call such pair x, y an irr-

defect in F′
i . We are going to ‘cure’ one irr-defect after the other without introducing

new irr-defects in either frame.
Given an irr-defect u1, v1 in F′

1, we find anR1-reflexive z1 with u1R1z1R1v1, which
exists by F1 |= LinQ and Lemma 5.6. Let t = t�

M1
(z1) and b = b�M1

(z1). As �F t ⊆ t
and �Pt ⊆ t, b is a non-degenerate �-block in M1. By Lemma 5.8, there are t-
minimal and t-maximal points z–

1 and z+
1 in the non-degenerate clustersC –

b andC+
b .

As �(b) is a non-degenerate �-block in M2 by Lemma 4.15, there are t-minimal
and t-maximal points z–

2 and z+
2 in the non-degenerate clusters C –

�(b) and C+
�(b).

By adding z1, z–
1 , z+

1 toW ′
1 and z–

2 , z+
2 toW ′

2 we cure the irr-defect u1, v1 without
creating a new irr-defect in either frame. Let W ′′

i , i = 1, 2, be the sets we obtain
after curing all irr-defects in both frames in this way,R′′

i = Ri �W ′′
i

, F′′
i = (W ′′

i , R
′′
i ),

let M′′
i be the restriction of Mi to F′′

i , and x′1�
′′x′2 iff t�

M1
(x′1) = t�

M2
(x′2), for all

x′1 ∈W ′′
1 , x′2 ∈W ′′

2 . Then F′′
i |= LinQ, by Lemma 5.6, and

(minmax) for all x ∈W ′′
1 ∪W ′′

2 and i = 1, 2, the setW ′′
1 contains t�

Mi
(x)-minimal

and t�
Mi

(x)-maximal points in M1, andW ′′
2 contains t�

Mi
(x)-minimal and t�

Mi
(x)-

maximal points in M2.

So it is readily seen (similarly to the proof of Lemma 3.4) that M′′
1 , x1 |= ϕ1,

M′′
2 , x2 |= ¬ϕ2, and � ′′ is a �-bisimulation between M′′

1 and M′′
2 with x1�

′′x2.
Finally, let L = LinR. Since LinQ ⊆ LinR, we first cure the irr-defects in the F′

i ,
i = 1, 2, as described above. LetF′′

i , i = 1, 2, be the resulting serial and dense frames.
Thus, F′′

i �|= L iff F′′
i contains two<R′′i -consecutive non-degenerate clusters C (x) �=

C (y). We call such x, y a ref-defect in F′′
i . We show that the ref-defects can also be

cured in a step-by-step manner without introducing new defects of either type, while
maintaining (minmax).

If u1, v1 is a ref-defect in F′′
1 , Lemma 5.6 provides an irreflexive z1 ∈W1 with

u1R1z1R1v1. Let t = t�
M1

(z1). The insertion of extra points into W ′′
1 depends on

whether u1 and v1 are in the same �-block in M1 or not.
Case 1: u1, v1 ∈ b, for some �-block b in M1. By Lemma 5.8, b is non-degenerate,

and there are t-minimal and t-maximal points z–
1 and z+

1 in the non-degenerate
clusters C –

b and C+
b . By Lemma 4.15, �(b) is a non-degenerate �-block in M2, so

there are t-minimal and t-maximal points z–
2 and z+

2 in the non-degenerate clusters
C –
�(b) andC+

�(b). By adding z1, z–
1 , z+

1 toW ′′
1 and z–

2 , z+
2 toW ′′

2 we cure the ref-defect
u1, v1 in F′′

1 and maintain (minmax). Also, as (minmax) held in F′′
i , by Lemma 5.8

we already had some points from C –
b and C+

b in W ′′
1 and some points from C –

�(b)
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and C+
�(b) inW ′′

2 . So we did not create new defects in either frame, and the property
(minmax) is maintained.

Case 2: u1 ∈ bu1 , v1 ∈ bv1 , for �-blocks bu1 �= bv1 in M1. By the definition of
W ′′

1 and C (u1), C (v1) being <R′′1 -consecutive, C (u1) = C+
bu1

and C (v1) = C –
bv1

,
so z1 /∈ bu1 . We claim that there is an irreflexive z ∈W1 such that u1R1zR1v1

and z is either t�
M1

(z)-maximal or t�
M1

(z)-minimal. Indeed, as u1R1z1, we have
�Ft

�
M1

(z1) ⊆ t�
M1

(u1) and �Pt
�
M1

(u1) ⊆ t�
M1

(z1). As z1 /∈ bu1 , there can be two
cases: either (i)�Ft

�
M1

(u1) �⊆ t�
M1

(z1) or (ii)�Pt
�
M1

(u1) �⊆ t�
M1

(z1). In case (i), there
is a �-formula � with M1, u1 |= �F� but M1, z1 �|= �F�. Take a {�F�}-maximal
point z ′. Clearly, u1R1z

′R1v1. If z ′ is irreflexive, we set z = z ′ as it is t�
M1

(z ′)-
maximal. Otherwise, Lemma 5.4 gives an immediate degenerate<R1 -successorC (z)
of C (z ′) such that z is t�

M1
(z)-maximal. In case (ii), there is a �-formula � with

M1, u1 �|= �P� butM1, z1 |= �, and soM1, v1 |= �P�. Take a {�P�}-minimal point
z ′. Clearly, u1R1z

′R1v1. If z ′ is irreflexive, we set z = z ′ as it is t�
M1

(z ′)-minimal.
Otherwise, Lemma 5.4 gives an immediate degenerate <R1 -predecessor C (z) of
C (z ′) such that z is t�

M1
(z)-minimal.

Let b = b�M1
(z). Then b is a degenerate �-block in M1 by Lemma 5.8. By Lemma

4.15, �(b) is a degenerate �-block in M2 with �(bu1) ≺F2 �(b) ≺F2 �(bv1). Also, by
(minmax) in F′′

i , C+
�(bu1 ) and C –

�(bv1 ) are <R′′2 -consecutive non-degenerate clusters.
Therefore, by adding z toW ′′

1 and z2 with C (z2) = �(b) toW ′′
2 , we cured the ref-

defect u1, v1 in F′′
1 and we did not create new defects of either kind in either frame

while maintaining (minmax). So again it is readily seen (similarly to the proof of
Lemma 3.4) that, after fixing all defects, we end up with a pair of models as required
that are based on frames for LinR by Lemma 5.6.

This establishes the polysize bisimilar model property of L ∈ {Lin, LinQ, LinR}.
We show that the IEP for L is in coNP using the description of finite frames for L
in Lemma 5.6. �

The finitary selection construction in the proof above does not work for logics
L ∈ {Lin<�, LinZ}. In fact, these logics do not have the polysize bisimilar model
property. However, below we show that they still have a kind of quasi-finite bisimilar
model property similar to Definition 4.1 in the following sense. We can always witness
the lack of an interpolant for ϕ1, ϕ2 in L by a pair of temporal models that are based
on frames for L, and assembled fromO

(
max(|ϕ1|, |ϕ2|)

)
-many ‘simple’ models (like

those in Example 5.2) that are based atomic descriptive frames of the formsm<,©k ,
C(©k , •), C(•,©k , •), and C(•,©k ), for m, k = O

(
max(|ϕ1|, |ϕ2|)

)
, k > 0.

Given ϕi , Mi , xi , for i = 1, 2, as above, let M i , S i , and W ′
i = {xi} ∪M i ∪ S i

be as defined in the proof of Theorem 5.9. As before, we call the points from W ′
i

relevant in Mi . A cluster or a �-block in Mi is relevant if it contains a relevant point
in Mi . Given any pair b, �(b) of �-bisimilar �-blocks in M1 and M2, we can now
have the temporal analogue of Lemma 4.17, dealing not only with S 1 ∩ C+

b and
S 2 ∩ C+

�(b) but also with S 1 ∩ C –
b and S 2 ∩ C –

�(b). In particular,

there are �-type preserving bijections f– : S 1 ∩ C –
b → S 2 ∩ C –

�(b) (38)

and f+ : S 1 ∩ C+
b → S 2 ∩ C+

�(b);
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|S 1 ∩ C –
b | = |S 1 ∩ C+

b | and |S 2 ∩ C –
�(b)| = |S 2 ∩ C+

�(b)|; (39)

b is relevant in M1 iff �(b) is relevant in M2. (40)

Theorem 5.10. The IEPs for Lin<� and LinZ are both coNP-complete.

Proof. Let b0
1, ... , b

N
1 be all the relevant �-blocks in M1 ordered by ≺F1 , for

some N = O(
(

max(|ϕ1|, |ϕ2|)
)
. By (40) and Lemma 4.15, the ≺F2 -ordered list of

all relevant �-blocks in M2 is b0
2, ... , b

N
2 , where bj2 = �(bj1), for j ≤ N . By (38)

and (39), for every j ≤ N there is kj > 0 with kj = |S 1 ∩ C –
b
j
1

| = |S 1 ∩ C+
b
j
1

| =

|S 2 ∩ C –
b
j
2

| = |S 2 ∩ C+
b
j
2

|. Also, by Lemma 4.15, bj1 is degenerate iff bj2 is degenerate,

for j ≤ N .
Case L = Lin<� : By Lemmas 5.6 and 5.8, b0

i and bNi , i = 1, 2, are degenerate. By
Lemmas 5.4, 5.6, and 5.8, if bji is non-degenerate, then C –

b
j
i

and C+
b
j
i

are R–- and

R-limit clusters, and C ∩M i = ∅, for every non-degenerate cluster C in bji . (It can
happen that xi is in a non-degenerate cluster in bji different from C –

b
j
i

, C+
b
j
i

.)

For all i = 1, 2 and j ≤ N , we let mji =
∣∣(({xi} ∪M i) ∩ bji

)
\ (C –

b
j
i

∪ C+
b
j
i

)
∣∣ and

define an atomic frame H
j
i = (Hji , R

j
i ,P

j
i ) by taking

H
j
i =

⎧⎪⎨
⎪⎩
•, if bji is degenerate;
C
(
•,©kj , •), if C –

b
j
i

= C+
b
j
i

is non-degenerate;

C
(
•,©kj , •) � (mji )

< � C
(
•,©kj , •), otherwise.

Note that mj1 and mj2 might be different, and ({xi} ∪M i) ∩ bji = ∅ (and so mji =
0) can happen even when C –

b
j
i

�= C+
b
j
i

. Let Hi = (Hi,R′
i ,P ′

i ) = H0
i � ···� HNi . It is

readily seen that Hi is a frame for Lin<� , for i = 1, 2. Next, we define a ‘parent’
function hi : Hi →W ′

i such that, for all x ∈ Hi ,

for all j ≤ N, if x ∈ Hji then hi(x) ∈W ′
i ∩ b

j
i , (41)

for all y ∈ Hi, if xR′
iy then hi(x)Rihi(y), (42)

for all y ∈M i , if hi(x)Riy then xR′
i z and hi(z) = y for some z. (43)

Finally, for j ≤ N , we define a model Nji based on H
j
i by taking, for all x ∈ Hji ,

at
N
j
i
(x) = atMi

(
hi(x)

)
, (44)

and let Ni = N0
i � ···� NNi .

Instead of giving the general definitions of hi andNi , we illustrate the construction
in the picture below, where Mi has three degenerate �-blocks b0

i , b
2
i , and b3

i and one
non-definable non-degenerate �-block b1

i ; the relevant points in Mi are underlined;

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10159
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.184, on 18 Nov 2025 at 17:48:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10159
https://www.cambridge.org/core


INTERPOLANT EXISTENCE IN MODAL LOGICS WITH LINEAR FRAMES 49

k0 = k2 = k3 = 1, k1 = 2, and m1
i = 3.

Ni ... ... ... ...

Mi ... ... ... ... ... ...

hi

b0
i b1

i b2
i b3

i

Hi

︸ ︷︷ ︸ ︸ ︷︷ ︸
• � C(•,©2 , •) � 3< � C(•,©2 , •) � • � •

It is readily seen that this way (41)–(43) hold and N
j
i is based on H

j
i , for j ≤ N .

Thus, H0
i � ···� HNi , i = 1, 2, is a frame for Lin<� by Lemma 5.6. Using (41)–(43),

a proof similar to that of Lemma 4.22(a) shows that each point x in Ni makes
true exactly the same formulas in sub(ϕi) as its parent hi(x) in Mi . It follows that
N1, x

′
1 |= ϕ1 and N2, x

′
2 |= ¬ϕ2, where xi = hi(x′i ).

Further, the construction and (38) guarantee that each pair (Nj1 ,N
j
2), for j ≤ N ,

satisfies an obvious condition similar to Definition 4.1(a) or (c). Then a proof
similar to that of Lemma 4.4 shows that N

j
1 and N

j
2 are globally �-bisimilar for

every j ≤ N , and so N1, x
′
1 ∼� N2, x

′
2.

CaseL = LinZ: While the definitions of Hji , for 0 < j < N , are the same as above,
for j = 0, N we need new ones. Now, by Lemmas 5.6 and 5.8, b0

i and bNi are non-
degenerate, for i = 1, 2. Also, by Lemmas 5.4, 5.6, and 5.8, theR–-final clusterC –

b0
i

in

Fi is anR–-limit cluster, and the R-final clusterC+
bNi

in Fi is an R-limit cluster, for i =

1, 2. There are several cases. If N = 0 (that is, b0
i =Wi) and C –

b0
i

= C+
b0
i

, then we let

H0
i =©k0 . If N = 0 and C –

b0
i

�= C+
b0
i

, then we let H0
i = C

(©k0 , •
)
� (m0

i )
< � C

(
•,©k0

)
.

If N > 0 then

H0
i =

{
C
(©k0 , •

)
, if C –

b0
i

= C+
b0
i

;

C
(©k0 , •

)
� (m0

i )
< � C

(
•,©k0 , •

)
, otherwise,

and

HNi =

{
C
(
•,©kN )

, if C –
bNi

= C+
bNi

;

C
(
•,©kN , •) � (mNi )< � C

(
•,©kN )

, otherwise.

This way, by Lemma 5.6, Hi = H0
i � ···� HNi is a frame for LinZ, for i = 1, 2. Apart

from these modifications, everything is similar to the Lin<� case.
A coNP-algorithm deciding interpolant existence in Lin<� or LinZ is an obvious

adaptation of the algorithm detailed in the proof of Theorem 4.9. �

We conjecture that the IEP for every consistent finitely axiomatisable Priorean
temporal logic is coNP-complete.

§6. Outlook and open problems. We have turned the lack of the CIP into a research
question by asking whether deciding interpolant existence becomes harder than
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validity for modal logics without the CIP. As argued in [33, 35] for the closely
related problem of separability of disjoint regular languages using a smaller language
class (such as first-order definable languages), this question can be understood as a
generalisation of satisfiability that provides new insights into the expressivity of the
logic in question. We have shown that, in contrast to modal logics with nominals, the
product modal logic S5× S5, and the guarded and two-variable fragments of first-
order logic, the complexity of deciding interpolant existence in finitely axiomatisable
modal logics of linear frames is in coNP and, therefore, of the same complexity as
validity. This appears to be the first general result about Craig interpolants for logics
lacking the CIP. It gives rise to many further questions of which we mention only a
few:

Q1: Is there a decidable modal logic aboveGL,K4, orKwith the undecidable IEP?
Currently, the only known example of a decidable logic with the undecidable
IEP is the two-variable fragment of first-order logic with two equivalence
relations [41].

Q2: Do all d-persistent (cofinal) subframe logics aboveK4 have the finite bisimilar
model property? Can one show a quasi-finite bisimilar model property for
all (cofinal) subframe logics above K4 and use it to prove that interpolant
existence is decidable for all finitely axiomatisable ones?

Q3: What is the situation with the IEP for propositional superintuitionistic
(aka intermediate) logics and (super)intuitionistic modal logics without the
CIP? Note that the Gödel translation reduces the IEP for propositional
superintuitionistic logics to the IEP for (certain fragments of) modal logics
above S4 (see the proof of [9, Theorem 14.9]).

Q4: Our proof is not constructive in the sense that is does not provide a non-
trivial algorithm for computing interpolants if they exist (beyond exhaustive
search) nor any upper bounds on their size. It would be of great interest
to develop such algorithms. First steps towards computing interpolants in
description logics without CIP are presented in [23].

Descriptive frames have been crucial for our proofs. It would therefore be
interesting and in line with the modal logic tradition to characterise logics for which
descriptive frames can be replaced by Kripke (or even finite) frames in Theorem
3.2. While d-persistence is clearly a sufficient condition, LinR shows that it is not a
necessary one (see Example 5.7). It is known, however, that LinR is strongly complete
[37], which suggests the conjecture that, in Theorem 3.2, descriptive frames for L
can be replaced by Kripke frames iff L is strongly Kripke complete (in the sense that
every L-consistent set of formulas is satisfiable in a Kripke frame for L). Note that
a logic is strongly Kripke complete iff the corresponding variety of modal algebras
is complex [18, 37].

Acknowledgements. We are grateful to the anonymous reviewer whose comments
and suggestions helped us to improve the presentation and terminology.
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